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 PREFACE     

xv

  This book is an introductory text about real - time systems — systems where 
timeliness  is a crucial part of the correctness of the system. Real - time software 
designers must be familiar with computer architecture and organization, oper-
ating systems and related services, programming languages, systems and soft-
ware engineering, as well as performance analysis and optimization techniques. 
The text provides a pragmatic discussion of these subjects from the perspective 
of the real - time systems designer. Because this is a staggering task, depth is 
occasionally sacrifi ced for breadth. Nevertheless, thoughtful suggestions for 
additional literature are provided where depth has been sacrifi ced due to the 
available page budget or other reasons. 

 This book is intended for junior – senior level and graduate computer science, 
computer engineering and electrical engineering students, as well as practicing 
software, systems and computer engineers. It can be used as a graduate level 
text if it is supplemented with an advanced reader or a focused selection of 
scholarly articles on a specifi c topic (which could be gathered from the up - to -
 date bibliographies of this edition). Our book is especially useful in an indus-
trial setting for new real - time systems designers who need to get  “ up to speed ”  
very quickly. Earlier editions of this book have been used in this way to teach 
short courses for several industrial clients. Finally, we intend for the book to 
be a desk reference of long - lasting value, even for experienced real - time 
systems designers and project managers. 

 The reader is assumed to have basic knowledge in programming in one of 
the more popular languages, but other than this, the prerequisites for this text 
are minimal. Some familiarity with discrete mathematics is helpful in under-
standing some of the formalizations, but it is not essential. 
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xvi PREFACE

 Since there are several preferred languages for real - time systems design, 
such as Ada, C, C ++ , C#, and increasingly, Java, it would be unjust to focus this 
book on one language, say C, when the theory and framework should be lan-
guage independent. However, for uniformity of discussion, certain points are 
illustrated, as appropriate, in generic assembly language and C. 

 While the provided program codes are not intended to be ready - to - use, they 
can be easily adapted with a little tweaking for use in a real system. 

 This book is organized into nine chapters that are largely self - contained. 
Thus, the material can be rearranged or omitted depending on the background 
and interests of the instructor or reader. It is advised, however, that Chapter 
 1  would be explored fi rst, because it contains an introduction to real - time 
systems as well as the necessary terminology. 

 Each of the chapters contains both easy and more challenging exercises 
that stimulate the reader to confront actual problems. The exercises, however, 
cannot serve as a substitute for carefully planned laboratory work or practical 
experience. 

 The fi rst chapter provides an overview of the nature of real - time systems. 
Much of the basic vocabulary relating to real - time systems is developed along 
with a discussion of the main challenges facing the real - time system designer. 
Besides, a brief historical review is given. The purpose of this chapter is to 
foreshadow the rest of the book as well as quickly acquaint the reader with 
pertinent terminology. 

 The second chapter presents a detailed review of central computer archi-
tecture concepts from the perspective of the real - time systems designer. 
Specifi cally, the impact of advanced architectural features on real - time perfor-
mance is discussed. The remainder of the chapter outlines different memory 
technologies, input/output techniques, and peripheral support for embedded 
systems. The intent here is to increase the reader ’ s awareness of the impact of 
the computer architecture on various design considerations. 

 Chapter  3  provides the core of the text for those who are building practical 
real - time systems. This comprehensive chapter describes the three principal 
real - time kernel services: scheduling/dispatching, intertask communication/
synchronization, and memory management. It also covers special problems 
inherent in these designs, such as deadlock and priority inversion. 

 Chapter  4  begins with a discussion of specifi c language features desirable 
in good software engineering practice in general and real - time systems design 
in particular. An evaluative review of several widely used programming lan-
guages in real - time systems design, with respect to these features, follows. Our 
intent is to provide explicit criteria for rating a language ’ s ability to support 
real - time systems and to alert the user to the possible drawbacks of using each 
language in real - time applications. 

 In Chapter  5 , the nature of requirements engineering is fi rst discussed. Then 
a collection of rigorous techniques in real - time system specifi cation is pre-
sented with illustrative examples. Such rigorous methods are particularly 
useful when automatic design and code - generation approaches are to be used 
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PREFACE xvii

later in the development life cycle. Next, structured and object - oriented meth-
odologies are discussed as alternative paradigms for requirements writing. At 
the end of this chapter, an extensive case study is provided. 

 Chapter  6  surveys several commonly applied design specifi cation tech-
niques used in both structured and object - oriented design. An emphasis on 
their applicability to real - time systems is made throughout. No single tech-
nique is a silver bullet, and the reader is encouraged to adopt his or her own 
formulation of specifi cation techniques for the given application. A compre-
hensive design case study is also provided. 

 Chapter  7  discusses performance analysis techniques based on diverse esti-
mation approaches. The proposed toolset is fully usable even before it is pos-
sible to perform any direct measurements. Moreover, a pragmatic discussion 
on the use of classical queuing theory for analyzing real - time systems is pro-
vided. Input/output performance issues are considered with an emphasis on 
buffer - size calculation. Finally, a focused analysis of memory utilization in 
real - time systems is presented. 

 Chapter  8  discusses additional software engineering considerations, includ-
ing the use of software metrics and techniques for improving the fault - 
tolerance and overall reliability of real - time systems. Later in the chapter, 
different techniques for improving reliability through rigorous testing are 
discussed. Systems integration and performance optimization issues are also 
considered. 

 In Chapter  9 , we look to the future of real - time systems hardware, software, 
and applications. Much of this chapter is speculative, and we had great fun 
imagining things yet to come and the way things ought to be with respect to 
real - time systems technology. This chapter forms a fruitful basis for class dis-
cussions, debates, and student projects. 

 When our book is used in a university course, typically students are asked 
to build a real - time multitasking system of their choice. Usually, it is a game 
on a PC, but some students can be expected to build embedded hardware 
controllers of moderate complexity. The authors ’  assignment to the reader 
would be to build such a game or simulation, using at least the coroutine 
model. The application should be useful or at least pleasing, so some sort of a 
game is a good choice. The mini - project should take no more than 20 hours 
and cover all phases of the software life cycle model discussed in the text. 
Hence, those readers who have never built a real - time system will have the 
benefi t of the instructive experience. 

 Real - time systems engineering is based on more than 50 years of experience 
and global contributions by numerous individuals and organizations. Rather 
than clutter the text with endless citations for the origin of each idea, the 
authors chose to cite only the key ideas where the reader would want to seek 
out the source for further reading. Some of the text is adapted from two other 
books written by the fi rst author on software engineering and computer archi-
tecture, Laplante ( 2003 ) and Gilreath and Laplante ( 2003 ), respectively. Where 
this has been done, it is so noted. 
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xviii PREFACE

 Many solid theoretical treatments of real - time systems exist, and where 
applicable, they are noted. Nonetheless, these books or journal articles are 
sometimes too theoretical for practicing software engineers and students who 
are often impatient to wade through the derivations for the resultant payoff. 
They want results that they can use now in the trenches, and they want to see 
how  they can be used, not just know that they exist. In this text, an attempt is 
made to distill the most valuable of the theoretical results, combined with 
practical experience and insight to provide a toolkit for the practitioner. 

 This book contains extensive bibliographies at the end of each chapter. 
Where verbatim phrases were used, and where a fi gure came from another 
source, the authors tried to cite it appropriately. However, if any were inad-
vertently overlooked, the authors wish to correct the unfortunate error. Please 
notify the authors if you fi nd any errors of omission, commission, citation, and 
so forth by e - mail, at plaplante@psu.edu or seppo.ovaska@aalto.fi , and they 
will be corrected at the next possible opportunity. 

 Since 1992, thousands of copies of the fi rst three editions of this book have 
been sold to the college text and professional markets throughout the world. 
The only thing more gratifying than its adoption at such prestigious universi-
ties as Carnegie Mellon University, the University of Illinois at Urbana -
 Champaign, Princeton University, the United States Air Force Academy, 
Polytechnic University, and many others around the world, has been the enthu-
siastic feedback received from numerous individuals thankful for the infl uence 
that the book has had on them. The continuing international success of the 
fi rst three editions along with recent technological advancements demanded 
that a fourth edition be produced. 

 The most fundamental change in the fourth edition is a new co - author, Dr. 
Seppo Ovaska, whose vast experience greatly complements that of the fi rst 
author and adds a strong and timely international perspective. 

 The fourth edition addresses the important changes that have occurred in 
the theory and practice in the construction of real - time systems since the 
publishing of the third edition in 2004. Chapters  1  –  8  have been carefully 
revised to incorporate new material, correction of errors, and elimination of 
outdated material. Moreover, Chapter  9  is a brand - new chapter devoted to 
future visions on real - time systems. Totally new or substantially revised discus-
sions include:

 •      Multidisciplinary design challenges  
 •      Birth and evolution of real - time systems  
 •      Memory technologies  
 •      Architectural advancements  
 •      Peripheral interfacing  
 •      Distributed real - time architectures  
 •      System services for application programs  
 •      Supplementary criteria for multi - core and energy - aware support  
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 •      Automatic code generation  
 •      Life cycle models  
 •      Arguments related to parallelization  
 •      Uncertainty in real - time systems  
 •      Testing patterns and exploratory testing  
 •      Real - time device drivers  
 •      Future visions on real - time systems    

 While approximately 30% of previous material has been discarded, another 
40% has been added, resulting in a unique and modern text. In addition, 
several new examples have been included to illustrate various important 
points. Hence, it is with pride and a sense of accomplishment that we are pre-
senting this timely and carefully composed book to students and practicing 
engineers. 

  REFERENCES 

    W. F.   Gilreath   and   P. A.   Laplante  ,  Computer Architecture: A Minimalist Approach . 
 Norwell, MA :  Kluwer Academic Publishers ,  2003 .  

    P. A.   Laplante  ,  Software Engineering for Image Processing .  Boca Raton, FL :  CRC Press , 
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  1 
FUNDAMENTALS OF 
REAL- TIME SYSTEMS     

1

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.

     The term  “ real time ”  is used widely in many contexts, both technical and con-
ventional. Most people would probably understand  “ in real time ”  to mean  “ at 
once ”  or  “ instantaneously. ”   The Random House Dictionary of the English 
Language  (2nd unabridged edition, 1987), however, defi nes  “ realtime ”  as  per-
taining to applications in which the computer must respond as rapidly as 
required by the user or necessitated by the process being controlled . These defi -
nitions, and others that are available, are quite different, and their differences 
are often the cause of misunderstanding between computer, software and 
systems engineers, and the users of real - time systems. On a more pedantic 
level, there is the issue of the appropriate writing of the term  “ real - time. ”  
Across technical and pedestrian literature, various forms of the term, such as 
real time ,  real - time , and  realtime  may appear. But to computer, software, and 
systems engineers the preferred form is real - time , and this is the convention 
that we will follow throughout this text. 

 Consider a computer system in which data need to be processed at a regular 
rate. For example, an aircraft uses a sequence of accelerometer pulses to 
determine its position. Systems other than avionic ones may also require a 
rapid response to events that occur at nonregular rates, such as handling an 
overtemperature failure in a nuclear power plant. Even without defi ning the 
term  “ real - time, ”  it is probably understood that those events demand timely 
or  “ real - time ”  processing. 
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 Now consider a situation in which a passenger approaches an airline check -
 in counter to pick up his boarding pass for a certain fl ight from New York to 
Boston, which is leaving in fi ve minutes. The reservation clerk enters appropri-
ate information into the computer, and a few seconds later a boarding pass is 
printed. Is this a real - time system? 

 Indeed, all three systems — aircraft, nuclear power plant, and airline 
reservations — are real - time, because they must process information within a 
specifi ed interval or risk system failure. Although these examples may provide 
an intuitive defi nition of a real - time system, it is necessary to clearly compre-
hend when a system is real - time and when it is not. 

 To form a solid basis for the coming chapters, we fi rst defi ne a number of 
central terms and correct common misunderstandings in Section  1.1 . These 
defi nitions are targeted for practitioners, and thus they have a strong practical 
point - of - view. Section  1.2  presents the multidisciplinary design challenges 
related to real - time systems. It is shown that although real - time systems design 
and analysis are subdisciplines of computer systems engineering, they have 
essential connections to various other fi elds, such as computer science and 
electrical engineering — even to applied statistics. It is rather straightforward 
to present different approaches, methods, techniques, or tools for readers, but 
much more diffi cult to convey the authors ’  insight on real - time systems to the 
audience. Nevertheless, our intention is to provide some insight in parallel with 
specifi c tools for the practitioner. Such insight is built on practical experiences 
and adequate understanding of the key milestones in the fi eld. The birth of 
real - time systems, in general, as well as a selective evolution path related to 
relevant technological innovations, is discussed in Section  1.3 . Section  1.4  sum-
marizes the preceding sections on fundamentals of real - time systems. Finally, 
Section  1.5  provides exercises that help the reader to gain basic understanding 
on real - time systems and associated concepts.  

   1.1    CONCEPTS AND MISCONCEPTIONS 

 The fundamental defi nitions of real - time systems engineering can vary depend-
ing on the resource consulted. Our pragmatic defi nitions have been collected 
and refi ned to the smallest common subset of agreement to form the vocabu-
lary of this particular text. These defi nitions are presented in a form that is 
intended to be most useful to the practicing engineer, as opposed to the aca-
demic theorist. 

   1.1.1    Defi nitions for Real - Time Systems 

 The hardware of a computer solves problems by repeated execution of 
machine - language instructions, collectively known as software. Software, on 
the other hand, is traditionally divided into system programs and application 
programs. 
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 System programs consist of software that interfaces with the underlying 
computer hardware, such as device drivers, interrupt handlers, task schedulers, 
and various programs that act as tools for the development or analysis of 
application programs. These software tools include compilers, which translate 
high - level language programs into assembly code; assemblers, which convert 
the assembly code into a special binary format called object or machine code; 
and linkers/locators, which prepare the object code for execution in a specifi c 
hardware environment. An operating system is a specialized collection of 
system programs that manage the physical resources of the computer. As such, 
a real - time operating system is a truly important system program (Anh and 
Tan,  2009 ). 

 Application programs are programs written to solve specifi c problems, such 
as optimal hall - call allocation of an elevator bank in a high - rise building, inertial 
navigation of an aircraft, and payroll preparation for some industrial company. 
Certain design considerations play a role in the design of system programs and 
application software intended to run in real - time environments. 

 The notion of a  “ system ”  is central to software engineering, and indeed to 
all engineering, and warrants formalization. 

   

       Figure 1.1.     A general system with inputs and outputs.  

System

Mapping Function..
. ..

.

Inputs Outputs

Input Space Output Space

 Defi nition: System 

 A system is a mapping of a set of inputs into a set of outputs. 

 When the internal details of the system are not of particular interest, the 
mapping function between input and output spaces can be considered as a 
black box with one or more inputs entering and one or more outputs exiting 
the system (see Fig.  1.1 ). Moreover, Vernon lists fi ve general properties that 
belong to any  “ system ”  (Vernon,  1989 ):

   1.     A system is an assembly of components connected together in an orga-
nized way.    

  2.     A system is fundamentally altered if a component joins or leaves it.  
  3.     It has a purpose.  
  4.     It has a degree of permanence.  
  5.     It has been defi ned as being of particular interest.    
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       Figure 1.2.     A real - time control system including inputs from a camera and multiple 
sensors, as well as outputs to a display and multiple actuators.  

Real-Time

Control System

... ...

Camera Display

Sensors Actuators

       Figure 1.3.     A classic representation of a real - time system as a sequence of schedulable 
jobs.  

Real-Time

System

...

Job 1

Schedule

Job 2

Job 3

Job 4

Job n

[Job 3, Job 1, Job n, ...]

 Every real - world entity, whether organic or synthetic, can be modeled as a 
system. In computing systems, the inputs represent digital data from hardware 
devices or other software systems. The inputs are often associated with sensors, 
cameras, and other devices that provide analog inputs, which are converted to 
digital data, or provide direct digital inputs. The digital outputs of computer 
systems, on the other hand, can be converted to analog outputs to control 
external hardware devices, such as actuators and displays, or used directly 
without any conversion (Fig.  1.2 ).   

 Modeling a real - time (control) system, as in Figure  1.2 , is somewhat differ-
ent from the more traditional model of the real - time system as a sequence of 
jobs to be scheduled and performance to be predicted, which is comparable 
with that shown in Figure  1.3 . The latter view is simplistic in that it ignores the 
usual fact that the input sources and hardware under control may be highly 
complex. In addition, there are other,  “ sweeping ”  software engineering con-
siderations that are hidden by the model shown in Figure  1.3 .   

 Look again at the model of a real - time system shown in Figure  1.2 . In its 
realization, there is some inherent delay between presentation of the inputs 
(excitation) and appearance of the outputs (response). This fact can be formal-
ized as follows: 

   
 Defi nition: Response Time 

 The time between the presentation of a set of inputs to a system and the 
realization of the required behavior, including the availability of all associ-
ated outputs, is called the response time of the system. 
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 How fast and punctual the response time needs to be depends on the charac-
teristics and purpose of the specifi c system. 

 The previous defi nitions set the stage for a practical defi nition of a real - time 
system. 

 Defi nition: Real - Time System ( II ) 

 A real - time system is one whose logical correctness is based on both the 
correctness of the outputs and their timeliness. 

 Defi nition: Failed System 

 A failed system is a system that cannot satisfy one or more of the require-
ments stipulated in the system requirements specifi cation. 

 Defi nition: Real - Time System ( I ) 

 A real - time system is a computer system that must satisfy bounded response -
 time constraints or risk severe consequences, including failure. 

 But what is a  “ failed ”  system? In the case of the space shuttle or a 
nuclear power plant, for example, it is painfully obvious when a failure has 
occurred. For other systems, such as an automatic bank teller machine, the 
notion of failure is less obvious. For now, failure will be defi ned as the 
 “ inability of the system to perform according to system specifi cation, ”  or, 
more precisely: 

 Because of this defi nition of failure, rigorous specifi cation of the system oper-
ating criteria, including timing constraints, is necessary. This matter is discussed 
later in Chapter  5 . 

 Various other defi nitions exist for  “ real - time, ”  depending on which source 
is consulted. Nonetheless, the common theme among all defi nitions is that the 
system must satisfy deadline constraints in order to be correct. For instance, 
an alternative defi nition might be: 

 In any case, by making unnecessary the notion of timeliness, every system 
becomes a real - time system. 

 Real - time systems are often reactive or embedded systems. Reactive 
systems are those in which task scheduling is driven by ongoing interaction 
with their environment; for example, a fi re - control system reacts to certain 
buttons pressed by a pilot. Embedded systems can be defi ned informally as 
follows: 
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 For example, a modern automobile contains many embedded processors that 
control airbag deployment, antilock braking, air conditioning, fuel injection, 
and so forth. Today, numerous household items, such as microwave ovens, rice 
cookers, stereos, televisions, washing machines, even toys, contain embedded 
computers. It is obvious that sophisticated systems, such as aircraft, elevator 
banks, and paper machines, do contain several embedded computer systems. 

 The three systems mentioned at the beginning of this chapter satisfy the 
criteria for a real - time system. An aircraft must process accelerometer data 
within a certain period that depends on the specifi cations of the aircraft; for 
example, every 10   ms. Failure to do so could result in a false position or veloc-
ity indication and cause the aircraft to go off - course at best or crash at worst. 
For a nuclear reactor thermal problem, failure to respond swiftly could result 
in a meltdown. Finally, an airline reservation system must be able to handle a 
surge of passenger requests within the passenger ’ s perception of a reasonable 
time (or before the fl ights leave the gate). In short, a system does not have to 
process data at once or instantaneously to be considered real - time; it must 
simply have response times that are constrained appropriately. 

 When is a system real - time? It can be argued that all practical systems are 
ultimately real - time systems. Even a batch - oriented system — for example, 
grade processing at the end of a semester or a bimonthly payroll run — is real -
 time. Although the system may have response times of days or even weeks 
(e.g., the time that elapses between submitting the grade or payroll informa-
tion and issuance of the report card or paycheck), it must respond within a 
certain time or there could be an academic or fi nancial disaster. Even a word -
 processing program should respond to commands within a reasonable amount 
of time or it will become torturous to use. Most of the literature refers to such 
systems as soft real - time systems. 

 Defi nition: Hard Real - Time System 

 A hard real - time system is one in which failure to meet even a single dead-
line may lead to complete or catastrophic system failure. 

 Defi nition: Soft Real - Time System 

 A soft real - time system is one in which performance is degraded but not 
destroyed by failure to meet response - time constraints. 

 Defi nition: Embedded System 

 An embedded system is a system containing one or more computers (or 
processors) having a central role in the functionality of the system, but the 
system is not explicitly called a computer. 

 Conversely, systems where failure to meet response - time constraints leads to 
complete or catastrophic system failure are called hard real - time systems. 
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 Firm real - time systems are those systems with hard deadlines where some 
arbitrarily small number of missed deadlines can be tolerated. 

  TABLE 1.1.    A Sampling of Hard, Firm, and Soft Real - Time Systems 

   System     Real - Time 
Classifi cation  

   Explanation  

  Avionics weapons delivery 
system in which pressing 
a button launches an 
air - to - air missile  

  Hard    Missing the deadline to launch the 
missile within a specifi ed time 
after pressing the button may 
cause the target to be missed, 
which will result in catastrophe 

  Navigation controller for 
an autonomous weed -
 killer robot  

  Firm    Missing a few navigation deadlines 
causes the robot to veer out from 
a planned path and damage some 
crops

  Console hockey game    Soft    Missing even several deadlines will 
only degrade performance 

 Defi nition: Firm Real - Time System 

 A fi rm real - time system is one in which a few missed deadlines will not lead 
to total failure, but missing more than a few may lead to complete or cata-
strophic system failure. 

 As noted, all practical systems minimally represent soft real - time systems. 
Table  1.1  gives an illustrative sampling of hard, fi rm, and soft real - time systems.   

 There is a great deal of latitude for interpretation of hard, fi rm, and soft 
real - time systems. For example, in the automated teller machine, missing too 
many deadlines will lead to signifi cant customer dissatisfaction and potentially 
even enough loss of business to threaten the existence of the bank. This 
extreme scenario represents the fact that every system can often be character-
ized any way — soft, fi rm, or hard — real - time by the construction of a support-
ing scenario. The careful defi nition of systems requirements (and, hence, 
expectations) is the key to setting and meeting realistic deadline expectations. 
In any case, it is a principal goal of real - time systems engineering to fi nd ways 
to transform hard deadlines into fi rm ones, and fi rm ones into soft ones. 

 Since this text is mostly concerned with hard real - time systems, it will use 
the term real - time system to mean embedded, hard real - time system, unless 
otherwise noted. 

 It is typical, in studying real - time systems, to consider the nature of time, 
because deadlines are instants in time. Nevertheless, the question arises, 
 “ Where do the deadlines come from? ”  Generally speaking, deadlines are 
based on the underlying physical phenomena of the system under control. For 
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example, in animated displays, images must be updated at least 30 frames per 
second to provide continuous motion, because the human eye can resolve 
updating at a slower rate. In navigation systems, accelerations must be read at 
a rate that is a function of the maximum velocity of the vehicle, and so on. In 
some cases, however, real - world systems have deadlines that are imposed on 
them, and are based on nothing less than guessing or on some forgotten and 
possibly eliminated requirement. The problem in these cases is that undue 
constraints may be placed on the systems. This is a primary maxim of real - time 
systems design — to understand the basis and nature of the timing constraints 
so that they can be relaxed if necessary. In cost - effective and robust real - time 
systems, a pragmatic rule of thumb could be:  process everything as slowly as 
possible and repeat tasks as seldom as possible . 

 Many real - time systems utilize global clocks and time - stamping for synchro-
nization, task initiation, and data marking. It must be noted, however, that all 
clocks keep somewhat inaccurate time — even the offi cial U.S. atomic clock must 
be adjusted regularly. Moreover, there is an associated quantization error with 
clocks, which may need to be considered when using them for time - stamping. 

 In addition to the degree of  “ real - time ”  (i.e., hard, fi rm, or soft), also, the 
punctuality of response times is important in many applications. Hence, we 
defi ne the concept of real - time punctuality: 

 Example: Where a Response Time Comes From 

 An elevator door (Pasanen et al.,  1991 ) is automatically operated, and it 
may have a capacitive safety edge for sensing possible passengers between 
the closing door blades. Thus, the door blades can be quickly reopened 
before they touch the passenger and cause discomfort or even threaten the 
passenger ’ s safety. 

 What is the required system response time from when it recognizes that 
a passenger is between the closing door blades to the instant when it starts 
to reopen the door? 

 Defi nition: Real - Time Punctuality 

 Real - time punctuality means that every response time has an average value, 
tR , with upper and lower bounds of  tR     +     εU  and  tR     −     εL , respectively, and 
εU , εL     →    0 + . 

 In all practical systems, the values of  εU  and  εL  are nonzero, though they may 
be very small or even negligible. The nonzero values are due to cumulative 
latency and propagation - delay components in real - time hardware and soft-
ware. Such response times contain jitter within the interval  t     ∈    [ −εL ,  +εU ]. Real -
 time punctuality is particularly important in periodically sampled systems with 
high sampling rates, for example, in video signal processing and software radio. 
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       Figure 1.4.     A partial program fl owchart showing a conditional branch as a change in 
fl ow of control.  

Branch

?

 This response time consists of fi ve independent components (their pre-
sumably measured numerical values are for illustration purpose only):

   Sensor Response Time :       t  S_min     =    5   ms,  t  S_max     =    15   ms,  t  S_mean     =    9   ms.  

  Hardware Response Time :       t  HW_min     =    1    μ s,  t  HW_max     =    2    μ s,  t  HW_mean     =    1.2    μ s.  

  System Software Response Time :       t  SS_min     =    16    μ s,  t  SS_max     =    48    μ s,  t  SS_mean     =    37    μ s.  

  Application Software Response Time :       t  AS_min     =    0.5    μ s,  t  AS_max     =    0.5    μ s, 
 t  AS_mean     =    0.5    μ s.  

  Door Drive Response Time :       t  DD_min     =    300   ms,  t  DD_max     =    500   ms, 
 t  DD_mean     =    400   ms.  

  Now, we can calculate the minimum, maximum, and mean values of the 
composite response time:  t  min     ≈    305   ms,  t  max     ≈    515   ms, and  t  mean     ≈    409   ms.    

 Thus, the overall response time is dominated by the door - drive response 
time containing the required deceleration time of the moving door blades. 

 In software systems, a change in state results in a change in the fl ow - of - control 
of the computer program. Consider the fl owchart in Figure  1.4 . The decision 
block represented by the diamond suggests that the stream of program instruc-
tions can take one of two alternative paths, depending on the response 
in question.  case ,  if - then , and  while  statements in any programming 
language represent a possible change in fl ow - of - control. Invocation of proce-
dures in Ada and C represent changes in fl ow - of - control. In object - oriented 
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  TABLE 1.2.    Taxonomy of Events and Some Typical Examples 

        Periodic     Aperiodic     Sporadic  

  Synchronous    Cyclic code    Conditional branch    Divide - by - zero 
(trap) interrupt 

  Asynchronous    Clock interrupt    Regular, but not 
fi xed - period interrupt  

  Power - loss alarm  

   These items will be discussed further in Chapters  2  and  3 .   

languages, instantiation of an object or the invocation of a method causes the 
change in sequential fl ow - of - control. In general, consider the following 
defi nition.   

 Defi nition: Event 

 Any occurrence that causes the program counter to change nonsequentially 
is considered a change of fl ow - of - control, and thus an event. 

 In scheduling theory, the release time of a job is similar to an event. 

 Defi nition: Release Time 

 The release time is the time at which an instance of a scheduled task is 
ready to run, and is generally associated with an interrupt. 

 Events are slightly different from jobs in that events can be caused by inter-
rupts, as well as branches. 

 An event can be either synchronous or asynchronous. Synchronous events 
are those that occur at predictable times in the fl ow - of - control, such as that 
represented by the decision box in the fl owchart of Figure  1.4 . The change in 
fl ow - of - control, represented by a conditional branch instruction, or by the 
occurrence of an internal trap interrupt, can be anticipated. 

 Asynchronous events occur at unpredictable points in the fl ow - of - control 
and are usually caused by external sources. A real - time clock that pulses regu-
larly at 5   ms is not a synchronous event. While it represents a periodic event, 
even if the clock were able to tick at a perfect 5   ms without drift, the point 
where the tick occurs with the fl ow - of - control is subject to many factors. These 
factors include the time at which the clock starts relative to the program and 
propagation delays in the computer system itself. An engineer can never count 
on a clock ticking exactly at the rate specifi ed, and so any clock - driven event 
must be treated as asynchronous. 

 Events that do not occur at regular periods are called aperiodic. Furthermore, 
aperiodic events that tend to occur very infrequently are called sporadic. Table 
 1.2  characterizes a sampling of events.   

 For example, an interrupt generated by a periodic external clock represents 
a periodic but asynchronous event. A periodic but synchronous event is one 
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represented by a sequence of invocation of software tasks in a repeated, cir-
cular fashion. A typical branch instruction that is not part of a code block and 
that runs repeatedly at a regular rate represents a synchronous but aperiodic 
event. A branch instruction that happens infrequently, say, on the detection of 
some exceptional condition, is both sporadic and synchronous. Finally, inter-
rupts that are generated irregularly by an external device are classifi ed as 
either asynchronous aperiodic or sporadic, depending on whether the inter-
rupt is generated frequently or not with respect to the system clock. 

 In every system, and particularly in an embedded real - time system, main-
taining overall control is extremely important. For any physical system, certain 
states exist under which the system is considered to be out of control; the 
software controlling such a system must therefore avoid these states. For 
example, in certain aircraft guidance systems, rapid rotation through a 180 °  
pitch angle can cause loss of gyroscopic control. Hence, the software must be 
able to anticipate and avert all such scenarios. 

 Another characteristic of a software - controlled system is that the processor 
continues to fetch, decode, and execute instructions correctly from the program 
area of memory, rather than from data or other unwanted memory regions. 
The latter scenario can occur in poorly tested systems and is a catastrophe 
from which there is almost no hope of recovery. 

 Software control of any real - time system and associated hardware is main-
tained when the next state of the system, given the current state and a set of 
inputs, is predictable. In other words, the goal is to anticipate how a system 
will behave in all possible circumstances. 

 Defi nition: Deterministic System 

 A system is deterministic, if for each possible state and each set of inputs, 
a unique set of outputs and next state of the system can be determined. 

 Event determinism means the next states and outputs of a system are known 
for each set of inputs that trigger events. Thus, a system that is deterministic 
is also event deterministic. Although it would be diffi cult for a system to be 
deterministic only for those inputs that trigger events, this is plausible, and so 
event determinism may not imply determinism. 

 It is interesting to note that while it is a signifi cant challenge to design 
systems that are completely event deterministic, and as mentioned, it is pos-
sible to inadvertently end up with a system that is nondeterministic, it is defi -
nitely hard to design systems that are deliberately nondeterministic. This 
situation arises from the utmost diffi culties in designing perfect random 
number generators. Such deliberately nondeterministic systems would be 
desirable, for example, as casino gaming machines. 

 Finally, if in a deterministic system the response time for each set of outputs 
is known, then the system also exhibits temporal determinism. 
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  TABLE 1.3.     CPU  Utilization (%) Zones 

   Utilization (%)     Zone Type     Typical Application  

< 26    Unnecessarily safe    Various  
  26 – 50    Very safe    Various  
  51 – 68    Safe    Various  
  69    Theoretical limit    Embedded systems  
  70 – 82    Questionable    Embedded systems  
  83 – 99    Dangerous    Embedded systems  
  100    Critical    Marginally stressed systems  
> 100    Overloaded    Stressed systems  

 A side benefi t of designing deterministic systems is that guarantees can be 
given that the system will be able to respond at any time, and in the case of 
temporally deterministic systems, when they will respond. This fact reinforces 
the association of  “ control ”  with real - time systems. 

 The fi nal and truly important term to be defi ned is a critical measure of 
real - time system performance. Because the  central processing unit  ( CPU ) 
continues to fetch, decode, and execute instructions as long as power is applied, 
the CPU will more or less frequently execute either no - ops or instructions that 
are not related to the fulfi llment of a specifi c deadline (e.g., noncritical  “ house-
keeping ” ). The measure of the relative time spent doing nonidle processing 
indicates how much real - time processing is occurring. 

 Defi nition:  CPU  Utilization Factor 

 The CPU utilization or time - loading factor,  U , is a relative measure of the 
nonidle processing taking place. 

 A system is said to be time - overloaded if  U     >    100%. Systems that are too 
highly utilized are problematic, because additions, changes, or corrections 
cannot be made to the system without risk of time - overloading. On the other 
hand, systems that are not suffi ciently utilized are not necessarily cost - effective, 
because this implies that the system was overengineered and that costs could 
likely be reduced with less expensive hardware. While a utilization of 50% is 
common for new products, 80% might be acceptable for systems that do not 
expect growth. However, 70% as a target for  U  is one of the most celebrated 
and potentially useful results in the theory of real - time systems where tasks 
are periodic and independent — a result that will be examined in Chapter  3 . 
Table  1.3  gives a summary of certain CPU utilizations and typical situations 
in which they are associated.   

U  is calculated by summing the contribution of utilization factors for each 
(periodic or aperiodic) task. Suppose a system has  n     ≥    1 periodic tasks, each 
with an execution period of pi , and hence, execution frequency,  fi     =    1/ pi . If task 
i  is known to have (or has been estimated to have) a  worst- case  execution time 
of ei , then the utilization factor,  ui , for task  i  is
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    u e pi i i= .     (1.1)   

 Furthermore, the overall system utilization factor is

    U u e pi

i

n

i i

i

n

= =
= =
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1 1

.     (1.2)   

 Note that the deadline for a periodic task  i ,  d i  , is a critical design factor that 
is constrained by  e i  . The determination of  e i  , either prior to, or after the code 
has been written, can be extremely diffi cult, and often impossible, in which 
case estimation or measuring must be used. For aperiodic and sporadic tasks, 
 u i   is calculated by assuming a worst - case execution period, usually the minimum 
possible time between corresponding event occurrences. Such approximations 
can infl ate the utilization factor unnecessarily or lead to overconfi dence 
because of the tendency to  “ not worry ”  about its excessive contribution. The 
danger is to discover later that a higher frequency of occurrence than budgeted 
has led to a time - overload and system failure. 

 The utilization factor differs from CPU throughput, which is a measure 
of the number of machine - language instructions per second that can 
be processed based on some predetermined instruction mix. This type of mea-
surement is typically used to compare CPU throughput for a particular 
application. 
   

 Example: Calculation of the  CPU  Utilization Factor 

 An individual elevator controller in a bank of high - rise elevators has the 
following software tasks with execution periods of  p i   and worst - case execu-
tion times of  e i  ,  i     ∈    {1, 2, 3, 4}:

   Task 1 :      Communicate with the group dispatcher (19.2   K   bit/s data rate 
and a proprietary communications protocol);  p  1     =    500 ms,  e  1     =    17 ms.  

  Task 2 :      Update the car position information and manage fl oor - to - fl oor 
runs, as well as door control;  p  2     =    25 ms,  e  2     =    4 ms.  

  Task 3 :      Register and cancel car calls;  p  3     =    75 ms,  e  3     =    1 ms.  

  Task 4 :      Miscellaneous system supervisions;  p  4     =    200 ms,  e  4     =    20 ms.    

 What is the overall CPU utilization factor?

   U e pi i

i

= = + + + ≈
=
∑

1

4 17
500

4
25

1
75

20
200

0 31.   

 Hence, the utilization percentage is 31%, which belongs to the  “ very safe ”  
zone of Table  1.3 . 
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 The choice of task deadlines, estimation and reduction of execution 
times, and other factors that infl uence CPU utilization will be discussed in 
Chapter  7 .  

   1.1.2    Usual Misconceptions 

 As a part of truly understanding the nature of real - time systems, it is important 
to address a number of frequently cited misconceptions. These are summarized 
as follows:

   1.     Real - time systems are synonymous with  “ fast ”  systems.  
  2.     Rate - monotonic analysis has solved  “ the real - time problem. ”   
  3.     There are universal, widely accepted methodologies for real - time systems 

specifi cation and design.  
  4.     There is no more a need to build a real - time operating system, because 

many commercial products exist.  
  5.     The study of real - time systems is mostly about scheduling theory.    

 The fi rst misconception, that real - time systems must be fast, arises from the 
fact that many hard real - time systems indeed deal with deadlines in the tens 
of milliseconds, such as the aircraft navigation system. In a typical food -
 industry application, however, pasta - sauce jars can move along the conveyor 
belt past a fi lling point at a rate of one every fi ve seconds. Furthermore, the 
airline reservation system could have a deadline of 15 seconds. These latter 
deadlines are not particularly fast, but satisfying them determines the success 
or failure of the system. 

 The second misconception is that rate - monotonic systems provide a simple 
recipe for building real - time systems. Rate - monotonic systems — a periodic 
system in which interrupt (or software task) priorities are assigned such that 
the faster the rate of execution, the higher the priority — have received a lot 
of attention since the 1970s. While they provide valuable guidance in the 
design of real - time systems, and while there is abundant theory surrounding 
them, they are not a panacea. Rate - monotonic systems will be discussed in 
great detail in Chapter  3 . 

 What about the third misconception? Unfortunately, there are no univer-
sally accepted and infallible methods for the specifi cation and design of real -
 time systems. This is not a failure of researchers or the software industry, but 
is because of the diffi culty of discovering universal solutions for this demand-
ing fi eld. After nearly 40 years of research and development, there is still no 
methodology available that answers all of the challenges of real - time specifi ca-
tion and design all the time and for all applications. 

 The fourth misconception is that there is no more a need to build a real -
 time operating system from scratch. While there are a number of cost - effective, 
popular, and viable commercial real - time operating systems, these, too, are not 
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a panacea. Commercial solutions have certainly their place, but choosing when 
to use an off - the - shelf solution and choosing the right one are challenges that 
will be considered in Chapter  3 . 

 Finally, while it is scholarly to study scheduling theory, from an engineering 
standpoint, most published results require impractical simplifi cations and 
clairvoyance in order to make the theory work. Because this is a textbook for 
practicing engineers, it avoids any theoretical results that resort to these 
measures.   

   1.2    MULTIDISCIPLINARY DESIGN CHALLENGES 

 The study of real - time systems is a truly multidimensional subdiscipline of 
computer systems engineering that is strongly infl uenced by control theory, 
operations research, and, naturally, software engineering. Figure  1.5  depicts 
some of the disciplines of computer science, electrical engineering, systems 
engineering, and applied statistics that affect the design and analysis of 
real - time systems. Nevertheless, those representative disciplines are not the 
only ones having a relationship with real - time systems. Because real - time 
systems engineering is so multidisciplinary, it stands out as a fascinating study 
area with a rich set of design challenges. Although the fundamentals of real -
 time systems are well established and have considerable permanence, real -
 time systems is a lively developing area due to evolving CPU architectures, 
distributed system structures, versatile wireless networks, and novel applica-
tions, for instance.   

       Figure 1.5.     A variety of disciplines that affect real - time systems engineering.  
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   1.2.1    Infl uencing Disciplines 

 The design and implementation of real - time systems requires attention to 
numerous practical issues. These include:

 •      The selection of hardware and system software, and evaluation of the 
trade - off needed for a competitive solution, including dealing with 
distributed computing systems and the issues of concurrency and 
synchronization.  

 •      Specifi cation and design of real - time systems, as well as correct and inclu-
sive representation of temporal behavior.  

 •      Understanding the nuances of the high - level programming language(s) 
and the real - time implications resulting from their optimized compilation 
into machine - language code.  

 •      Optimizing (with application - specifi c objectives) of system fault tolerance 
and reliability through careful design and analysis.  

 •      The design and administration of adequate tests at different levels of 
hierarchy, and the selection of appropriate development tools and test 
equipment.  

 •      Taking advantage of open systems technology and interoperability. An 
open system is an extensible collection of independently written applica-
tions that cooperate to function as an integrated system. For example, 
several versions of the open operating system, Linux, have emerged for 
use in various real - time applications (Abbott,  2006 ). Interoperability can 
be measured in terms of compliance with open system standards, such as 
the real - time  CORBA  ( common object request broker architecture ) stan-
dard (Fay - Wolfe et al.,  2000 ).  

 •      Finally, estimating and measuring response times and (if needed) reducing 
them. Performing a schedulability analysis, that is, determining and guar-
anteeing deadline satisfaction,  a priori .    

 Obviously, the engineering techniques used for hard real - time systems can be 
used in the engineering of all other types of systems as well, with an accom-
panying improvement of performance and robustness. This alone is a signifi -
cant reason to study the engineering of real - time systems.   

   1.3    BIRTH AND EVOLUTION OF REAL - TIME SYSTEMS 

 The history of real - time systems, as characterized by important developments 
in the United States, is tied inherently to the evolution of the computer. 
Modern real - time systems, such as those that control nuclear power plants, 
military weapons systems, or medical monitoring equipment, are sophisticated, 
yet many still exhibit characteristics of those pioneering systems developed in 
the 1940s through the 1960s. 
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   1.3.1    Diversifying Applications 

 Embedded real - time systems are so pervasive and ubiquitous that they are 
even found in household appliances, sportswear, and toys. A small sampling 
of real - time domains and corresponding applications is given in Table  1.4 . An 
excellent example of an advanced real - time system is the Mars Exploration 
Rover of NASA shown in Figure  1.6 . It is an autonomous system with extreme 
reliability requirements; it receives commands and sends measurement data 
over radio - communications links; and performs its scientifi c missions with the 
aid of multiple sensors, processors, and actuators.     

 In the introductory paragraphs of this chapter, some real - time systems were 
mentioned. The following descriptions provide more details for each system, 
while others provide additional examples. Clearly, these descriptions are not 
rigorous specifi cations. The process of specifying real - time systems unambigu-
ously but concisely is discussed in Chapter  5 . 

 Consider the inertial measurement system for an aircraft. The software 
specifi cation states that the software will receive  x ,  y , and  z  accelerometer 
pulses at a 10   ms rate from special hardware. The software will determine the 
acceleration components in each direction, and the corresponding roll, pitch, 
and yaw of the aircraft. 

 The software will also collect other information, such as temperature at a 
1 - second rate. The task of the application software is to compute the actual 
velocity vector based on the current orientation, accelerometer readings, and 
various compensation factors (such as for temperature effects) at a 40   ms rate. 
The system is to output true acceleration, velocity, and position vectors to a 
pilot ’ s display every 40   ms, but using a different clock. 

  TABLE 1.4.    Typical Real - Time Domains 
and Diverse Applications 

   Domain     Applications  

  Aerospace    Flight control  
  Navigation  
  Pilot interface  

  Civilian    Automotive systems  
  Elevator control  
  Traffi c light control  

  Industrial    Automated inspection  
  Robotic assembly line  
  Welding control  

  Medical    Intensive care monitors  
  Magnetic resonance imaging  
  Remote surgery  

  Multimedia    Console games  
  Home theaters  
  Simulators  
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 These tasks execute at four different rates in the inertial measurement 
system, and need to communicate and synchronize. The accelerometer read-
ings must be time - relative or correlated; that is, it is not allowed to mix an  x
accelerometer pulse of discrete time instant k  with  y  and  z  pulses of instant 
k     +    1. These are critical design issues for this system. 

 Next, consider a monitoring system for a nuclear power plant that will be 
handling three events signaled by interrupts. The fi rst event is triggered by any 
of several signals at various security points, which will indicate a security 
breach. The system must respond to this signal within one second. The second 
and most important event indicates that the reactor core has reached an over-
temperature. This signal must be dealt with within 1 millisecond (1   ms). Finally, 
an operator ’ s display is to be updated at approximately 30 times per second. 
The nuclear - power - plant system requires a reliable mechanism to ensure that 
the  “ meltdown imminent ”  indicator can interrupt any other processing with 
minimal latency. 

 As another example, recall the airline reservation system mentioned earlier. 
Management has decided that to prevent long lines and customer dissatisfac-
tion, turnaround time for any transaction must be less than 15 seconds, and no 
overbooking will be permitted. At any time, several travel agents may try to 
access the reservations database and perhaps book the same fl ight simultane-
ously. Here, effective record - locking and secure communications mechanisms 

Figure 1.6.     Mars Exploration Rover; a solar - powered, autonomous real - time system 
with radio - communications links and a variety of sensors and actuators.  Photo courtesy 
of NASA.   
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are needed to protect against the alteration of the database containing the 
reservation information by more than one clerk at a time. 

 Now, consider a real - time system that controls all phases of the bottling of 
jars of pasta sauce as they travel along a conveyor belt. The empty jars are 
fi rst microwaved to disinfect them. A mechanism fi lls each jar with a precise 
serving of specifi c sauce as it passes beneath. Another station caps the fi lled 
bottles. In addition, there is an operator ’ s display that provides an animated 
rendering of the production line activities. There are numerous events trig-
gered by exceptional conditions, such as the conveyor belt jamming and a 
bottle overfl owing or breaking. If the conveyor belt travels too fast, the bottle 
will move past its designated station prematurely. Therefore, there is a wide 
range of events, both synchronous and asynchronous, to be dealt with. 

 As a fi nal example, consider a system used to control a set of traffi c lights 
at a four - way traffi c intersection (north - , south - , east - , and west - bound traffi c). 
This system controls the lights for vehicle and pedestrian traffi c at a four - way 
intersection in a busy city like Philadelphia. Input may be taken from cameras, 
emergency - vehicle transponders, push buttons, sensors under the ground, and 
so on. The traffi c lights need to operate in a synchronized fashion, and yet 
react to asynchronous events — such as a pedestrian pressing a button at a 
crosswalk. Failure to operate in a proper fashion can result in automobile 
accidents and even fatalities. 

 The challenge presented by each of these systems is to determine the appro-
priate design approach with respect to the multidisciplinary issues discussed 
in Section  1.2 .  

   1.3.2    Advancements behind Modern Real - Time Systems 

 Much of the theory of real - time systems is derived from the surrounding dis-
ciplines shown in Figure  1.5 . In particular, certain aspects of operations 
research (i.e., scheduling), which emerged in the late 1940s, and queuing theory 
in the early 1950s, have infl uenced most of the more theoretical results. 

 Martin published one of the fi rst and certainly the most infl uential early 
book on real - time systems (Martin,  1967 ). Martin ’ s book was soon followed 
by several others (e.g., Stimler,  1969 ), and the infl uence of operations research 
and queuing theory can be seen in these works. It is also educational to study 
these texts in the context of the great limitations of the hardware of the time. 

 In 1973, Liu and Layland published their seminal work on rate - monotonic 
theory (Liu and Layland,  1973 ). Over the last nearly 40 years, signifi cant refi ne-
ment of this theory has made it a practical theory for use in designing real - time 
systems. 

 The 1980s and 1990s saw a proliferation of theoretical work on improving 
predictability and reliability of real - time systems, and on solving problems 
related to multitasking systems. Today, a rather small group of experts contin-
ues to study pure issues of scheduling and performance analysis, while a larger 
group of generalist systems engineers tackles broader issues relating to the 
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implementation of practical systems. An important paper by Stankovic et al. 
(Stankovic et al.,  1995 ) described some of the diffi culties in conducting research 
on real - time systems — even with signifi cant restriction of the system, most 
problems relating to scheduling are too diffi cult to solve by analytic 
techniques. 

 Instead of any single  “ groundbreaking ”  technology, the new millennium 
saw a number of important advancements in hardware, viable open - source 
software for real - time systems, powerful commercial design and implementa-
tion tools, and expanded programming language support. These advancements 
have in some ways simplifi ed the construction and analysis of real - time systems 
but on the other hand introduced new problems because of the complexities 
of systems interactions and the masking of many of the underlying subtleties 
of time constraints. 

 The origin of the term  real- time computing  is unclear. It was probably fi rst 
used either with project Whirlwind, a fl ight simulator developed by IBM for 
the U.S. Navy in 1947, or with SAGE, the Semiautomatic Ground Environment 
air defense system developed for the U.S. Air Force in the late 1950s. Both of 
these projects qualify as real - time systems even by today ’ s defi nitions. In addi-
tion to its real - time contributions, the Whirlwind project included the fi rst use 
of ferrite core memory ( “ fast ” ) and a form of high - level language compiler 
that predated Fortran. 

 Other early real - time systems were used for airline reservations, such as 
SABRE (developed for American Airlines in 1959), as well as for process 
control, but the advent of the national space program provided even greater 
opportunities for the development of more advanced real - time systems for 
spacecraft control and telemetry. It was not until the 1960s that rapid develop-
ment of such systems took place, and then only as signifi cant nonmilitary 
interest in real - time systems become coupled with the availability of equip-
ment adapted to real - time processing. 

 Low - performance processors and particularly slow and small memories 
handicapped many of the earliest systems. In the early 1950s, the asynchronous 
interrupt was introduced and later incorporated as a standard feature in the 
Univac Scientifi c 1103A. The middle 1950s saw a distinct increase in the speed 
and complexity of large - scale computers designed for scientifi c computation, 
without an increase in physical size. These developments made it possible to 
apply real - time computation in the fi eld of control systems. Such hardware 
improvements were particularly noticeable in IBM ’ s development of SAGE. 

 In the 1960s and 1970s, advances in integration levels and processing speeds 
enhanced the spectrum of real - time problems that could be solved. In 1965 
alone, it was estimated that more than 350 real - time process control systems 
existed (Martin,  1967 ). 

 The 1980s and 1990s have seen, for instance, distributed systems and non -
 von Neumann architectures utilized in real - time applications. 

 Finally, the late 1990s and early 2000s have set new trends in real - time 
embedded systems in consumer products and Web - enabled devices. The avail-
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ability of compact processors with limited memory and functionality has reju-
venated some of the challenges faced by early real - time systems designers. 
Fortunately, around 60 years of experience is now available to draw upon. 

 Early real - time systems were written directly in microcode or assembly 
language, and later in higher - level languages. As previously noted, Whirlwind 
used an early form of high - level language called an algebraic compiler to 
simplify coding. Later systems employed Fortran, CMS - 2, and JOVIAL, the 
preferred languages in the U.S. Army, Navy, and Air Force, respectively. 

 In the 1970s, the  Department of Defense  ( DoD ) mandated the develop-
ment of a single language that all military services could use, and that provided 
high - level language constructs for real - time programming. After a careful 
selection and refi nement process, the Ada language appeared as a standard in 
1983. Shortfalls in the language were identifi ed, and a new, improved version 
of the language, Ada 95, appeared in 1995. 

 Today, however, only a small number of systems are developed in Ada. Most 
embedded systems are written in C or C ++ . In the last 10 years, there has been 
a remarkable increase in the use of object - oriented methodologies, and lan-
guages like C ++  and Java in embedded real - time systems. The real - time aspects 
of programming languages are discussed later in Chapter  4 . 

 The fi rst commercial operating systems were designed for the early main-
frame computers. IBM developed the fi rst real - time executive, the Basic 
Executive, in 1962, which provided diverse real - time scheduling. By 1963, the 
Basic Executive II had disk - resident system and user programs. 

 By the mid - 1970s, more affordable minicomputer systems could be found 
in many engineering environments. In response, a number of important real -
 time operating systems were developed by the minicomputer manufacturers. 
Notable among these were the  Digital Equipment Corporation  ( DEC ) family 
of  real - time multitasking executives  ( RSX ) for the PDP - 11, and Hewlett -
 Packard ’ s  Real - Time Executive  ( RTE ) series of operating systems for its HP 
2000 product line. 

 By the late 1970s and early 1980s, the fi rst real - time operating systems 
for microprocessor - based applications appeared. These included RMX -
 80, MROS 68K, VRTX, and several others. Over the past 30 years, many 
commercial real - time operating systems have appeared, and many have 
disappeared. 

 A selective summary of landmark events in the fi eld of real - time systems 
in the United States is given in Table  1.5 .     

   1.4    SUMMARY 

 The deep - going roots of real - time systems were formed during the historical 
years of computers and computing — before the microprocessor era. However, 
the fi rst  “ boom ”  of real - time systems took place around the beginning of 1980s, 
when appropriate microprocessors and real - time operating systems became 
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  TABLE 1.5.    Landmarks in Real - Time Systems History in the United States 

   Year     Landmark     Developer     Development     Innovations  

  1947    Whirlwind    IBM    Flight simulator    Ferrite core 
memory
( “ fast ” ), 
high - level 
language

  1957    SAGE    IBM    Air defense    Designed for 
real - time

  1958    Scientifi c 
1103A

  Univac    General purpose    Asynchronous 
interrupt

  1959    SABRE    IBM    Airline reservation     “ Hub - go - ahead ”  
policy  

  1962    Basic 
Executive

  IBM    General purpose    Diverse real - time 
scheduling

  1963    Basic 
Executive II  

  IBM    General purpose    Disk - resident 
system/user
programs

  1970s    RSX, RTE    DEC, HP    Real - time 
operating
systems

  Hosted by 
minicomputers

  1973    Rate -
 monotonic 
system

  Liu and 
Layland

  Fundamental 
theory

  Upper bound on 
utilization for 
schedulable
systems

  1970s 
and
1980s

  RMX - 80, 
MROS 68K, 
VRTX, etc.  

  Various    Real - time 
operating
systems

  Hosted by 
microprocessors

  1983    Ada 83    U.S. DoD    Programming 
language

  For mission -
 critical 
embedded
systems

  1995    Ada 95    Community    Programming 
language

  Improved version 
of Ada 83  

  2000s     –      –     Various advances 
in hardware, 
open - source, and 
commercial
system software 
and tools  

  A continuously 
growing range 
of innovative 
applications
that can be 
 “ real - time ”   

available (to be used in embedded systems) for an enormous number of elec-
trical, systems, as well as mechanical and aerospace engineers. These practicing 
engineers did not have much software or even computer education, and, thus, 
the initial learning path was laborious in most fi elds of industry. In those early 
times, the majority of real - time operating systems and communications proto-
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cols were proprietary designs — applications people were developing 
both system and application software themselves. But the situation started 
to improve with the introduction of more effective high - level language 
compilers, software debugging tools, communications standards, and, gradu-
ally, also methodologies and associated tools for professional software 
engineering. 

 What is left from those pioneering years approximately 30 years ago? Well, 
the foundation of real - time systems is still remarkably the same. The core 
issues, such as the different degrees of real - time and deterministic require-
ments, as well as real - time punctuality, are continuing to set major design 
challenges. Besides, the basic techniques of multitasking and scheduling, and 
the accompanying inter - task communication and synchronization mechanisms, 
are used even in modern real - time applications. Hence, real - time systems 
knowledge has a long lifetime. Nonetheless, much fruitful development is 
taking place in real - time systems engineering worldwide: new specifi cation and 
design methods are introduced; innovative processor and system architectures 
become available and practical; fl exible and low - cost wireless networks gain 
popularity; and numerous novel applications appear continuously, for example, 
in the fi eld of ubiquitous computing. 

 We can fairly conclude that real - time systems engineering is a sound and 
timely topic for junior - senior level, graduate, and continuing education; and it 
offers growing employment potential in various industries. In the coming 
chapters, we will cover a broad range of vital themes for practicing engineers 
(see Fig.  1.7 ). While the emphasis is on software issues, the fundamentals of 
real - time hardware are carefully outlined as well. Our aim is to provide a 
comprehensive text to be used also in industrial settings for new real - time 
system designers, who need to get  “ up to speed ”  quickly. That aim is high-
lighted in this fourth edition of  Real - Time Systems Design and Analysis , with 
the descriptive subtitle  Tools for the Practitioner .   
 

       Figure 1.7.     Composition of this unique text from nine complementary chapters.  
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  1.5     EXERCISES 

1.1.    Consider a payroll processing system for an elevator company. Describe 
three different scenarios in which the system can be justifi ed as hard, 
fi rm, or soft real - time.   

1.2.    Discuss whether the following are hard, fi rm, or soft real - time systems:

(a)     The Library of Congress print - manuscript database system.  
(b)     A police database that provides information on stolen automobiles. 
(c)     An automatic teller machine in a shopping mall.  
(d)     A coin - operated video game in some amusement park.  
(e)     A university grade - processing system.  
(f)     A computer - controlled routing switch used at a telephone company 

branch exchange.      

1.3.    Consider a real - time weapons control system aboard a fi ghter aircraft. 
Discuss which of the following events would be considered synchronous 
and which would be considered asynchronous to the real - time comput-
ing system.

(a)     A 5 - ms, externally generated clock interrupt.  
(b)     An illegal - instruction - code (trap) interrupt.  
(c)     A built - in - test memory failure.  
(d)     A discrete signal generated by the pilot pushing a button to fi re a 

missile.  
(e)     A discrete signal indicating  “ low on fuel. ”       

1.4.    Describe a system that is completely nonreal - time, that is, there are no 
bounds whatsoever for any response time. Do such systems exist in 
reality?   

1.5.    For the following systems concepts, fi ll in the cells of Table  1.2  with 
descriptors for possible events. Estimate event periods for the periodic 
events.

(a)     Elevator group dispatcher: this subsystem makes optimal hall - call 
allocation for a bank of high - speed elevators that service a 40 - story 
building in a lively city like Louisville.  

(b)     Automotive control: this on - board crash avoidance system uses data 
from a variety of sensors and makes decisions and affects behavior 
to avoid collision, or protect the occupants in the event of an immi-
nent collision. The system might need to take control of the auto-
mobile from the driver temporarily.      

1.6.    For the real - time systems in Exercise 1.2, what are reasonable response 
times for all those events?   
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1.7.    For the example systems introduced (inertial measurement, nuclear -
 power - plant monitoring, airline reservation, pasta bottling, and traffi c -
 light control) enumerate some possible events and note whether they 
are periodic, aperiodic, or sporadic. Discuss reasonable response times 
for the events.   

1.8.    In the response - time example of Section  1.1 , the time from observing a 
passenger between the closing door blades and starting to reopen the 
elevator door varies between 305 and 515   ms. How could you further 
justify if these particular times are appropriate for this situation?   

1.9.    A control system is measuring its feedback quantity at the rate of 100    μ s. 
Based on the measurement, a control command is computed by a heu-
ristic algorithm that uses complex decision making. The new command 
becomes available 27 – 54    μ s (rather evenly distributed) after each sam-
pling moment. This considerable jitter introduces harmful distortion to 
the controller output. How could you avoid (reduce) such a jitter? What 
(if any) are the drawbacks of your solution?   

1.10.    Reconsider the CPU utilization factor example of Section  1.1 . How short 
could the execution period of Task 1,  e1 , be made to maintain the CPU 
utilization zone no worse than  “ questionable ”  (Table  1.3 )?      
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     There is an obvious need for basic hardware understanding among software 
and system engineers, particularly when embedded real - time systems are 
designed or analyzed. This chapter provides a focused introduction to funda-
mental hardware - related issues from the real - time point of view. Hence, it also 
forms a useful overview for hardware - oriented practitioners. In real - time 
systems, multi - step and time - variant delay paths from inputs (excitations) to 
outputs (responses) create considerable timing and latency challenges that 
should be understood and properly managed, for example, when designing 
real - time software or integrating software with hardware. Such challenges are 
naturally of different complexity and importance depending on the specifi c 
application we are dealing with. There is a wide array of large - scale and more 
compact real - time applications from global airline reservation and booking 
systems to emerging ubiquitous computing. In the same way, the hardware 
platforms may vary considerably from networked multi - core workstations to 
single 8 - bit or even 4 - bit microcontrollers. While the hardware - specifi c issues 
are rather abstract for application programmers developing software for 
workstation environments, they are truly concrete for system programmers 
and individuals working with embedded microcontrollers or digital signal 
processors. 

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.
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 Computing hardware together with networking solutions are dynamic fi elds 
of research and development; advanced processor architectures — even recon-
fi gurable ones — and high - speed wireless networks are providing exciting 
opportunities for product innovators and designers. However, such hardware 
advancements make it typically harder to achieve real - time punctuality ; in 
many cases, the mean performance is greatly improved, but the statistical 
response - time distributions become signifi cantly wider. This is particularly true 
with the latest processor architectures, memory hierarchies, distributed system 
confi gurations, and ultra - low power constraints. In addition, real - time operat-
ing systems are major sources of similar uncertainty. The increasing uncer-
tainty in response times may degrade the robustness and performance, for 
instance, in time - critical control systems with high sampling rates. Of course, 
it is always necessary to ask if real - time punctuality is really needed, and the 
answer depends solely on the nature of the application — whether it must 
behave as a hard, fi rm, or soft real - time system. The different degrees or 
strengths of  “ real - time ”  are defi ned in Chapter  1 . 

 In Section  2.1 , we fi rst give an introduction to a basic processor architecture, 
the rudimentary  von Neumann architecture. Implementations of this reference 
architecture are setting a baseline for achievable real - time punctuality. Next, 
memory hierarchies and their essential contributions to response - time uncer-
tainties are discussed in Section  2.2 . Section  2.3  presents the widespread 
advancements in processor architectures. While in most of the cases, remark-
able performance improvements are attained compared with the reference 
architecture, the worst - case real - time punctuality degrades drastically with 
multi - stage and multiple pipelines. Peripheral interfacing techniques and inter-
rupt processing alternatives are discussed in Section  2.4 . The emphasis of that 
discussion is on latency and priority issues. Section  2.5  compares two comput-
ing platforms, microprocessor and microcontroller, from the applications point 
of view. An introductory discussion on fi eldbus systems and time - triggered 
architectures is provided in Section  2.6 . Those distributed and heterogeneous 
systems may have strict timing specifi cations, which could benefi t from fault -
 tolerant clock synchronization within all nodes. Section  2.7  summarizes the 
preceding sections on real - time hardware. Finally, Section  2.8  provides a rich 
collection of exercises on real - time hardware. 

 While this chapter emphasizes the specifi c real - time characteristics of proces-
sor architectures and peripheral interfacing techniques, more general presenta-
tions on computer architectures and interfacing are available in the  “ classic ”  
books, Hennessy and Patterson  (2007)  and Garrett  (2000) , respectively.  

   2.1    BASIC PROCESSOR ARCHITECTURE 

 In the following subsections, we fi rst present a basic processor architecture 
and defi ne some principal terminology on computer architectures, instruction 
processing, and  input/output  ( I/O ) organizations. That introduction forms a 
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sound basis for latter sections of this chapter devoted to architectural and 
other hardware advancements. 

   2.1.1    Von Neumann Architecture 

 The traditional von Neumann computer architecture, also known as the 
Princeton architecture, is used in numerous commercial processors and can be 
depicted with only three elements: a  central processing unit  ( CPU ), a system 
bus, and memory. Figure  2.1  illustrates such an architecture, where the CPU 
is connected through the system bus to the memory. In a more detailed view, 
the system bus is actually a set of three individual buses: address, data, and 
control. Of those parallel buses, the address bus is unidirectional and con-
trolled by the CPU; the data bus is bidirectional and transfers instructions as 
well as data; and the control bus is a heterogeneous collection of independent 
control, status, clock, and power lines. A processor in a real - time application 
has a group of 4, 8, 16, 24, 32, 64, or even more data lines that collectively form 
the data bus. On the other hand, the width of the address bus is usually 
between 16 and 32 bits. In the basic von Neumann architecture, the I/O regis-
ters are said to be memory mapped, because they are accessed in the same 
way as regular memory locations. As an example of the many implementation 
options for practical von Neumann computers, the data bus protocol can be 
either synchronous or asynchronous; the former providing simpler implemen-
tation structure, and the latter one being more fl exible with respect to different 
access times of memory and I/O devices.   

 The CPU is the core unit where instruction processing takes place; it con-
sists of a control unit, an internal bus, and a datapath, as illustrated in Figure 
 2.2 . Moreover, the datapath contains a multi - function  arithmetic - logic unit  
( ALU ), and a bank of work registers, as well as a status register. The control 
unit interfaces to the system bus through a  program counter register  ( PCR ) 
that addresses the external memory location from which the next instruction 
is going to be fetched to an  instruction register  ( IR ). Each fetched instruction 
is fi rst decoded in the control unit, where the particular instruction code is 
identifi ed. After identifying the instruction code, the control unit commands 
the datapath appropriately like a Mealy - type fi nite state machine; an operand 
is loaded from memory, a specifi c ALU function is activated with a set of 

       Figure 2.1.     Von Neumann computer architecture without an explicit input/output 
element.  
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operands, and its result is fi nally stored to memory. While integer data can 
usually be stored in 1, 2, or 4 bytes, fl oating - point quantities typically occupy 
4 or more bytes of memory. The bank of work registers forms a fast interface 
buffer between the ALU and memory. Status register ’ s individual bits or fl ags 
are updated according to the result of previous ALU operation and current 
CPU state. Specifi c status fl ags, such as  “ zero ”  and  “ carry/borrow, ”  are used 
for implementing conditional branch instructions and extended - precision 
additions/subtractions. There is an internal clock and other signals used for 
timing and data transfer, and numerous hidden registers that are found inside 
the CPU, but are not shown in Figure  2.2 .   

 This architectural framework offers several design parameters to be tai-
lored for application - specifi c requirements and implementation constraints: 
instruction set, control unit, ALU functions, size of the register bank, bus 
widths, and clock rate. Although the von Neumann architecture is used com-
monly in various processors, it is sometimes considered a serious limitation 
that instructions and data are accessible only sequentially using the single 
system bus. On the other hand, such a straightforward bus structure is compact 
to implement.  

   2.1.2    Instruction Processing 

 Instruction processing consists of multiple consecutive phases taking a varying 
number of clock cycles to complete. These independent phases form jointly an 

       Figure 2.2.     Internal structure of a simplifi ed CPU. The  Instruction Access  and  Data 
Access  are merged pairwise to form the common address and data buses.  
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instruction cycle. In this text, we assume a fi ve - phase instruction cycle:  Fetch  
instruction,  Decode  instruction,  Load  operand,  Execute  ALU function, and 
 Store  result. Figure  2.3  shows a timing diagram of the sequential instruction 
cycle. The duration of an instruction cycle depends on the instruction itself; 
multiplication is typically more time - consuming than a simple register - to - 
register move. In addition, not all instructions need active Load, Execute, and/
or Store phases, but those missing phases are either skipped or fi lled with idle 
clock cycles.   

 Every instruction is represented by its unique binary code that is stored in 
the memory, and a stream of such codes forms a machine - language program. 
In the following paragraphs, however, we are going to use mnemonic codes 
for instructions instead of binary codes. These mnemonic instruction codes are 
better known as assembly - language instructions, and they exist just for making 
our life easier — the CPU uses binary codes only. To understand the specifi cs 
of instruction processing, it is benefi cial to give a brief introduction to assembly -
 language instructions. We can say that an instruction set describes a processor ’ s 
functionality. It is also intimately connected to the processor ’ s architecture. 

 When dealing with assembly - language programming, we have to know the 
existing instruction set, as well as the available addressing modes and work 
registers. A generic instruction has the following format:

 op - code operand_1, operand_2, operand_3 
 

 Here, the  op - code  represents an assembly - language instruction code, which 
is followed by three operands. It should be noted that the physical length of 
an entire instruction (in bytes or words) depends on the number of operands. 
And instructions with integer operands are in general preferable over instruc-
tions with fl oating - point operands. Practical instructions may have one, two, 
three, or no operands, depending on their function. Illustrative examples of 
such instructions are given below (the mnemonic codes here are typical and 
vary from one processor to another):

    INC R1    ; Increment the content of work register  R1.   
   ADD R1, R2    ; Add the contents of  R1  and  R2 , and store the sum 

to  R1.   

       Figure 2.3.     Sequential instruction cycle with fi ve phases.  
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SUB R1, R2, R3    ; Subtract the content of  R3  from  R2 , and store the 
result to R1.

NOP    ; No operation, just increment the program counter 
register.    

 Depending on the maximum number of operands, a particular processor is 
said to have a one - address form, two - address form, or three - address form. In 
the above case, all the operands refer to the contents of certain work registers. 
Hence, this addressing mode is called  register direct . To make it convenient to 
implement common data structures, such as vectors and matrices, some kind 
of indirect or indexed addressing mode is usually available.  Register indirect
addressing mode uses one of the work registers for storing a pointer (address) 
to a data structure located in memory:

ADD R1, [R2]    ; Add the content of  R1  to the content of a memory 
location that is pointed by the address in R2 , and store 
the sum to R1.

 In addition to the basic register - direct and register - indirect addressing 
modes, every processor offers at least  direct  and  immediate  addressing modes 
as well:

INC &memory    ; Increment the content of memory location  memory  . 
ADD R1, 5    ; Add the content of  R1  to number 5, and store the sum 

to R1 .    

 Real - world processors have often a moderate collection of addressing modes 
and a comprehensive set of instructions. This evidently leads to considerable 
burden in the instruction - decoding phase, because every instruction with a 
different addressing mode is considered as an individual instruction when 
the instruction code is identifi ed. For instance, the single  ADD  instruction is 
seen as four individual instructions if the four addressing modes that were 
discussed above are available. After identifying the instruction code, the 
control unit creates an appropriate command sequence for executing that 
instruction. 

 There are two principal techniques for implementing the control unit: 
microprogramming and hard - wired logic. In microprogramming, every instruc-
tion is defi ned by a microprogram consisting of a sequence of primitive hard-
ware commands, microinstructions, for activating appropriate datapath 
functions and complementary suboperations. It is, in principle, straightforward 
to construct machine - language instructions by microprogramming, but such 
microinstruction sequences tend to use several clock cycles. This may become 
an obstacle with complicated instructions, which would require a relatively 
large number of clock cycles. Users of commercial processors do not have 
access to the microprogram memory, but it is confi gured permanently by those 
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who implement the instruction set. In processors with either a small instruction 
set or a demand for very fast instruction processing, the control unit is regu-
larly implemented using hard - wired logic that consists of combinatorial and 
sequential digital circuits. This low - level implementation alternative takes 
more space per instruction compared with microprogramming, but it can offer 
noticeably faster instruction execution. Nonetheless, it is more diffi cult to 
create or modify machine - language instructions when a hard - wired control 
unit is used. As we will see later when advanced processor architectures are 
discussed, both microprogramming and hard - wired logic are used widely in 
modern commercial processors. This situation is mainly an implementation 
issue related to the size and complexity of the instruction set. 

 In previous paragraphs, we presented the basic instruction - processing prin-
ciple that consists of fi ve consecutive phases and no parallelism. Actually, it 
appears to rely on implicit thinking that consecutive instructions in a program 
have both internal and mutual dependency, which prevents any kind of 
instruction - level parallelism. This unrealistic constraint makes the utilization 
rate of ALU resources poor, and, therefore, it is relieved signifi cantly in 
advanced computer architectures. Even with this reference architecture, it is 
still possible to increase computing performance by using wide internal and 
system buses, high clock rate, and a large bank of work registers to reduce the 
need for (slower) external memory access. These straightforward enhance-
ments have a direct connection to hardware constraints: desired dimensions 
of the integrated circuit and the used fabrication technology. Besides, from the 
real - time systems viewpoint (response times and their punctuality), such 
enhancements are all well behaving. 

 To conserve energy and make software  “ green, ”  many modern processors 
have a slowdown mode. Specifi c instructions can lower the circuit voltage and 
clock frequency, thereby slowing the computer and using less power and gen-
erating less heat. The use of this feature is especially challenging to real - time 
designers, who must worry about meeting deadlines and the variation in task 
execution time.  

   2.1.3    Input/Output and Interrupt Considerations 

 Every computer system needs input and output ports to bring in excitations 
and to feed out corresponding responses. There always exists some interaction 
between a computer and its operating environment or users. This relationship 
is of paramount importance in embedded systems. In real - time systems, 
such I/O actions have a critical requirement; they are often strictly 
time - constrained. 

 The von Neumann architecture of Figure  2.1  does not contain any I/O 
block, but the input and output registers are assumed to exist in the regular 
memory space — inside the memory block. Therefore, from the CPU ’ s view-
point, those I/O - specifi c registers form tiny memory segments with only a few 
pseudo - memory locations corresponding, for instance, to mode, status, and 
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data registers of confi gurable I/O ports. With memory - mapped I/O, I/O ports 
can be operated through all instructions that have a memory operand. This 
could be advantageous when implementing effi cient device drivers. 

 Programmed I/O is a commonly used alternative to memory - mapped I/O. 
In this scheme, a slightly enhanced bus architecture offers a separate address 
space for I/O registers; the standard system bus is still used as an interface 
between the CPU and I/O ports, but now there is an additional control signal 
 “ Memory/IO ”  for distinguishing between memory and I/O accesses. Moreover, 
separate  IN  and  OUT  instructions are needed for accessing the I/O registers. 
There are different practices for realizing such instructions, but the following 
example shows a typical case where a certain work register is used for keeping 
the I/O data:

    IN R1,  & port    ; Read the content of  port  and store it to  R1.   
   OUT  & port, R1    ; Write the content of  R1  to  port.     

 In low - end microcontrollers with a small address space, the main advantage 
of programmed I/O is the saving of limited address space for memory com-
ponents only. On the other hand, in high - end microcontrollers and powerful 
microprocessors, it is benefi cial to place the slower I/O ports in a different 
address space than the faster memory components. In that way, no compro-
mises are needed when specifying the speed of system bus. Figure  2.4  depicts 
the enhanced von Neumann architecture with separate memory and I/O 
elements.   

 An interrupt is an external hardware signal that initiates an event. Interrupts 
are used to signal that an I/O transfer was completed or needs to be initiated. 
While I/O ports are crucial for any computer system, it can be stated that 
interrupts are crucial at least in any hard real - time system. Hardware inter-

       Figure 2.4.     Von Neumann architecture with slightly enhanced system bus for pro-
grammed input/output.  
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rupts make it possible to give prompt service to important events occurring in 
the operating environment. The interrupt principle works fi ne as long as the 
number of (nearly) simultaneous interrupt requests is very low and the cor-
responding interrupt processing times are very short. Therefore, it should be 
carefully planned which devices or sensors are given a right to interrupt. Only 
the most time - critical events deserve such a privilege, as other events could 
possibly be recognized by periodic polling instead. In general, there exist two 
types of hardware interrupts: maskable interrupts and nonmaskable interrupts. 
Maskable interrupts are commonly used for such events that occur during 
regular operating conditions; and nonmaskable interrupts are reserved for 
extremely critical events that require immediate action, such as an alarm of a 
rapidly approaching power loss. 

 Although interrupts are often associated with truly prompt service, there 
are a few latency elements in the interrupt recognition and service process. 
These obviously reduce the real - time punctuality and make the response times 
somewhat nondeterministic. A typical interrupt service process is as follows:

 •      The interrupt - request line is activated.  
 •      The interrupt request is latched by the CPU hardware ( ∼ ).  
 •      The processing of the ongoing instruction is completed ( ∼ ).  
 •      The content of program counter register (PCR) is pushed to stack.  
 •      The content of  status register  ( SR ) is pushed to stack.  
 •      The PCR is loaded with the interrupt handler ’ s address.  
 •      The interrupt handler is executed ( ∼ ).  
 •      The original content of SR is popped from stack.  
 •      The original content of PCR is popped from stack.    

 The three specifi c steps of this interrupt - service process, denoted with a tilde, 
are sources of variable - length  latency. While interrupt - request latching takes 
often no more than a single clock cycle, it may require any time between zero 
and the maximum length of the instruction cycle to complete the ongoing 
instruction. And the execution of the interrupt handler code needs naturally 
multiple instruction cycles. Solely in rare instances, certain  block - oriented
instructions, such as memory - to - memory block moves that take a great deal 
of time to complete, may need to be interruptible to reduce interrupt latency. 
However, interrupting such instructions could potentially lead to serious data 
integrity problems. Latency uncertainties are becoming even more severe with 
the advancement of computer and memory architectures. Thus, it can be con-
cluded that the rudimentary von Neumann architecture with purely sequential 
instruction processing sets a baseline for real - time punctuality from the hard-
ware point of view. 

 Processors provide two instructions for enabling and disabling maskable 
interrupts, which we will call  enable priority interrupt  ( EPI ) and  disable prior-
ity interrupt  ( DPI ), respectively. These are atomic instructions that should, 
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however, be used cautiously in real - time applications, because real - time punc-
tuality may be severely compromised when interrupts are disabled. It is recom-
mended to allow the use of EPI  and  DPI  by system programmers only, and 
deny their usage totally from application programmers. 

 Finally, it should be noted that not all interrupts are initiated externally, but 
the CPU may have a special instruction for initiating software interrupts itself. 
Software interrupts are convenient when creating operating system services 
and device drivers, for instance. In addition, internal interrupts, or traps, are 
generated by execution exceptions, such as arithmetic overfl ow, divide - by - zero, 
or illegal instruction code.   

   2.2    MEMORY TECHNOLOGIES 

 An understanding of central characteristics of current memory technologies 
is necessary when designing and analyzing real - time systems. This is particu-
larly important, for example, with such embedded applications where the CPU 
utilization factor is planned to remain within the  “ dangerous ”  zone of 83 – 99% 
(see Chapter  1 ). In those almost time - overloaded systems, the worst - case 
access latency of hierarchical memory architecture may cause aperiodically 
missed deadlines with considerable delay. The following subsections contain 
behavioral and qualitative discussions that are slanted toward software and 
system engineers rather than hardware designers. A thorough treatment of 
memories and memory systems for embedded applications is available in 
Peckol  (2008) . 

   2.2.1    Different Classes of Memory 

Volatile  RAM versus  nonvolatile  ROM is the traditional distinction between 
the two principal groups of semiconductor memory, where RAM states for 
random - access memory and ROM for read - only memory. For years, this dis-
tinction was crisp, as long as the ROM devices were purely of such type that 
their contents were  “ programmed ”  either during the manufacturing process 
of the memory chip or at the application factory. Today, the borderline between 
RAM and ROM groups is no longer that clear because the commonly used 
ROM classes, EEPROM and Flash, can be rewritten without a special pro-
gramming unit; they are thus in - system programmable. Although there are 
many different classes of memory within the two main groups, only the most 
important ones are introduced below. Figure  2.5  depicts the ordinary interface 
lines of a generic memory component.   

  Electrically erasable programmable ROM  ( EEPROM ) and its close rela-
tive Flash are based on the dynamic fl oating - gate principle, and they both can 
be rewritten in a similar way as RAM devices. However, the erasing and 
writing process of those ROM - type devices is much slower than in the case of 
RAM; the rewrite cycle of an EEPROM can be up to 100 times slower than 
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its corresponding read cycle. Moreover, each memory cell can typically be 
rewritten for 100,000 – 1,000,000 times only, because the stressful rewriting 
process wears the memory cells of EEPROM and Flash components. The basic 
1 - bit memory cells are confi gured in an array to form a practical memory 
device. While individual memory locations can be rewritten sparsely with 
EEPROMs, Flash memories can only be erased in large blocks. Thus, these 
rewritable ROMs, which may hold their data for approximately 10 years, are 
by no means rivals of RAM devices, but they are intended for different pur-
poses. EEPROMs are normally used as a nonvolatile program and parameter 
storage, and Flash memory is used for storing both application programs and 
large data records. The nonrewritable mask - programmed ROM is still used as 
a low - cost program memory in certain standardized applications with a very 
large production volume. Finally, it should be mentioned that ROM - type 
memories are slower to read than typical RAM devices. Therefore, in many 
real - time applications, it may be viable or even necessary to run programs 
from faster RAM instead of ROM. Another common practice is to load the 
application program from a movable Flash memory card (or a USB memory 
stick) to RAM memory for execution. In that way, the Flash device behaves 
as a rugged and low - cost mass memory for embedded systems. 

 There are two classes of RAM devices:  static RAM  ( SRAM ) and  dynamic 
RAM  ( DRAM ). Either or both of these classes are used also in real - time 
systems. A single SRAM - type memory cell needs typically six transistors to 
implement a bistate fl ip - fl op structure, while a DRAM cell can be imple-
mented with a single transistor and capacitor only. Hence, if we compare 
memories of same size and similar fabrication technology, SRAMs are, by their 
structure, more space intensive and more expensive, but faster to access, and 
DRAMs are very compact and cheaper, but slower to access. Due to an inher-
ent charge leakage in their storage capacitors, DRAMs must be refreshed 
regularly to avoid any loss of data; the refresh period should be no slower than 
3 – 4   ms. The refreshing circuitry increases logically the dimensions of DRAM 

       Figure 2.5.     Interface lines of a generic memory component ( Write  is not used with 
ROM devices). The memory capacity is 2  m    + 1     ×    ( n     +    1) bits.  
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chips, but that is not usually a critical issue, because individual DRAM devices 
contain much more memory than SRAM devices, and, thus, the relative pro-
portion of refreshing circuitry is tolerable. An analogous control circuitry 
exists also in EEPROMs and Flash memories for managing the higher - voltage 
erase - and - write process. 

 When designing a RAM subsystem for some real - time application, there is 
a basic rule of thumb that if you need a large memory, then use DRAM; but 
if your memory needs are no more than moderate, SRAM is the recommended 
alternative — particularly with small embedded systems. Nevertheless, the 
practice is not always that straightforward, because there may exist the so -
 called CPU – memory gap —  “ the increasingly large disparity between the 
memory latency and bandwidth required to execute instructions effi ciently 
versus the latency and bandwidth the external memory system can actually 
deliver ”  (Hadimioglu et al.,  2004 ). In other words, the CPU ’ s fastest bus cycle 
may be (much) shorter than the minimum access time of available memory 
components. If that is the case, the CPU cannot run at full speed when access-
ing the slower memory. This creates a CPU – memory bottleneck in high -
 performance applications; and it can be relieved by hierarchical memory 
organizations. In lower - performance applications, the possible confl ict can be 
overcome simply by extending the length of bus cycle to match it to the access 
time specifi cations of memory components.  

   2.2.2    Memory Access and Layout Issues 

 Memory access principles are intimately connected to the specifi c computing 
hardware. Nonetheless, they cannot be ignored even by real - time software or 
system engineers. It is not suffi cient to be aware of the CPU ’ s architecture and 
peak performance only, because of the CPU – memory bottleneck introduced 
above. Quite often, the system bus is not operated at its full speed due to limi-
tations set by the memory access time. This is affecting negatively to the 
response times of a real - time system. Memory - read access time is the essential 
time delay between enabling an addressed memory component and having 
the requested data available on the data bus. This is illustrated in the timing 
diagram of Figure  2.6 , which uses the signals of a generic memory component 
(Fig.  2.5 ). Memory - write access time is defi ned correspondingly. The typical 
read and write cycles contain handshaking between the CPU and the memory 
device. And the time to complete the handshaking is dependent on the electri-
cal characteristics of the CPU, system bus, and memory device.   

 When determining the length of a suitable bus cycle, we need to know the 
worst - case access times of memory and I/O ports, as well as the latencies of 
address decoding circuitry and possible buffers on the system bus. With a 
synchronous bus protocol, it is possible to add wait states (or additional clock 
cycles) to the default bus cycle, and adapt it dynamically to the possibly dif-
ferent access times of memory and I/O components. Asynchronous system 
buses do not need such wait states, because the data transfer between CPU 
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and memories or I/O ports is based on a handshaking - type protocol. Both bus 
protocols are used in commercial processors. 

 Another critical constraint may sometimes be the overall power consump-
tion of the real - time hardware, which is growing with increasing CPU clock 
rate. From that point of view, the clock rate should be as low as possible and 
memories as slow as possible. Thus, the appropriate bus - cycle length is an 
application - specifi c parameter — maybe a critical one in battery - powered 
embedded systems. 

 To the real - time software engineer, the memory and I/O layout or map is 
of great importance. Consider, for instance, a 16 - bit embedded microprocessor 
that supports a 32 - bit address space organized, as shown in Figure  2.7 . These 
starting and ending addresses are arbitrary, but could be representative of a 

       Figure 2.6.     Timing diagram of a memory - read bus cycle. The angles  “  <   >  ”  shown in the 
data and address buses indicate that multiple lines with different logic states are 
involved during this period.  
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particular embedded system. For example, such a map might be consistent with 
the memory organization of an elevator controller.   

 In our imaginary elevator controller, the executable program code resides 
in memory addresses 00000000 through 0001FFFF hexadecimal . This standard 
control system has such a high production volume that it is practical to use 
mask - programmed ROM devices (128   K words). Miscellaneous confi guration 
data, possibly related to various factory settings and installation - specifi c 
parameters, are stored at locations 00040000 through 00047FFF in EEPROM 
(32   K words) that can be rewritten during service or maintenance visits. 
Locations 00080000 through 0008FFFF are SRAM memory (64   K words), and 
they are used for the real - time operating system ’ s data structures and general -
 purpose data storage. Finally, the upper locations FFFFF000 through FFFFF7FF 
(2   K memory locations) contain addresses associated with interface modules 
that are accessed through memory - mapped I/O, such as parallel inputs and 
outputs for various status and command signals; fi eldbus connections for serial 
communication with the group dispatcher and car computer; RS - 232C inter-
face for a service terminal; and real - time clock and timer/counter functions. 
This memory map is fi xing the freely relocatable addresses of the system and 
application software to the physical hardware environment. 

 Before going to the important discussion on hierarchical memory architec-
tures, it is benefi cial to bring up some categories of DRAM according to the 
mode of data access. While the basic DRAM device is meant to be randomly 
accessible, the different DRAM modules offer signifi cant performance 
improvement in special data - access modes that are designed for rapid access 
of consecutive  memory locations. These types of devices utilize such techniques 
as row access, access pipelining, synchronized interface, and access interleav-
ing, for narrowing the CPU – memory gap. These advanced modes are highly 
valuable when the memory organization is hierarchical, and fast loading of 
data blocks to cache memory from the DRAM - based main memory is needed. 
On the other hand, the remarkable speed improvement is not actually realized 
if advanced DRAM modules are accessed randomly. Thus, the DRAM modules 
are used mostly in workstation environments, where large main memories are 
needed. Below is a sampled evolution path of DRAM modules with advanced 
access modes in their order of appearance (from the late eighties to 2007):

 •       Fast page mode  ( FPM ) DRAM  
 •       Extended data output  ( EDO ) DRAM  
 •       Synchronous DRAM  ( SDRAM )  
 •       Direct Rambus DRAM  ( DRDRAM )  
 •       Double data rate 3 synchronous DRAM  ( DDR3 SDRAM )    

 In such real - time systems, which are implemented on regular offi ce or more 
reliable industrial PCs, the advanced DRAM modules are naturally used at 
the level of main memory. Typical applications include a centralized monitor-
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ing system for a bank of elevators and a distributed airline reservation and 
booking system. Under specifi c circumstances, the most advanced DRAM 
modules may offer minimum access times comparable with those of fast 
SRAMs.  

   2.2.3    Hierarchical Memory Organization 

 The CPU – memory gap started to build up gradually in the early 1980s, and 
already in the nineties, the CPU clock rates were increasing 60% per year, 
while the access times of DRAM modules were improving less than 10% per 
year. Hence, the troublesome performance gap was continuously widening. A 
somewhat similar situation existed also with high - performance microcon-
trollers and digital signal processors, although their smaller memory subsys-
tems are typically assembled of SRAMs and ROM - type devices. A vast 
majority of low - end microcontrollers, however, do not suffer the CPU –  memory 
bottleneck at all, because their clock rates are no higher than a few tens of 
MHz. But in the early 2000s, the increase of CPU clock rates was practically 
saturated due to the overly high power consumption and severe heat problems 
associated with multi - GHz processors. While the fastest possible memory is 
desired in real - time systems, often, cost dictates the technology that can be 
used. 

 An effi cient way to relieve the CPU – memory gap is to implement a cache 
memory between the main memory and the CPU. Cache memories rely on 
the locality of reference  principle. Locality of reference refers to the address 
distance in memory between consecutive code or data accesses. If the code or 
data fetched tends to reside close in memory, then the locality of reference is 
high. Conversely, when programs execute instructions that are scattered local-
ity of reference is low. Well - written programs in procedural languages tend to 
execute sequentially within code modules and within the body of instruction 
loops, and hence have usually a high locality of reference. While this is not 
necessarily true for object - oriented code, problematic portions of such code 
can often be linearized. For example, arrays tend to be stored in blocks in 
sequence, with elements commonly accessed sequentially. When software is 
executed in a linear sequential fashion, instructions are in sequence and there-
fore are stored in nearby memory locations, thus yielding a high locality of 
reference. 

 Locality of reference forms a powerful basis for hierarchical memory orga-
nizations, which can effectively utilize the advanced DRAM modules with fast 
block - access capabilities for loading of sequential instruction codes or data 
from DRAM (main memory) to SRAM (cache). A cache is a relatively small 
storage of fast memory where frequently used instructions and data are kept. 
The cache also contains a swiftly accessible list of memory blocks (address 
tags) that are currently in the cache. Each memory block can hold a small 
number of instruction codes or data, typically no more than a few hundred 
words. 
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       Figure 2.8.     Hierarchical memory organization with two cache levels, L1 and L2, 
between the CPU and main memory.  
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 The basic operation of the cache is as follows. Suppose the CPU requests the 
content of a DRAM location. First, the cache controller checks the address tags 
to see if the particular location is in the cache. If present, the data is immediately 
retrieved from the cache, which is signifi cantly faster than a fetch from main 
memory. However, if the needed data is not in the cache, the cache contents 
must be written back and the required new block loaded from main memory to 
the cache. The needed data is then delivered from the cache to the CPU, and the 
address tags are updated correspondingly by the cache controller. 

 Cache design considerations include: access time, cache size, block size, 
mapping function (e.g., direct - mapped; set associative; fully associative), block 
replacement algorithm (e.g.,  fi rst - in - fi rst - out ,  FIFO ;  least - recently used ,  LRU ), 
write policy (e.g., should altered data be written immediately through or wait 
for block replacement), number of caches (e.g., there can be separate data and 
instruction caches, or an instruction cache only), and number of cache levels 
(typically 1 – 3). A thorough discussion on these design considerations is avail-
able in Patterson and Hennessy  (2009) . Figure  2.8  illustrates a three - level 
memory hierarchy with cache levels L1 and L2.   
   

 Example: Performance Estimation of Cache Structures 

 What performance benefi t could a practical cache provide? Consider a two -
 level memory hierarchy with a single 8   K cache built inside the CPU. 
Assume a noncached memory reference costs 100   ns, whereas an access 
from the cache takes only 20   ns. Now assume that the cache hit ratio is 73% 
(and miss ratio 27%). Then the average access time would be

   τAVG ns ns ns_ . . .1 0 73 20 0 27 100 42= ⋅ + ⋅ ≈   
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 Because access time for cache is faster than for main memory, performance 
benefi ts are a function of the cache hit ratio, that is, the percentage of time 
that the needed instruction code or data is found in the cache. A low hit ratio 
can result in worse performance than if the cache did not actually exist. That 
is, if data required is not found in the cache, then some cache block needs to 
be written back (if any data were altered) and replaced by a memory block 
containing the required data. This overhead can become signifi cant when the 
hit ratio is poor. Therefore, a low hit ratio can degrade performance. Hence, 
if the locality of reference is low, a low number of cache hits would be expected, 
degrading real - time performance. 

 Another drawback of using a cache is that the effective access time is non-
deterministic; it is impossible to know  a priori  what the cache contents and 
hence the overall access time will be. In the above two examples, the effective 
access time varies between 20 and 100   ns with averages 42 and 32   ns, respec-
tively. Thus, response times in a real - time system with hierarchical memory 
organization contain a cache - originated element of nondeterminism. In mul-
titasking real - time systems, frequent switching between different software 
tasks as well as aperiodically serviced interrupts, do temporarily violate the 
locality of reference leading to high probability of cache misses. 

 In some embedded processors, it is possible to load a time - critical code 
sequence permanently to the instruction cache, and thus reduce the possible 
nondeterminism in its execution time. This is a potential option in many digital 
signal processing, control, and image processing applications requiring strict 
real - time punctuality.   

   2.3    ARCHITECTURAL ADVANCEMENTS 

 CPU architectures have evolved remarkably since the introduction of the fi rst 
microprocessors. The limitations of the sequential instruction cycle of the basic 
von Neumann architecture have caused various architectural enhancements 
to evolve. Most of these enhancements are built on the assumption of 
high locality of reference that is valid most of the time with a high probability. 
While the steady development of design automation and integrated - circuit 
technologies has made it possible to design and integrate more and more 
functionality to a single chip, architectural innovators have exploited this 
capability to introduce new forms of parallelism into instruction processing. 

 Next, we consider a three - level memory hierarchy with an 8   K upper 
level cache built inside the CPU and an external 128   K lower level cache. 
Assume the access times of 20 and 60   ns, respectively, and the cost of non-
cached memory reference is 100   ns. The upper level hit rate is again 73%, 
and the lower level hit rate is 89%. Now the average access time would be

   τAVG ns ns 100 ns ns_ . . . . . .2 0 73 20 0 27 0 89 60 0 27 0 11 32= ⋅ + ⋅ ⋅ + ⋅ ⋅ ≈   

www.it-ebooks.info

http://www.it-ebooks.info/


44 HARDWARE FOR REAL-TIME SYSTEMS 

Thus, an understanding of advanced computer architectures is essential to the 
real - time systems engineer. While it is not our intent to provide a comprehen-
sive review of computer architectures, a discussion of the most important 
issues is necessary. 

 In Section  2.1 , we presented a sequential instruction cycle: Fetch instruction 
(F), Decode instruction (D), Load operand (L), Execute ALU function (E), 
and Store result (S). That instruction cycle contains two kinds of memory 
references,  instruction  fetching and  data  loading/storing. In the classical von 
Neumann architecture of Figure  2.1  or  2.4 , the F and L/S phases are not inde-
pendent of each other, because they are sharing the single system bus. Therefore, 
in pipelined architectures to be discussed shortly, it would be benefi cial to have 
separate buses for instructions and data to be able to perform simultaneous F 
and L/S phases. On the other hand, two parallel address/data buses occupy a 
sizeable chip area — but that is the price to be paid for the improved perfor-
mance. Such architecture is called the Harvard architecture, and it became fi rst 
popular in digital signal processors. Many modern CPUs comprise both 
Harvard and von Neumann characteristics: the separate on - chip instruction 
and data caches have a Harvard - type interface, while the common off - chip 
cache memory is interfaced through a single system bus. Thus, this kind of 
hybrid architecture is internally Harvard but externally von Neumann (i.e., 
Princeton). 

 In the Harvard architecture, it is possible to have different bus widths for 
instruction and data transfer. For example, the instruction bus could be 32 bits 
wide and the data bus only 16 bits wide. Moreover, the instruction - address bus 
could have 20 bits and the data - address bus 24 bits. That would mean 2   M 
words of instruction memory and 16   M words of data memory. Hence, the 
architectural designer has fl exibility when specifying the bus structures. Figure 
 2.9  depicts the Harvard architecture with parallel instruction and data access 
capabilities. From the real - time systems viewpoint, the basic Harvard architec-
ture represents a well - behaved enhancement; it does not introduce any addi-

       Figure 2.9.        Harvard architecture with different bus widths.  
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tional latency or nondeterminism to the instruction cycle. It could even be seen 
as a potential relief to the CPU – memory bottleneck; but that is not the way 
the Harvard architecture is presently utilized.   

 Today, both the Harvard and von Neumann architectures include a number 
of enhancements increasing the level of parallelism in instruction processing. 
The most important architectural enhancements are discussed below. In spite 
of their great average - case benefi ts, they typically degrade the timing predict-
ability and worst - case performance as discussed in Thiele and Wilhelm  (2004) . 

   2.3.1    Pipelined Instruction Processing 

 Pipelining imparts implicit execution parallelism in the different phases of 
processing an instruction, and hence aims to increase the instruction through-
put. Suppose execution of an instruction consists of the fi ve phases discussed 
above (F – D – L – E – S). In the sequential (nonpipelined) execution suggested in 
Section  2.1 , one instruction can be processed through a single phase at a time. 
With pipelining, multiple instructions can be processed in different phases 
simultaneously, improving processor performance correspondingly. 

 For example, consider the fi ve - stage pipeline of Figure  2.10 . The upper 
picture shows the sequential execution of the fetch, decode, load, execute, and 
store phases of two instructions, which requires 10 clock cycles. Beneath that 
sequence is another set of the same two instructions, plus four more instruc-
tions, with overlapping processing of the individual F – D – L – E – S phases. This 
pipeline works perfectly if the instruction phases are all of equal length, and 
every instruction needs the same amount of time to complete. If we assume 
that one pipeline stage takes one clock cycle, the fi rst two instructions are 
completed in only six clock cycles, and the remaining instructions are com-
pleted within the 10 clock cycles. Under ideal conditions with a continuously 
full pipeline, a new instruction is completed at the rate of one clock cycle. In 
general, the best possible instruction completion time of an  N  - stage pipeline 
is 1/ N  times the completion time of the nonpipelined case. Therefore, the ALU 

       Figure 2.10.     Pipelined instruction processing in a fi ve - stage pipeline.  
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and other CPU resources are utilized more effectively. It should be mentioned, 
however, that pipeline architecture requires buffer registers between the dif-
ferent stages of instruction processing. That causes an additional delay to a 
pipelined instruction cycle compared with the nonpipelined cycle, where tran-
sitions from one phase to another may be direct without intermediate buffer 
writing and reading.   

 Another disadvantage of pipelining is that it can actually degrade perfor-
mance in certain situations. Pipelining is a form of speculative execution in 
that the instructions that are prefetched are assumed to be the next sequential 
instructions. Speculative execution works well if the locality of reference 
remains high. If an instruction in the pipeline is a conditional branch instruc-
tion, the succeeding instructions in the pipeline may not be valid, and the 
pipeline must be fl ushed (the pipeline registers and fl ags are all reset) and 
refi lled one stage at a time. To avoid probabilistically the negative effect of 
pipeline fl ushing/refi lling, many processors have advanced branch prediction 
and speculation capability. A similar, but unpredictable, situation arises with 
external interrupts. In addition, data and input dependencies between con-
secutive machine - language instructions can slow pipeline fl owthrough by 
requiring temporary stalls or wasted clock cycles. 

 Higher - level pipelines, or superpipelines, can be constructed if the instruc-
tion cycle is decomposed further. For example, a six - stage pipeline can be 
constructed, consisting of a fetch stage, two decode stages (needed to support 
indirect addressing modes), an execute stage, a write - back stage (which fi nds 
completed operations in the buffer and frees corresponding functional units), 
and a commit stage (in which the validated results are written back to memory). 
In practice, there exist superpipelines with much more than 10 stages in high -
 performance CPUs with GHz - level clock rates. Superpipelines with short 
stage - lengths offer, in principle, short interrupt latencies. However, that poten-
tial benefi t is typically buried behind unavoidable cache misses and necessary 
pipeline fl ushing/refi lling when the locality of instruction reference is severely 
violated. Extensive pipelining is thus a source of signifi cant nondeterminism 
in real - time systems.  

   2.3.2    Superscalar and Very Long Instruction Word Architectures 

 Superscalar architectures further increase the level of speculation in instruc-
tion processing. They have at least two parallel pipelines for improving the 
instruction throughput. One of those pipelines may be reserved for fl oating -
 point instructions only, while all other instructions are processed in a separate 
pipeline or even in multiple pipelines. Figure  2.11  illustrates the operation of 
two superscalar pipelines with fi ve stages. Those pipelines are supported with 
highly redundant ALU and other hardware resources. Theoretically, the 
instruction completion time in a K  - pipeline architecture with  N  - stage pipelines 
may be as short as 1/( K     ·     N ) times the completion time of the nonpipelined 
case — hence more than one instruction may be completed in a single clock 
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cycle. Such a parallel scheme would work fi ne if the executed instructions were 
fully independent of each other and the branch prediction ability was perfect. 
Nonetheless, that is not usually the case with real - world programs, and, there-
fore, the average utilization rate of parallel resources is far from 100%. If 
compared with an architecture with a single pipeline or superpipeline, a multi -
 pipeline CPU has even a greater variance between the best -  and worst - case 
performances.   

 Superscalar CPUs are complex integrated - circuit implementations, not just 
because they have extensive functional redundancy, but also due to the sophis-
ticated interdependency checking and dispatching logic. The hardware com-
plexity may still increase if out - of - order instruction execution is used for 
maximizing the utilization rate of expensive ALU resources. Thus, superscalar 
processors are mainly used in workstations and nonreal - time applications. It 
is diffi cult to build a deterministic embedded system on a superscalar platform, 
although it could offer a very high peak performance. 

  Very long instruction word  ( VLIW ) architecture is similar to the supersca-
lar architecture in the sense that they both have extensive hardware redun-
dancy for supporting parallel processing of instructions. However, there is a 
fundamental difference in the process of checking the interdependency 
between consecutive instructions and dispatching them optimally to appropri-
ate functional units. While the superscalar architecture relies completely on 
hardware - based (on - line) dependency checking and dispatching, the VLIW 
architecture does not need any hardware resources for those purposes. The 
high - level language compilers of VLIW processors handle both the depen-
dency checking and dispatching tasks offl ine, and very long instruction codes 
(typically at least 64 bits) are composed of multiple regular instruction codes. 
Since only mutually independent instructions can be combined, any two 
accessing the data bus cannot. In VLIW architectures, there is no online specu-
lation in instruction dispatching, but the instruction - processing behavior is well 
predictable. 

       Figure 2.11.     Superscalar architecture with two parallel instruction pipelines.  
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 It should be noted, however, that the effi ciency of VLIW architecture 
depends solely on the capabilities of the advanced compiler and the properties 
of the native instruction set. Compiler support for VLIW processors is studied 
in Yan and Zhang  (2008) . The compiler ’ s code - generation process becomes 
very challenging with a number of parallelization goals and inter - dependency 
constraints. Therefore, the application programmer should assist the compiler 
in the diffi cult dispatching problem by tailoring the critical algorithms for the 
specifi c VLIW platform. In general, programs written for one VLIW processor 
are rather poorly transferable to other VLIW environments. While superscalar 
CPUs are used in general - purpose computing applications, VLIW CPUs are 
usually customized for some specifi c class of applications, such as multimedia 
processing, and they are used even in real - time systems.  

   2.3.3    Multi - Core Processors 

 As an architectural innovation, a processor with multiple interconnected cores 
or CPUs is nothing new. For a long time, such parallel architectures were 
considered special ones until the introduction of general - purpose multi - core 
processors in the early years of 2000. Those special architectures were used 
for different number - crunching applications, such as fi nite - element modeling 
or multimodal optimization using population - based algorithms. Today, multi -
 core processors are used in high - end real - time systems with high computa-
tional burden or strict requirements for task concurrency. 

 What are the driving forces behind the substantial multi - core develop-
ments? By the early 2000s, it became evident that the development of CPU 
architectures could no more be dependent on the continuously growing clock 
rates. Superpipelined architectures with 20 or even 30 pipeline stages assumed 
clock rates at the multi - GHz level. On the other hand, such very high clock 
frequencies greatly increase the power consumption of CPU chips, and that 
leads unavoidably to serious problems with the heat generated. It is a major 
challenge to keep the high - speed chips cool enough with costly and space -
 hungry cooling accessories. Without adequate cooling, those chips would 
destroy themselves in a short time. In addition, sub - ns clock periods create 
diffi cult data synchronization problems within large integrated circuits. Hence, 
there appears to be a consensus among the leading CPU manufactures to 
maintain the highest clock rates below 2 – 3   GHz and put emphasis on the 
development of multi - core architectures. With the continuing evolution of 
integrated - circuit fabrication technology, it is still possible to increase the 
number of gate equivalents on state - of - the - art processor chips. Currently, the 
term  “ multi - core ”  refers to processors with two (dual - core), four (quad - core), 
or eight identical cores, but the number of parallel cores is going to increase 
along with the advancement of integrated - circuit technology. 

 In multi - core processors, each individual core has usually a private cache 
memory, or separate instruction and data caches. These small on - chip caches 
are interfaced to a larger on - chip cache memory that is common to all cores. 
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A representative multi - core architecture is depicted in Figure  2.12 . An inte-
grated multi - core processor needs a smaller footprint on the printed circuit 
board than a comparable implementation with multiple separate cores would 
require, which is quite an advantage in many applications.   

 The introduction of standard multi - core processors presents opportunities 
for parallel processing to a huge group of  research and development  ( R & D ) 
engineers in nearly all application domains. Nonetheless, serious R & D work 
leading to novel contributions in any parallel environment requires a complete 
collection of software tools for supporting the entire development process, and 
for creating multitasking real - time systems that could use the whole potential 
of true task concurrency. Moreover, software engineers should learn to design 
their algorithms for parallelism; otherwise, the potential of multi - core archi-
tectures remains largely unused. Manual load balancing between different 
cores is an important task that needs both human expertise and appropriate 
tools for performance analysis. 

 It is time consuming to port existing single - CPU software effi ciently to a 
multi - core environment. This challenge will certainly reduce the application 
companies ’  interests in switching to multi - core processors in  matured  real - time 
applications, like elevator bank control or cell phone exchanges, which could 
undoubtedly benefi t from such switching. 

 The nondeterministic instruction processing in multi - core architectures 
is caused primarily by the underlying memory hierarchy, pipelining, and pos-
sible superscalar features. On the other hand, the opportunity for task concur-
rency is certainly of great interest to engineers developing real - time systems. 
Lastly, it should be remembered that punctual and fast inter - core communica-
tion is a key issue when developing high - performance parallel systems. The 

       Figure 2.12.     Quad - core processor architecture with individual on - chip caches and a 
common on - chip cache ( “ I ”     =    instruction and  “ D ”     =    data).  
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communications channel is a well - known bottleneck in multi - processor 
systems. We will return to the parallelization challenges in Chapter  7 , where 
Amdahl ’ s law is presented. It establishes a theoretical foundation for estimat-
ing the speedup when the number of parallel cores increases. The limit of 
parallelism in terms of speedup appears to be a software property, not a hard-
ware one.  

   2.3.4    Complex Instruction Set versus Reduced Instruction Set 

  Complex instruction set computers  ( CISC ) supply relatively sophisticated 
functions as part of the native instruction set. This gives the high - level lan-
guage compiler a rich variety of machine - language instructions with which to 
produce effi cient system or application code. In this way, CISC - type processors 
seek to increase execution speed and minimize memory usage. Moreover, in 
those early years, when assembly language still had an important role in real -
 time programming, CISC architectures with sophisticated instructions reduced 
and simplifi ed the programmer ’ s coding effort. 

 The traditional CISC philosophy is based on the following nine 
principles:

   1.     Complex instructions take multiple clock cycles.  
  2.     Practically any instruction can reference memory.  
  3.     No instruction pipelining.  
  4.     Microprogrammed control unit.  
  5.     Large number of instructions.  
  6.     Instructions are of variable format and length.  
  7.     Great variety of addressing modes.  
  8.     Single set of work registers.  
  9.     Complexity handled by the microprogram and hardware.    

 Besides, obvious memory savings are realized because implementing sophis-
ticated functions in high - level language would require many words of program 
memory. Finally, functions written in microcode always execute faster than 
those coded in some high - level language. 

 In a  reduced instruction set computer  ( RISC ), each instruction takes only 
one clock cycle. Usually, RISCs employ little or no microcode. This means 
that the instruction - decode procedure can be implemented as a fast digital 
circuitry, rather than a slower microprogram. In addition, reduced chip com-
plexity allows for more work registers within the same chip area. Effective use 
of register - direct instructions can decrease the number of slower memory 
fetches. 

 The more recent RISC criteria are a complementary set of the nine prin-
ciples to CISC. These are:
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   1.     Simple instructions taking one clock cycle.  
  2.     Memory access by load/store instructions only.  
  3.     Highly pipelined instruction processing.  
  4.     Hard - wired control unit.  
  5.     Small number of instructions.  
  6.     Instructions are of fi xed format and length.  
  7.     Few addressing modes.  
  8.     Multiple sets of work registers.  
  9.     Complexity handled by compilers and software.    

 A more quantitative defi nition of RISC is available in Tabak  (1991) . Any 
RISC - type architecture could be viewed as a processor with a minimal number 
of vertical microinstructions, in which programs are directly executed in the 
hardware. Without any microcode interpreter, all instruction operations can 
be completed in a single (hard - wired)  “ microinstruction. ”  

 RISC has fewer instructions; hence, operations that are more complicated 
must be implemented by composing a sequence of simple instructions. When 
this is some frequently used operation, the compiler ’ s code generator can use 
a preoptimized template of instruction sequence to create code as if it were 
that complex instruction. RISC needs naturally more memory for the sequences 
of instructions that form a complex instruction. CISC, on the other hand, uses 
more clock cycles to execute the microinstructions used to implement the 
complex instruction within the native instruction set. 

 RISCs have a major advantage in real - time systems in that the average 
instruction execution time is shorter than for CISCs. The reduced instruction 
execution time leads to shorter interrupt latency and thus shorter response 
times. Moreover, RISC instruction sets tend to help compilers to generate 
faster code. Because the instruction set is signifi cantly limited, the number of 
special cases that the compiler must consider is considerably reduced, thus 
permitting a greater variety of code optimization approaches. 

 On the downside, RISC processors are usually associated with caches and 
elaborate multistage pipelines. Generally, these architectural enhancements 
improve the average - case performance of the processor by shortening the 
effective memory access times for frequently accessed instruction codes and 
data. However, in the worst case, response times are increased because low 
cache hit ratios and frequent pipeline fl ushing can degrade performance. 
Nonetheless, the greatly improving average - case performance at the expense 
of degraded worst - case performance is often tolerable at least in fi rm and soft 
real - time applications. Lastly, it should be mentioned that modern CISC - type 
processors share some principles of RISC architectures; for instance, virtually 
all CISC processors contain some form of instruction pipelining. Thus, the 
borderline between CISC and RISC is not crisp at all. A specifi c CPU archi-
tecture belongs to the CISC category if it fulfi lls  most  of the nine CISC prin-
ciples; the same applies with the RISC defi nition.   
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   2.4    PERIPHERAL INTERFACING 

 Peripheral, sensor, and actuator interfacing (Patrick and Fardo,  2000 ) is a 
central area of real - time hardware that is developing much slower than, for 
instance, memory subsystems and processor architectures. While the latter 
ones seem to be under incessant evolution, the peripheral interfacing princi-
ples have remained largely the same for decades. The fundamental practices 
for input and output handling are still the same as in the late seventies:

    •      Polled I/O  
   •      Interrupt - driven I/O  
   •      Direct memory access    

 In a polled I/O system, the status of the I/O device is checked periodically, or, 
at least, regularly. Therefore, such I/O activity is software controlled; only 
accessible status and data registers are needed in the hardware side. An 
obvious advantage of such an approach is its simplicity, but, on the other hand, 
it loads the CPU due to possibly unnecessary status requests. Typically, only a 
minority of status requests leads to either input or output transactions with 
the data register. This unnecessary loading could be reduced by less frequent 
polling of the I/O status. However, that would increase the worst - case I/O 
latency. Hence, an appropriate polling interval is an application - specifi c com-
promise between the desired CPU utilization factor and allowed I/O latency. 

 Figure  2.13  depicts a generic  peripheral interface unit  ( PIU ) with three 
internal registers. In addition to the status and data registers, there is a con-
fi guration register for selecting the desired operation mode. Actually, the 

       Figure 2.13.     Interface lines of a generic peripheral input/output unit with three internal 
registers.  
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programmable PIU is, in some cases, a special - purpose processor that can 
manage independently such complicated functions as a communications 
network protocol or multichannel pulse - width modulation. Hence, advanced 
PIUs may relieve the CPU loading signifi cantly in embedded real - time appli-
cations. Application programmers should not have direct access to PIUs, but 
they are used through device drivers that belong to system software. These 
device drivers hide the hardware - specifi c details from application program-
mers, and, in this way, make it easier to port the application code to another 
hardware environment with somewhat different peripheral interface devices. 
This situation can be found in embedded systems that have a long life cycle. 
For example, the lifetime of a high - rise elevator control system may be around 
25 years — this sets a notable challenge for the availability of spare parts, and, 
sometimes, new hardware has to be developed for the existing application 
software.   

 The next two subsections present the operating principles of interrupt -
 driven I/O and direct memory access, which can greatly improve the I/O 
performance of real - time systems. 

   2.4.1    Interrupt - Driven Input/Output 

 Interrupt - driven I/O processing has remarkable advantages over the straight-
forward polled I/O: the service latency can, in general, be reduced and made 
less uncertain without increasing the loading of the CPU. In Section  2.1 , we 
already presented a typical interrupt service process in a case when interrupts 
are enabled and only a single interrupt request is active at a time. However, 
in many practical situations, there might appear multiple interrupt requests 
simultaneously. This raises two obvious questions: How to identify the various 
interrupt sources, and in which order should the interrupts be serviced? There 
are standard procedures for identifying the interrupting peripherals, as well as 
for determining their service order. Some of those procedures are practical 
with small real - time systems, while others are particularly effective in larger -
 scale systems. Nonetheless, they are usually not visible to application program-
mers, but are managed in the system software. 

 In small real - time systems with no more than a moderate number of pos-
sible interrupt sources, it is often practical to identify the interrupting periph-
eral by polling the status registers of all PIUs. A status register contains 
typically some fl ag that is set when the particular PIU is requesting an inter-
rupt. Moreover, by selecting the static polling order suitably, certain high -
 priority peripherals may always be serviced before some lower - priority ones. 
And, if needed, the polling order could be modifi ed dynamically to provide 
rotating priorities, for instance. 

 When the number of interrupting peripherals is large, it is no longer feasible 
to identify and prioritize interrupts using the simple polling scheme. Vectored 
interrupt handling is a convenient technique for larger real - time systems, 
because it moves the interrupt identifi cation burden from system software to 
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real - time hardware. Figure  2.14  illustrates the interrupt identifi cation process 
with a vectored interrupt. The cost of using a vectored interrupt is in the more 
complex CPU and PIU hardware. Besides, some priority interrupt controller 
is needed to manage the priorities of individual interrupt sources.   

 A CPU that supports vectored interrupts has usually a substantial number 
of interrupt vectors available. If the number of vectors is 256, there could be 
256 distinguishable interrupt sources. In most cases, however, not all the avail-
able interrupt vectors are needed in a real - time application. Still, it is recom-
mended to write interrupt service routines for those unused interrupt codes 
as well. But why? In some operating environments,  electromagnetic interfer-
ence  ( EMI ) radiation, charged particles, and various disturbances and noise 
may cause spurious problems by inverting some bits in main memory, in reg-
isters, or on the system bus. These kinds of problems are sometimes classifi ed 
as  “ single - event upsets ”  (Laplante,  1993 ). The results of such problems can be 
catastrophic. For example, if even a single bit in the interrupt vector is inverted, 
the altered interrupt code may correspond to such an interrupt that is not in 
use (a phantom interrupt), and, thus, does not have an interrupt service routine. 
The effect can lead to a system crash. Fortunately, there is a simple solution 
to this crash problem: every interrupt vector should have a corresponding 
service routine, and in the case of phantom interrupts, it is just a return - from -
 interrupt or  RETI  instruction. It is advisable, though, that some phantom -
 interrupt counter in a nonvolatile memory is incremented as well. The value 
of such a counter could be monitored during the early phase of the product 
life cycle; if the hardware is properly designed and implemented, the counter 
should never be incremented. Unfortunately, while any real - time hardware 
should be designed to fulfi ll certain  electromagnetic compatibility  ( EMC ) and 
radiation hardening standards (Morgan,  1994 ), and appropriate software pre-
vention techniques are available to deal with single event upsets (Laplante, 

       Figure 2.14.     Interrupt - identifi cation procedure between the CPU and PIU using vec-
tored interrupt.  
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 1993 ), unrealistic cost/schedule pressure and inadequate system testing often 
lead to the kinds of problems just described. 

 A priority interrupt controller (PIC) is used for prioritizing different inter-
rupts when the vectored - interrupt scheme is used for identifying them. PICs 
have multiple interrupt inputs that are coming from PIUs (or directly from 
peripherals), and a single interrupt output that is going to the CPU. Some 
processors may even have a built - in PIC function. These programmable devices 
provide the ability to dynamically prioritize and mask interrupts of different 
priority levels. Each interrupt can be independently set to be either edge 
(rising or falling) or level triggered, depending on the needs of the attached 
peripheral. Edge - triggered interrupts are used with very long or very short 
interrupt pulses, and when overlapping interrupt requests on a single line are 
not possible. Level - triggered interrupts, on the other hand, are used more 
seldom — only when overlapping interrupt requests on a single line are 
expected — because edge - triggered interrupts are time - wise more precise. 
Figure  2.15  depicts the handling of multiple interrupts with an external PIC. 
The procedure contains 10 main steps (assuming that interrupts are enabled):

   1.     The PIC receives several simultaneous interrupt requests.    
  2.     The PIC processes fi rst the request with highest priority.  
  3.     The CPU receives an interrupt request from the PIC.  
  4.     The CPU completes the currently executing instruction.  
  5.     The CPU stores the content of the program counter register (PCR) to 

memory.  
  6.     The CPU acknowledges the interrupt to the PIC.  
  7.     The PIC sends the interrupt vector to the CPU.  
  8.     The CPU loads the corresponding interrupt - handler address to the 

PCR.  

       Figure 2.15.     Handling multiple interrupts with an external priority interrupt controller; 
the circled numbers are referring to the 10 - step procedure described in the text.  
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  9.     The CPU executes the interrupt handler.  
  10.     The CPU reloads the original PCR content from memory.    

 Although interrupt - driven I/O is an effective technique for (hard/fi rm) real -
 time systems, it ought to be remembered that the privilege to interrupt should 
be given to time - critical I/O events only. Otherwise, a large number of concur-
rent interrupt requests may sporadically lead to excessive response times. A 
complementary discussion on interrupt - related issues is available in Ball 
 (2002) .  

   2.4.2    Direct Memory Access 

 While interrupt - driven I/O handling is effective when the number of trans-
ferred data bytes or words between memory and I/O ports is reasonably small, 
it becomes ineffective if large blocks of data are transferred. Each data element 
must fi rst be read from memory or an input port into the CPU ’ s work register 
and then written to an output port or a memory location. Such block - transfer 
processes take place regularly, for example, with communications networks, 
graphics controllers, and hard - disk interfaces — or even between two memory 
segments. To eliminate the time - consuming circulation of data through the 
CPU, another I/O handling practice,  direct memory access  ( DMA ), is 
available. In DMA, access to the computer ’ s memory is given to other devices 
in the system without any CPU intervention. That is, data is transferred directly 
between main memory and some external device. Here, a separate DMA 
controller is required unless the DMA - handling circuitry is integrated into 
the CPU itself. Because no CPU participation is required, data transfer is 
faster than in polled or interrupt - driven I/O. Therefore, DMA is often the best 
I/O method for real - time systems; and it is becoming increasingly widespread 
due to extensive use of communications networks and distributed system 
architectures, for instance. Some real - time systems have even multiple DMA 
channels. 

 An I/O device requests DMA transfer by activating a DMA - request signal 
(D_REQ). This makes the DMA controller issue a bus - request signal (B_
REQ) for the CPU. The CPU fi nishes its present bus cycle and activates a 
bus - acknowledgment signal (B_ACK). After recognizing the active B_ACK 
signal, the DMA controller activates a DMA - acknowledgment signal (D_
ACK), instructing the I/O device to begin data transfer. When the transfer is 
completed, the DMA controller deactivates the B_REQ signal, giving buses 
back to the CPU (Fig.  2.16 ).   

 The DMA controller is responsible for assuring that only one device can 
place data on the bus at any one time through bus arbitration. This essential 
arbitration procedure resembles the interrupt prioritization discussed above. 
If two or more devices attempt to gain control of the bus simultaneously, bus 
contention occurs. When some device already has control of the bus and 
another device obtains access, a collision occurs. The DMA controller prevents 
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collisions by requiring each device to issue the D_REQ signal that must be 
acknowledged with the D_ACK signal. Until the D_ACK signal is given to 
the requesting device, its connection to the system bus remains in a high -
 impedance condition. Any device that is in the high - impedance state (i.e., 
disconnected) cannot affect the data bits on the memory data bus. Once the 
D_ACK signal is given to the requesting device, its memory - bus lines become 
active, and data transfer occurs similarly as with the CPU. For each data trans-
fer occasion, the DMA controller needs a memory address specifying where 
the data block exists or where it will be placed, and the amount of transferable 
bytes or words. Such information is programmed to the control registers of 
the DMA controller by the CPU (a function of system software). 

 During a DMA transfer, the ordinary CPU data - transfer processes cannot 
proceed. At this point, the CPU could proceed solely with nonbus - related 
activities until the DMA controller releases the buses or until it gives up and 
issues a bus time - out signal (after some predetermined time). Yet a CPU with 
a cache memory may still execute instructions for some time during a DMA 
transfer. From the real - time viewpoint, a long DMA cycle is somewhat similar 
to the condition when interrupts are disabled, because the CPU cannot provide 
service for any interrupts until the DMA cycle is over. This may be critical in 
real - time systems with high sampling rates and strict response - time require-
ments. To tackle the problem, a single transfer cycle of a large data block can 
be split to several shorter transfer cycles by using a cycle - stealing mode instead 
of the full - block mode. In the cycle - stealing mode, no more than a few bus 
cycles are used at a time for DMA transfer. Hence, the interrupt - service 
latency does not become unreasonably long when transferring a large block 
of data using DMA. 

 In certain hard real - time applications, however, the use of DMA is avoided 
by placing a dual - port SRAM (or DPRAM) device between a block - oriented 
I/O device and the CPU. The DPRAM contains a single memory array with 

       Figure 2.16.     Establishing a data - transfer connection between an I/O device and main 
memory using DMA.  
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private bus connections for both the primary CPU and some I/O processor. 
Hence, the primary CPU is never giving the control of its system bus to any 
other device; but block - oriented data transfer takes place in the dual - port 
memory without disturbing the CPU. Dual - port SRAMs are used widely with 
communications networks and graphics controllers.  

   2.4.3    Analog and Digital Input/Output 

 Real - time system designers should be aware of certain characteristics of I/O 
signals and functions, which are associated with timing and accuracy. There is 
a variety of I/O categories, particularly in embedded real - time systems. The 
core categories are outlined below:

 •      Analog  
 •      Digital parallel  
 •      Digital pulse  
 •      Digital serial  
 •      Digital waveform    

 In the following paragraphs, a discussion of this important topic is provided 
with a few hardware examples. We point out key issues related to analog and 
digital I/O signals and their trouble - free interfacing. A supplementary presen-
tation on specifi c peripheral interface units is available in Ball  (2002)  and 
Vahid and Givargis  (2002) , for instance. 

 Analog - to - digital conversion, or A/D circuitry, converts continuous - time 
(analog) signals from various devices and sensors into discrete - time (digital) 
ones. Similar circuitry can be used to convert pressure, sound, torque, and 
other current or voltage inputs from sensors and transducers by using a variety 
of conversion schemes. The output of A/D circuitry is a  discrete - time  and 
quantized  version of the analog signal being monitored. At each sampling 
moment, the A/D circuitry makes available an  n  - bit approximation that rep-
resents a quantized version of the signal. This data can be passed on to the 
real - time computer system using any of the three I/O handling methods. 
Samples of the original continuous - amplitude waveform are treated in appli-
cation programs as scaled integer numbers. 

 The fundamental aspect in the use of A/D circuitry for time - varying signals 
is the sampling rate. In order to convert a continuous - time signal into a 
discrete - time form without loss of any information, samples of the analog 
signal must be taken at a rate of at least twice that of the highest frequency 
component of the signal (the Nyquist – Shannon sampling theorem). Hence, a 
signal with a highest frequency component at 500   Hz must be sampled at least 
1000 times per second. This implies that software tasks serving A/D circuitry 
must run at the same rate, or risk losing information. Besides, high punctuality 
of consecutive sampling moments is essential in many control and signal pro-
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cessing applications. These considerations form an intrinsic part of the design 
process for the scheduling of software tasks. In most control applications, 
however, the applied sampling rate is 5 – 10 times higher than the minimum 
rate. One reason for this is the common noise content in the measured signal, 
which should be low - pass fi ltered to avoid violation of the sampling theorem, 
leading to harmful aliasing. Nonetheless, traditional band - selective fi lters 
always introduce some delay (or phase shift) to the fi ltered primary signal 
(Vainio and Ovaska,  1997 ), and that could reduce the controllability of the 
plant or process. By using a higher sampling rate, the control performance can 
often be improved, and the aliasing effect reduced without using a highly 
selective low - pass fi lter. Fortunately, in many monitoring and audio signal -
 processing applications, a moderate phase delay is tolerable, and appropriate 
low - pass fi lters can thus be used in front of A/D converters. 

 It should be noted, however, that the Nyquist – Shannon sampling theorem 
does not consider the nonlinear quantization effect at all. While pure sampling 
with an adequate sampling rate is a truly reversible operation, quantization 
always introduces some irreversible error to the digital signal. One additional 
bit of quantization resolution corresponds approximately to a 6   dB increase 
in the  signal - to - noise ratio  ( SNR ) of the digitized signal (Garrett,  2000 ). The 
number of bits in A/D converters is typically 8 – 16 in control applications, 
but can be more than 20 in hi - fi  audio systems, for example. Figure  2.17  illus-
trates the varying quantization error in a simplifi ed case with a 3 - bit A/D 
converter. In a real - time system, the A/D - converter ’ s resolution is usually 
a compromise between the application ’ s accuracy requirements and the 

       Figure 2.17.     Quantization of an analog ramp signal using a 3 - bit A/D converter. The 
quantization error varies between  − 1/2 LSB (least signifi cant bit) and  + 1/2 LSB, and it 
is thus proportional to the number of bits in the conversion process.  
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product ’ s cost pressure. Moreover, the accuracy of a practical A/D - conversion 
channel is never the same as its resolution, but, typically, one or two least -
 signifi cant bits should be considered erroneous. That has to be remembered 
when implementing control and signal - processing algorithms.   

 Another design issue related to analog input channels is the occasional need 
for truly simultaneous sampling of two or more measurement quantities. There 
is usually an analog multiplexer in front of the A/D converter to provide 
selectable measurement channels for a single A/D - converter. That is a compact 
and low - cost solution, but cannot provide simultaneous sampling of multiple 
quantities. An additional A/D converter would be a straightforward solution 
to this problem, but it could be a relatively expensive option in many embed-
ded systems. Therefore, it is often practical to use individual  sample - and - hold  
( S & H ) circuits in those measurement channels that require simultaneous sam-
pling. The CPU gives a concurrent  “ sample ”  command to those S & H circuits 
that memorize their analog inputs for a short period of time. After this, all the 
S & H outputs are converted sequentially to the digital form by the one A/D 
converter. Although the digital samples become available one after another, 
they still correspond to the same sampling moment. 

 Digital - to - analog conversion, or D/A circuitry, performs the inverse function 
of A/D circuitry; it converts a digital quantity to an analog one. D/A devices 
are used to allow the computer to output analog currents or voltages based 
on the digital version stored internally. Nevertheless, D/A converters are not 
as common in real - time systems as A/D converters, because many actuators 
and devices are commanded directly with digital signals. D/A converters are 
sometimes included solely for providing real - time outputs of critical or select-
able intermediate results of computational algorithms. This may be useful 
during the hardware - software integration and verifi cation phases of sophisti-
cated control and signal - processing algorithms. The communication with D/A 
circuitry also uses one of the three I/O handling methods discussed. 

 Digital I/O signals can be classifi ed into four categories: parallel, pulse, 
serial, and waveform. Diverse parallel inputs are practical for reading the 
status of on/off - type devices like electro - mechanical limit switches or relay 
contacts in machine - automation applications, for instance. Parallel outputs are 
used similarly for providing on/off commands to a variety of actuators, such 
as fans or pumps, in building automation. While the PIU output ports need 
some driver circuit to be able to sink/source high load currents, the input ports 
must be protected against interferences that are corrupting the incoming 
signals. Severe EMI levels are usual in industrial applications of real - time 
systems (Patrick and Fardo,  2000 ). Typical input circuitry contains fi rst some 
overvoltage suppressor for protecting the interface channel. It is followed by 
an optical isolator that converts the voltage levels (e.g., from  + 24/0   V I/O logic 
to + 5/0   V CPU logic) and creates galvanic isolation between the I/O - ground 
potential and the CPU ground. This is necessary for preventing electric cou-
pling of disturbances from the possibly harsh operating environment to the 
sensitive computer system. After the galvanic isolation, on/off - type signals are 
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usually low - pass fi ltered by an RC fi lter to attenuate high - frequency distur-
bances and noise. Finally, the smoothened signal edge (rising or falling) is 
restored by a Schmitt - trigger circuit containing some hysteresis. All this is 
necessary to make sure that the digital input signal is of adequate quality 
before feeding it to the PIU (Fig.  2.18 ). Furthermore, special attention should 
be paid to such digital signals that cause interrupts directly, because a noisy 
on/off edge may be interpreted as multiple edges, leading to a burst of false 
interrupts instead of a single desired interrupt. Thus, the interface - hardware 
requirements are very different in industrial environments from those ade-
quate in home or offi ce environments.   

 But why is the protection of parallel input ports of interest to real - time 
software engineers? Well, it is certainly straightforward to clean on/off - type 
signals by using appropriate signal processing techniques, but, at the same time, 
the transition edges (from  “ on ”  state to  “ off ”  state or vice versa) are necessar-
ily delayed. This increases the latency of excitation signals, as well as the 
response time that is measured from the  true  transition moment to the cor-
responding output action. Hence, with time - critical events, all kinds of fi ltering 
should be kept minimal to avoid intolerable hardware latency. This initial 
latency component is accumulated with a possible chain of nondeterministic 
latency components originating, for example, from a  “ dangerous ”  CPU utiliza-
tion factor, pipeline fl ushes, cache misses, sensor - network ’ s variable load, and 
software - task scheduling. If adequate fi ltering cannot be afforded, then the 
principal solution is to use shielded signal cables — or even optical fi bers — to 
prevent disturbances from corrupting edge - critical signals. The same is also 
valid with pulse - type inputs. 

 Pulse and waveform outputs, on the other hand, also have accuracy require-
ments, because the widths of generated pulses have specifi c tolerances. This is 
central when individual pulses are used for turning on/off devices or functions 
for a precise duration of time. Moreover, in high - performance pulse - width 
modulation, the tolerances of consecutive pulses may be rather strict. Both 
pulses and waveforms are typically generated by some timer circuit; and 
the timing accuracy depends on the reference frequency, as well as the length 
of the counter register. In addition, there is a nondeterministic latency 

       Figure 2.18.     Block diagram of a digital input channel intended for an operating envi-
ronment with high EMI levels.  
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component due to interrupt handling and software - task scheduling. This 
latency should be taken into account when prioritizing different interrupts and 
associated tasks in a real - time system. Similar considerations are needed with 
pulse and waveform inputs. 

 Serial digital I/O is used for transferring data over a single line instead of 
multiple parallel lines (or a bus). Embedded systems often have two kinds of 
serial links: a low - speed one for a local user interface, and a high - speed con-
nection to some longer - distance communications (or fi eldbus) network. While 
the low - speed serial links do not set any challenges for the real - time software 
engineer, the high - speed networks may demand a lot of computing perfor-
mance. Hence, the receiver/transmitter buffering and communications proto-
cols are often handled by a special - purpose processor, which is interfaced to 
the main CPU by using DMA. 

 Today, an increasing number of network connections are implemented 
using some wireless medium — either an infrared or a radio connection. The 
emerging wireless sensor networks use tiny computer nodes for performing 
autonomous measurements in an environment where it is not possible to 
provide an external power supply for those nodes. Therefore, the distributed 
nodes are battery powered, and the battery lifetime should be maximized to 
avoid impractical service of the nodes. This economy is accomplished by effec-
tively utilizing the CPU ’ s sleep mode; the communications protocol can adjust 
how often the hardware is awakened for a communications session. The 
awake – sleeping duty cycle is application dependent, and network latency is 
clearly sacrifi ced over battery lifetime and vice versa. This ultra - low power 
consumption is a new type of requirement for certain real - time systems.   

   2.5    MICROPROCESSOR VERSUS MICROCONTROLLER 

 Up to now, we have used the general term  “ processor ”  for the entire assort-
ment of processing units containing some kind of CPU — from high - performance 
microprocessors to application - specifi c cores in systems on a chip. However, 
under the processor class, there are two distinct subclasses, microprocessors 
and microcontrollers, which deserve an introductory discussion. From the real -
 time systems viewpoint, microprocessors are currently used mainly in nonem-
bedded applications, while various microcontrollers are dominating the 
embedded - systems fi eld. That has not always been the case, though. Therefore, 
it is good to discuss the evolution paths of real - time processors, beginning from 
the introduction of the fi rst microprocessor in the early 1970s. The purpose of 
the following paragraphs is to provide some insight for understanding the few 
divergent development paths of processor technology (Fig.  2.19 ).   

   2.5.1    Microprocessors 

 A microprocessor is an integrated circuit that contains the functions of a 
complete CPU. At the time of its introduction — about 40 years ago — it opened 
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totally new opportunities for the research and development community to 
innovate and design  intelligent  systems and products. In this context, we adopt 
the following defi nition for the term  “ intelligence ” :

  Intelligence can be defi ned in terms of the capability of a system to adapt its 
behavior to meet its goals in a range of environments  (Fogel,  2006 ).    

 The fi rst microprocessor decade was, in many ways, confusing, because the 
microprocessor components and software development tools were in their 
very infancy; and the users of those new microprocessors were more or less 
self - educated without the benefi ts of experience. Still, by the mid - 1970s, the 
fi rst microprocessor - based elevator control systems were successfully being 
developed. Those early implementations were not intelligent according to the 
defi nition, since they were just replacing certain relay - based logic by straight-
forward microprocessor code. Nonetheless, the introduction of microproces-
sors in embedded applications was certainly a turning point for that conservative 
branch of industry. The same applies with countless other fi elds that gradually 
started to benefi t from microprocessors and the exciting opportunity to create 
novel functionality — or even machine intelligence — by software. 

 When the instruction - processing throughput of microprocessors steadily 
increased, and the memory and peripheral interface devices became more 
advanced, the era of embedded systems was truly begun — that was in the early 
1980s. At the beginning, the hardware clearly had a central role in all develop-
ment work, but by the middle of the 1980s, the logical need for proper software 
engineering procedures and associated support tools started to emerge; real -
 time software development was no more just code writing. Today, we observe 
that most of the real - time systems development effort in microprocessor envi-
ronments is software engineering, not hardware engineering. The used hard-
ware platforms are typically either standard offi ce PCs or industrial PCs with 
special interface modules. 

       Figure 2.19.     Principal evolution paths of processor technology.  
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 From the early days, microprocessors have evolved signifi cantly, and the 
architectural advancements discussed in Section  2.3  are available specifi cally 
in the latest microprocessors. The foremost goal in the development of 
microprocessors is the further increasing instruction - processing throughput. 
In parallel with the innovative architectural developments, such as superpipe-
lining and superscalar processing with out - of - order execution, the use of 
microprocessors in embedded systems has greatly diminished. The increased 
nondeterminism in interrupt latency causes insuperable problems for 
hard real - time systems. Nevertheless, many embedded applications could, 
in principle, benefi t from the high instruction - processing throughput of 
microprocessors.  

   2.5.2    Standard Microcontrollers 

 Soon after the introduction of the fi rst 8 - bit microprocessors, another develop-
ment path, microcontrollers, emerged. A microcontroller is an integrated 
circuit containing a CPU, as well as an interconnected set of memory devices, 
peripheral interface units, timers/counters, etc. Hence, the microcontroller can 
take direct input from devices and sensors and directly control external actua-
tors. The need for  “ single - chip computers ”  became apparent as soon as the 
fi rst embedded systems were designed that were based on microprocessors 
and a set of external  memory and I/O devices. Later on, when the microproces-
sor path utilized consistently the remarkable developments of integrated -
 circuit technology for advancing the CPU architecture, the microcontroller 
path had its main emphasis on extending the available RAM and ROM spaces, 
as well as the variety of peripheral interface units. To make the package 
compact and inexpensive, some microcontrollers do not have an external 
system bus that, on the other hand, would make it also possible to use external 
memory and PIU devices. The CPU of a high - performance microcontroller 
may have a short instruction pipeline, a clear - cut RISC architecture with a 
duplicate set of work registers for interrupt handlers, and possibly Harvard 
architecture. As a converged result of evolution, a modern microcontroller 
could contain the following set of PIUs and memory devices:

 •      EEPROM or Flash  
 •      SRAM  
 •      Analog - to - digital converter with a multiplexer  
 •      Direct - memory - access controller  
 •      Parallel inputs and outputs  
 •      Serial interface  
 •      Timers and counters  
 •      Pulse - width modulators  
 •      Watchdog timer    
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 The list is not all encompassing, but it contains a representative collection of 
functions that are available in numerous commercial microcontrollers. 

 An interesting element, the watchdog timer, is worthy of an introduction, 
because it can be used as a supervision unit in real - time systems, particularly 
in those ones that operate autonomously. Many embedded systems are 
equipped with a watchdog up - counter that is incremented periodically by a 
clock signal. The counter must be cleared regularly by an appropriate pulse 
before it overfl ows and generates a watchdog interrupt (this clearing action is 
sometimes called  “ petting the dog ” ). In normal operating conditions, the appli-
cation software issues regularly a pulse via memory - mapped or programmed 
I/O to clear the counter frequently enough. 

 Watchdog timers are used to ensure that certain devices are serviced at 
regular intervals, that certain software tasks execute according to their pre-
scribed rate, and that the CPU continues to function normally. To make sure 
that a crashed real - time system can be recovered successfully, it is sometimes 
wise to connect the watchdog timer ’ s interrupt output to the nonmaskable 
interrupt line, or even to the line that is used to reset the whole system (Fig. 
 2.20 ). In addition, whenever the watchdog interrupt is activated, a variable in 
nonvolatile memory should be incremented to record such an abnormal event 
that is always an indication of some software or hardware problem — or maybe 
a system - level problem related to electro - magnetic interferences.   

 The fi rst - generation microcontrollers were intended for general embedded 
applications — their memory capacity and PIU selection were not tailored for 
any specifi c fi eld of application. However, by the early 1980s, a variety of 
application - specifi c microcontrollers started to emerge. Around this time, the 
so - called digital signal processors also became available for data communica-
tions and other signal processing applications. 

 Digital signal processors have a CPU architecture that supports fast pro-
cessing of a limited set of instructions, and provides short interrupt latency. 
This capability is effectively accomplished by a RISC - type Harvard architec-
ture with truly parallel multiplication and addition units. The availability of 
 multiplication - accumulation  ( MAC ) instructions, which take only one clock 
cycle to execute, is the key characteristic that ties such architecture to  digital 
signal processing  ( DSP ) applications; because many DSP algorithms (e.g., 
convolution) contain a chain of multiplication - addition operations. Besides, 
the sampling rates of those algorithms are often relatively high. More recently, 
some digital signal processors with VLIW architectures have become available 

       Figure 2.20.     Block diagram of a watchdog timer with its inputs and output.  
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for specifi c DSP applications. Nonetheless, a typical digital signal processor is 
nothing more than an application - specifi c microcontroller with a special -
 purpose CPU architecture and appropriate PIU and memory support. 

 In addition to digital signal processors, there are also other application -
 specifi c microcontrollers for common application areas, such as automotive, 
communications, graphics, motor control, robotics, and speech processing. 
Moreover, in the mid - 1980s, an exceptional family of networkable microcon-
trollers, transputers, was introduced for creating parallel - processing imple-
mentations easily. A transputer contains a rather traditional von Neumann 
CPU (either with or without fl oating - point support), but  its novel instruction 
set includes directives to send or receive data via four serial links that are con-
nected to other transputers  (nodes). The transputers, though capable of acting 
as a uniprocessor, are best utilized when connected together in a nearest -
 neighbor confi guration. Nonetheless, transputers never attained the true 
acceptance of the global  R & D community, and thus their production was 
terminated. Although the transputer itself disappeared, its pioneering archi-
tectural innovations were adopted to a few networkable microcontrollers 
available today. Those microcontrollers with automatically (by hardware) 
updated network variables are used particularly in building automation and 
elevator control applications (Loy et al.,  2001 ). Perhaps the transputer concept 
was introduced too early, when the potential of convenient networking over 
various media was not yet recognized. 

 Most microcontrollers are standard components, and a few billions of 
them — mostly simple 8 - bit microcontrollers — are produced annually. Hence, 
there are usually certain memory or PIU features of the off - the - shelf micro-
controller that are not (fully) utilized in a specifi c real - time system. This inef-
fectiveness could be avoided by creating product - specifi c  custom 
microcontrollers. That is, indeed, taking place when developing particular high -
 volume products, as we will see shortly.  

   2.5.3    Custom Microcontrollers 

 Custom microcontrollers (or core processors) began to appear in the late 
1980s for applications like high - speed telephone modems, and for miscella-
neous systems where low - power consumption is a major issue. For example, 
while the availability of SRAM in a standard microcontroller would be 2   K 
words, a core processor could contain 1234 words of memory to fulfi ll the  exact
needs of an imaginary software implementation. Thus, the memory array 
would be approximately 40% smaller, and the chip size would be reduced 
correspondingly. This potential benefi t is realizable only if the production 
volume of the core processor is large enough to compensate for the high 
design expenses of the custom integrated circuit (Vahid and Givargis,  2002 ). 
Such designs can be seen as computers on chip (Fig.  2.19 ), and they require 
an extensive verifi cation phase, because the fi nal design does not offer fl exibil-
ity to make modifi cations. However, if the core processor contains EEPROM 
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or Flash blocks for program code, it is possible to modify the software within 
the limits of fi xed memory space. The CPU of a core processor is either some 
version of a standard CPU or a special custom design. 

 Moreover, some (dynamically) reconfi gurable processor architectures have 
recently been proposed in  fi eld - programmable gate array  ( FPGA ) environ-
ments (Hauck and Dehon,  2007 ). FPGAs provide new opportunities for inno-
vating real - time systems with fl exible computing performance. The confi gurable 
FPGA technology provides for the construction of a custom microcontroller 
with an application - specifi c CPU, memory, and I/O — even for products with 
low or moderate production volume, because the FPGAs are standard com-
ponents that are confi gured by application designers. Figure  2.21  illustrates the 
general architecture of FPGA devices. In addition to buffering I/O cells and 
basic logic cells, containing elementary combinatorial and sequential logic, an 
FPGA may include more advanced cells, such as:

    •      Multiplier    
   •      Tri - state bus  
   •      CPU core  
   •      SRAM and ROM  
   •      Interface support for external DRAM modules  
   •      Application - specifi c  immaterial - property  ( IP ) blocks provided by the 

FPGA manufacturer    

       Figure 2.21.     Conceptual architecture of an FPGA device with 6 logic cells (Mayer -
 Baese,  2007 ). In reality, the number of logic cells may be even more than 100,000.  
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 Systems on chip take the core - processor approach even further by integrating 
on the same chip functionalities other than pure digital blocks (Saleh et al., 
 2006 ). A system on chip, or SoC, may contain analog - signal, analog - power, 
mixed analog - digital, radio - frequency, or micro - electro - mechanical blocks, as 
well. Thus, the design and fabrication of an SoC device may become a major 
challenge and a signifi cant expense. A digital camera is a typical real - time 
application where practically all electronics are integrated on a single SoC; it 
is produced in high quantities, it must be compact, and its power consumption 
should be low. In cases when it is not feasible or possible to design and manu-
facture an SoC due to the presence of overly diverse integrated - circuit tech-
nologies, a relevant alternative might be a system in package, or SiP, where a 
few heterogeneous chips are placed in a single package. Both SoC and SiP 
devices are particularly attractive for novel ubiquitous - computing applica-
tions, where sensors and real - time computation are intimately integrated into 
everyday activities and objects (Poslad,  2009 ).   

   2.6    DISTRIBUTED REAL - TIME ARCHITECTURES 

 As soon as embedded control systems began to emerge in the 1970s, the need 
for distributed real - time architectures became obvious in many applications. 
The main motivators behind spatial distribution over serial communications 
interfaces were typically: considerable savings in wiring expenses, fl exibility in 
designing and upgrading large - scale systems, and making computing power 
available where it is needed. In the beginning, different subsystems were inter-
connected point - to - point via asynchronous serial links that were using some 
proprietary communications protocol. Such implementations offered low data 
rates, and it was diffi cult to modify them, because the primary CPU was also 
handling the low - level communications protocol; there was often moderate 
overlapping between the application software and the communications proto-
col. No multi - level layering of the communications protocol or special - purpose 
communications processors yet existed. Still, by the early 1980s, an elevator 
bank control system with eight elevators could contain 11 microprocessor 
subsystems that were communicating over two bus - type serial links at the data 
rate of 19.2   K bit/s. And, those microprocessors were of same type as the CPU 
of the fi rst IBM PC. 

   2.6.1    Fieldbus Networks 

 Appropriate layering breaks the communications protocol into multiple pieces 
that are easier to design and implement than a fl at protocol. Hence, in modern 
communications networks, the concept of layering is fundamental, and it 
usually follows the seven - layer  open systems interconnection  ( OSI ) model 
(Wetteroth,  2002 ):
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   1.      Physical  (bits): Conveys the bit stream across the network.  
  2.      Data Link  (frames): Builds data packets and synchronizes traffi c.  
  3.      Network  (packets): Routes data to the proper destination.  
  4.      Transport  (segments): Error checking and delivery verifi cation.  
  5.      Session  (data): Opens, coordinates, and closes sessions.  
  6.      Presentation  (data): Converts data from one format to another.  
  7.      Application  (data): Defi nes communications partners.    

 The use of OSI model makes it possible to change the data transfer medium 
(copper wire, optical fi ber, wireless radio, or wireless infrared) and other prop-
erties of the protocol stack independently. In this section, we discuss the 
fi eldbus networks that form a layered communications platform for distrib-
uted systems. 

 Fieldbus is a general name for communications protocols intended for real -
 time control systems (Mahalik,  2003 ), and there are several standard protocols 
used, for example, in automotive and factory automation applications. An 
example of fi eldbus networks is the widespread  controller area network  
( CAN ), which was originally intended for automotive applications, but became 
widely used in industrial applications as well. The data rates with CAN are up 
to 1   M bit/s, and the protocol is supported by special - purpose microcontrollers 
that can handle independently the whole communications session. Such CAN 
controllers could communicate with the primary CPU through a dual - port 
RAM. Fieldbus networks are similar to regular computer networks existing in 
offi ce environments (e.g., the Ethernet), but they are designed to support time -
 critical data transfer in operating environments with high EMI level. However, 
there are also industrial modifi cations of the prevalent Ethernet network, and 
thus the borderline between offi ce and fi eldbus networks is becoming blurred. 

 Fieldbus networks may be implemented using a variety of topologies (or 
physical structures), such as bus, ring, star, and tree (Fig.  2.22 ), depending on 
the nature and requirements of the particular application. These solutions 
offer fl exibility for architectural designers. In large - scale systems, the number 
of nodes in a fi eldbus network may be from hundreds to thousands. And in 
the case of the elevator bank control system previously mentioned, well over 
100 nodes containing a microcontroller could nowadays be communicating 
over a few LON - type networks (bus topology and 78   K bit/s data rate) (Loy 
et al.,  2001 ).   

 In addition to the clear advantages of distribution, networking creates a 
challenge for real - time system designers to work with: the inherent message 
transfer delay and its variation due to time - variant load on the transmission 
medium. These constraints may become a signifi cant component in composite 
response times, and make the synchronization of distributed software tasks 
problematic. 

 The delay issue becomes critical in closed - loop control systems, which must 
provide satisfactory performance and guaranteed stability at all times. There 

www.it-ebooks.info

http://www.it-ebooks.info/


70 HARDWARE FOR REAL-TIME SYSTEMS 

are two principal approaches for designing networked control systems (Chow 
and Tipsuwan,  2001 ). The fi rst approach consists of multiple subsystems, in 
which each subsystem contains a set of sensors and actuators, as well as the 
control algorithm itself. Another approach is to connect sensors and actuators 
directly to the fi eldbus network. In the latter case, the control algorithm is 
located in a separate node and it performs closed - loop control over the 
network. Such control systems are called network - based control systems, and 
they must tolerate the message transfer delays and their variation. Traditional 
control - system designs assume strictly periodic sampling of inputs and outputs; 
otherwise, the robustness and performance of the control system may degrade 
drastically. There are robust design techniques and stochastic control methods 
for tackling the delay problem, but the problem has been solved only in unde-
manding special cases — no generic solution exists. 

 If the communications platform could provide minimal and predictable 
delays in all practical conditions, the use of special algorithms would not be 
necessary. To achieve this goal, it is sometimes essential to provide two fi eldbus 
connections between certain nodes: a  regular  channel and a  priority  channel. 

       Figure 2.22.     Bus (a), ring (b), star (c), and tree (d) topologies used commonly in fi eld-
bus networks.  
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The  “ regular ”  fi eldbus network carries most of the data transmission load, 
while the  “ priority ”  connection is reserved for the most urgent and delay -
 sensitive messages only. This straightforward solution is naturally a complexity 
issue that decreases the system ’ s reliability and increases material and assem-
bly costs. Therefore, it would be valuable to have a communications architec-
ture and corresponding protocol that would guarantee punctuality in message 
transfer.  

   2.6.2    Time - Triggered Architectures 

 Synchronous communications architecture with a common clock would 
provide a reliable platform for distributed real - time systems. However, it is 
not trivial to synchronize multiple nodes precisely when the physical distance 
between individual nodes may vary drastically. The  time - triggered architecture  
( TTA ), developed by Kopetz and others, can be used for implementing dis-
tributed hard real - time systems (Kopetz,  1997 ). The TTA models a distributed 
real - time system as a set of independent nodes interconnected by a real - time 
communications network (Fig.  2.23 ), and it is based on fault - tolerant clock 
synchronization. Each node consists of a communications controller and a host 
computer, which are provided with a global, synchronized clock. Furthermore, 
every node is truly autonomous, but communicates with other nodes over a 
replicated broadcast channel (in fact, two redundant channels). Therefore, 
each individual node in the TTA should be designed as a self - suffi cient real -
 time system. Such synchronous architecture provides a very reliable and pre-
dictable mechanism for communications between nodes. In addition, a 
TTA - based system is fault tolerant, because should a node fail, the failure can 
be detected by another node that could assume, at least in principle, the failed 
node ’ s responsibilities.   

       Figure 2.23.     Time - triggered architecture with three nodes and two redundant broad-
cast channels.  
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 Using  time - division multiple access  ( TDMA ), each node is allocated a fi xed 
time slot in which it can send information on the broadcast channel to one or 
more receiving nodes, through a unique addressing scheme. It is thus possible 
to predict the latency of all messages on the channel, which guarantees hard 
real - time message delivery. Furthermore, since the messages are sent at a 
predetermined point in time, the latency jitter (or uncertainty) is minimal. 
Hence, time - triggered architectures can achieve real - time punctuality. By com-
paring the known point in time at which a particular message was sent and 
when it is received, host computers can synchronize their clocks with suffi cient 
accuracy. Nonetheless, it is not possible to synchronize distributed clocks 
exactly, and thus there is always residual phase difference between the clocks 
of different nodes. This unavoidable condition is overcome by introducing a 
sparse timing lattice within the entire distributed system. The uniform spacing 
of the lattice is chosen such that the temporal order of any two observations 
taken anywhere in a time - triggered system can be reestablished from their 
time stamps (Kopetz,  1995 ). 

 Coordinated communications between the nodes of a TTA is implemented 
by the corresponding  time - triggered protocol  ( TTP ). The TTP is a dual - channel 
protocol with 25   M bit/s data rate on each redundant channel. Multiple manu-
facturers provide TTP communications controllers as integrated circuits or IP. 
There are two versions of the TTP available: the comprehensive TTP/C 
intended for safety - critical, hard real - time applications (Kopetz,  1997 ); and the 
simplifi ed TTP/A for low - cost fi eldbus applications (Kopetz,  2000 ). 

 The time - triggered architecture has been used successfully in numerous 
safety -  and reliability - critical automotive and avionics applications, for instance. 
Such human - involved applications must contain  ultra - dependable  real - time 
systems to minimize the risk for a catastrophic failure. Therefore, ultra -
 dependable systems must be certifi ed by professional certifi cation agencies. As 
stated by Kopetz, such a certifi cation process is greatly simplifi ed if the certi-
fi cation agency can be convinced that the following three concerns are fulfi lled 
(Kopetz,  1995 ):

   1.      “ The subsystems that are critical for the safe operation of the system are 
protected by stable interfaces that eliminate the possibility of error prop-
agation from the rest of the system into these safety - relevant subsystems. ” 

  2.      “ It can be shown that all scenarios that are covered by the given load 
and fault hypotheses can be handled according to the specifi cation 
without reference to probabilistic arguments. ”   

  3.      “ The architecture supports constructive certifi cation, that is, the certifi ca-
tion of subsystems can proceed independently of each other, for example, 
the proof that a communications subsystem meets all deadlines can 
proceed independently of the proof of the performance of a node. ”     

 It is understandable that constructive collaboration between system, software, 
and hardware teams is required throughout the development project to fulfi ll 
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the concerns discussed above, because every critical subsystem is an integral 
hardware – software component. 

 An alternative to the synchronous TTA is naturally some  event - triggered 
architecture  ( ETA ), where computing and communications operations are 
activated asynchronously  by specifi c events occurring within the real - time 
system or its environment. Although ETA approaches are used widely in 
various applications, they are more demanding to design, implement, and 
maintain when the goal is an ultra - dependable real - time system with minimal 
randomness in its timing behavior.   

   2.7    SUMMARY 

 A rigid foundation for real - time systems is laid out when decisions concerning 
the system architecture and specifi c hardware devices are made in the early 
stages of a development project. Such decisions establish the baseline for 
achievable response times and their uncertainty, too. Later on, the system and 
application software further contribute to these critical quantities. Hence, 
every response time consists of multiple components, and it is highly benefi cial 
to know the average and possible variation of each latency component when 
making selections concerning the real - time operating system or key applica-
tion algorithms. In general, cost - effective systems tend to have well - balanced 
latency components throughout the entire response - time chain; it is not needed 
to have a CPU with minimal interrupt latency if the main latency, caused by 
the fi eldbus network, is orders of magnitude longer. 

 The selection of processor type (Fig.  2.19 ) is connected to the required 
strength of  “ real - time. ”  For hard real - time systems, the recommended comput-
ing environment is obviously some microcontroller — without extensive pipe-
lining and complicated memory hierarchy. In this way, the interrupt latency is 
kept minimal, which is crucial in many embedded applications. Soft real - time 
systems, on the other hand, are either embedded or nonembedded. In embed-
ded cases, microcontrollers are also the primary choices, while microprocessor -
 based workstations are dominating the nonembedded and typically networked 
applications. The latency uncertainties, caused by extensive pipelining and 
sophisticated memory hierarchies, are tolerable in networked nonembedded 
applications, such as airline reservation and booking systems, because the 
unavoidable latencies in long - distance (even intercontinental) communica-
tions networks are highly nondeterministic and only weakly bound. Firm real -
 time systems are mostly embedded ones, and, thus, practical to implement on 
microcontroller platforms. Nonetheless, multi - core microprocessors have 
potential for applications where high instruction throughput is needed. In such 
cases, an  application - optimized hardware  (memory and I/O subsystems) should 
be designed around some multi - core CPU. This approach would reduce the 
latency uncertainties from those of general - purpose workstations, but still 
offer the opportunity of truly parallel multitasking in fi rm real - time systems. 

www.it-ebooks.info

http://www.it-ebooks.info/


74 HARDWARE FOR REAL-TIME SYSTEMS 

 I/O subsystems are possible sources of measurement inaccuracy, as well as 
considerable latency. Of those, analog inputs and outputs are common sources 
of subconscious inaccuracy, because a designer might consider the accuracy of 
A/D and D/A converters to be equal to their resolution. That is not, however, 
the case, and the accuracy issue must be addressed when designing signal 
processing and control algorithms, for instance. Other important I/O issues are 
the use of interrupts and their prioritization; only the most critical I/O events 
deserve the right to interrupt. In this way, the critical response times will have 
less variation. Fieldbus and other communications networks can be seen as 
potential threats in hard and fi rm real - time systems, because their latency 
characteristics may be varying substantially under different network loading 
conditions. Therefore, it is sometimes necessary to implement parallel net-
works for regular and priority messages, or even use some synchronous com-
munications architecture, like the time - triggered architecture, to ensure that 
the tight response - time specifi cations are fulfi lled in all practical conditions. 

 The material presented in this chapter has been loosely confi ned to the 
real - time effects of various hardware architectures, their practical implementa-
tions, as well as some specifi c devices. Hence, it forms a solid basis for the 
following chapter on real - time operating systems, which are immediate users 
of the hardware resources through device drivers, interrupt handlers, and 
scheduling procedures.  

  2.8     EXERCISES 

2.1.    Compose a table providing the available memory spaces for the follow-
ing address - bus widths: 16, 20, 24, and 32 bits.   

2.2.    It is common practice for programmers to create continuous test - and -
 loop code in order to poll I/O devices or wait for interrupts to occur. 
Some processors provide an instruction ( WAIT  or  HALT ) that allows the 
processor to hibernate until an interrupt occurs. Why is the latter form 
more effi cient and desirable?   

2.3.    In general terms, suggest a possible scheme that would allow a machine -
 language instruction to be interruptible. What would be the overall effect 
on instruction ’ s execution time and CPU ’ s throughput and response 
times?   

2.4.    Figure  2.5  illustrates the interface lines of a generic memory component. 
Assume m     =    15 and  n     =    7. The address bus of your microprocessor is 24 
bits wide. How, in principle, could you locate this particular memory 
block to begin from the address 040000 (hexadecimal)? What is the cor-
responding end address?   

2.5.    Compare and contrast the different memory technologies discussed in 
this chapter as they pertain to embedded real - time systems.   
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2.6.    How would you test the validity and integrity of factory parameters 
stored in EEPROM? Sketch a suitable procedure for that purpose.   

2.7.    Assume a hierarchical memory system having a joint instruction/data 
cache with a memory - access cost of 10   ns on a hit and 90   ns on a miss. 
An alternative design without hierarchical memory architecture has a 
memory - access cost of 70   ns. What is the minimum cache - hit percentage 
that would make the hierarchical memory system useful? 

2.8.    The Harvard architecture (Fig.  2.9 ) offers separate address and data 
buses for instruction codes and data. Why is not it feasible to have sepa-
rate buses for programmed I/O as well?   

2.9.    Show with an illustrative example how the fi ve - stage pipeline discussed 
in this chapter (Fig.  2.10 ) could benefi t from the Harvard architecture.   

2.10.    What special problems do superpipelined and superscalar architectures 
pose for real - time system designers? Are they any different for nonreal -
 time systems?   

2.11.    In CISC - type processors, most instructions are having memory operands, 
while RISC - type processors access memory by  LOAD  and  STORE  instruc-
tions only. What are the advantages and disadvantages of both schemes?   

2.12.    You are designing the architecture of a high - performance CPU for hard 
real - time applications. List and justify the principal architectural selec-
tions that you would make.   

2.13.    Discuss the relative advantages and disadvantages of memory - mapped 
I/O, programmed I/O, and DMA as they pertain to real - time systems.   

2.14.    Why is DMA controller access to main memory in most systems given 
higher priority than CPU access to main memory?   

2.15.    An embedded system has a 12 - bit A/D converter for measuring voltages 
between − 10   V and  + 10   V. What is the digital value corresponding to 
+ 5.6   V?   

2.16.    Find a microcontroller with unique, special instructions and, considering 
the application area for that processor, discuss the need for those special 
instructions.   

2.17.    What are the advantages of systems on chip over computers on chip (Fig. 
 2.19 )? Find a few examples of commercial systems on chip from the Web.   

2.18.    A watchdog timer (Fig.  2.20 ) is used for supervising the operation of an 
embedded system in a high - EMI environment. Why is it practical to 
connect the watchdog - circuit ’ s output to the CPU ’ s nonmaskable 
(instead of maskable) interrupt input?   

2.19.    List the different data - transmission media mentioned in this chapter and 
give typical applications for each.   
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2.20.    The time - triggered protocol (TTP/C or TTP/A) is used in safety -  and 
time - critical applications. Make a Web search to fi nd specifi c commercial 
applications where it is used.      
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     Every real - time system contains some operating system - like functionality to 
provide an interface to the input/output hardware and coordination of virtual 
concurrency in a uniprocessor environment — or even true concurrency with 
multi - core processors and distributed system architectures. Such a central 
piece of system software has the following principal aims: to offer a reliable, 
predictable, and low - overhead platform for multitasking and resource sharing; 
to make the application software design easier and less hardware bound; 
and to make it possible for engineers in various industries to concentrate 
on their core product knowledge and leave the computer - specifi c issues 
increasingly to specialized consultants and software vendors. While the variety 
of real - time applications is enormous, the variety of  “ real - time operating 
systems ”  is also considerable: from application - tailored pseudokernels to com-
mercial operating systems. A pragmatic overview on architectures, principles, 
and paradigms of real - time operating systems is available in Stankovic and 
Rajkumar  (2004) . 

 Most application developers would be happy to have the functionality of a 
full - blown operating system available, but obvious design constraints like 
system cost and complexity, as well as response times and their punctuality, 
often direct the practitioner toward understandable compromises. This 
situation is particularly true with low - end embedded systems having high 
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production volumes. Although complete operating systems would provide 
highly valuable services for application programmers, the extra online effort 
of executing system software (or  “ running the bureaucracy ” ) is taken from the 
same processor that is also executing the possibly time - critical application 
code. Hence, even from the real - time point of view, these services are not free. 

 It could be stated that this chapter is the most important one of our text, 
because it establishes the fundamental framework for real - time multitasking. 
And everything else is connected to this essential framework. We have care-
fully composed the following seven sections to present main aspects of real -
 time operating systems that are of immediate interest to practicing engineers. 
Section  3.1  introduces a variety of kernels and operating systems for different 
types of real - time applications. The section further defi nes the multi - level 
taxonomy from microkernels to operating systems, and discusses related 
implementation approaches with practical examples. Theoretical foundations 
of scheduling are outlined in Section  3.2 , where selected fi xed and dynamic 
priority scheduling principles are briefl y analyzed and compared. Next, a thor-
ough presentation of typical services for application programs is provided in 
Section  3.3 . The emphasis is on intertask communication and synchronization, 
as well as in deadlock and starvation avoidance. Section  3.4  is devoted to 
memory management issues in real - time operating systems, and it considers 
the principles and implementation of the common task control block model, 
for instance. After establishing a solid understanding of real - time operating 
systems, we are ready to discuss the complicated process of selecting a suitable 
operating system, in Section  3.5 . The critical consideration of  “ buying versus 
building ”  is studied from different viewpoints, and a practical selection metric 
is introduced. Section  3.6  summarizes the preceding sections on real - time 
operating systems. A substantial collection of exercises on various subtopics 
of this chapter is available in Section  3.7 .  

   3.1    FROM PSEUDOKERNELS TO OPERATING SYSTEMS 

 A process (synonymously called  “ task ”  throughout this text) is an abstraction 
of a running program and is the logical unit of work schedulable by the real -
 time operating system. A process is usually represented by a private data 
structure that contains at least an identity, priority level, state of execution 
(e.g., running, ready, or suspended), and resources associated with the process. 
A thread is a lightweight process that must reside within some regular process 
and make use of the resources of that particular process only. Multiple threads 
that reside logically within the same process may share resources with each 
other. While processes are active participants of system - level multitasking, 
threads can be seen as members of process - level multitasking; this hierarchy 
is illustrated in Figure  3.1 . It should be noted, however, that both processes 
and threads are available solely in full - featured operating systems executing 
typically in workstation environments. Such high - end environments are typi-
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cally running soft real - time applications. On the other hand, most embedded 
real - time systems have just a single category of tasks.   

 Real - time operating systems provide three essential functions with respect 
to software tasks: scheduling, dispatching, as well as intertask communication 
and synchronization. The kernel of the operating system is the smallest entity 
that provides for all these functions. A scheduler determines which task will 
run next in a multitasking system, while a dispatcher performs the necessary 
bookkeeping to start that particular task. Moreover, intertask communication 
and synchronization assures that parallel tasks may cooperate effectively. Four 
layers of operating system functionality and an associated taxonomy are 
shown in Figure  3.2 .   

 The bottom layer of Figure  3.2 , a  microkernel , provides for plain task sched-
uling and dispatching. A  kernel  also provides for intertask communication and 

     Figure 3.1.     Hierarchical relationships between the system, multiple processes, and 
multiple threads.  
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     Figure 3.2.     The role of the kernel in operating systems; moving up the taxonomy stack 
shows the additional functionality provided and indicates the relative closeness to 
hardware versus users.  
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synchronization via mailboxes, queues, pipes, and semaphores, for example. A 
real - time  executive  is an extended kernel that includes privatized memory 
blocks, input/output services, and other supporting features. Most commercial 
real - time kernels are actually executives by this defi nition. Finally, an  operating
system  is an advanced executive that provides for a generalized user interface, 
security features, and a sophisticated fi le management system. 

 Regardless of the operating system architecture used, the ultimate objective 
is to satisfy real - time behavioral and temporal requirements, and make avail-
able a seamless multitasking environment that is fl exible and robust. 

   3.1.1    Miscellaneous Pseudokernels 

 Real - time multitasking, in its rudimentary form, can be achieved without inter-
rupts and even without an operating system per se. When feasible, these pseu-
dokernel approaches are preferred because resultant systems are often highly 
predictable and easier to analyze. Nonetheless, they might be more laborious 
to extend and maintain than real - time systems using true kernels. Today, pseu-
dokernels are generally only found in low - end embedded systems. 

 Straightforward polled loops are used for providing fast response to single 
devices. In a polled loop system, a repetitive instruction is testing a fl ag that 
indicates whether or not some event has occurred. If the event has not occurred, 
then the polling continues. 

 Example: Polled Loop 

 Suppose a piece of software is needed to handle packets of data that 
arrive at a rate of no more than one packet per second. A fl ag named 
packet_here  is set by a fi eldbus controller, which writes the data into the 
main memory via direct memory access. The data are available when 
packet_here=1 . 

 Using a C code fragment, write a polled loop to handle such a system.  

for(;;) { /* do forever  */
if (packet_here) /* check flag */

{
process_data(); /* process data  */
packet_here=0; /* reset flag */
}

}

 Polled loop schemes work well when a single CPU is dedicated to handling the 
I/O for some fast device and when overlapping of events is not possible. 
Moreover, polled loops are commonly implemented as a background task in 
an interrupt - driven system, or as an individual task in a cyclic code structure. 
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In the latter case, the polled loop polls each cycle for a fi nite number of times 
to allow other tasks to run. Those other tasks handle the nonevent - driven pro-
cessing. Interrupt - driven systems and cyclic code structures are discussed shortly. 

 A variation on the polled loop uses a fi xed clock interrupt to pause between 
the time when the signaling event is triggered and then reset. Such a scheme 
is used, for example, to treat problematic events that exhibit contact bounce 
in various control applications. Contact bounce is a physical phenomenon that 
occurs because it is practically impossible to build an electromechanical switch 
that could change its state instantaneously without any contact oscillation. 
Events triggered by various buttons, contactors, relays, and switches all exhibit 
this undesired phenomenon. If, however, a suffi cient delay occurs between the 
initial triggering of the event and the reset, the system will avoid interpreting 
the settling oscillations as separate events. These false events would likely 
overwhelm any polled loop service. 

 Example: Polled Loop with Delay 

 Suppose a polled loop system is used to handle an event that occurs aperi-
odically, but no more than once per second. The event is known to exhibit 
a strong contact bounce behavior that disappears after no more than 20   ms. 
A system timer pause  with 1   ms resolution (or tick length) is available for 
creating a suitable delay. The event is signaled by an external device that 
sets a memory location flag=1  via DMA. 

 Write a C code fragment for implementing a polled loop structure that 
is not sensitive to the contact bounce described. 

for(;;) { /* do forever  */
if (flag) /* check flag */

{
process_event(); /* process event  */
pause(21); /* wait 21 ms  */
flag=0; /* reset flag */
}

}

 To make sure that all spurious events have disappeared before resetting the 
fl ag, the delay length was set 1   ms longer than the known burst of contact oscil-
lation. Assuming the  pause  system call is available, polled loop systems are 
simple to program and debug, and the response time is easy to determine. 

 Polled loops are excellent for handling high - speed data channels, especially 
when the events occur at widely dispersed intervals and the CPU is dedicated 
to handling the data channel. Polled loop systems may sometimes fail, however, 
because event bursts are not taken into account. Furthermore, polled loops by 
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themselves are not suffi cient to handle complex systems. In addition, polled 
loops inherently waste CPU time, especially if the event being polled occurs 
infrequently. 

 Cyclic code structures are noninterrupt - driven systems that can provide the 
illusion of simultaneity by taking advantage of relatively short tasks on a fast 
processor in a continuous loop. 

 Example: Cyclic Code Structure 

 Consider a set of  n  self - contained tasks,  task_1  through  task_n , in a 
continuous loop. Provide C code fragments for implementing cyclic code 
structures with different cycle rates. 

for(;;) { /* do forever  */
task_1();
task_2();
...
task_n();
}

 In this case, the cycle rate is the same for each task, as they execute in 
round - robin fashion. Different cycle rates can be achieved by repeating a 
task appropriately in the list as shown below. 

for(;;) { /* do forever  */
task_l();
task_2();
...
task_n();
task_2();
}

 Here,  task_2  runs twice in a single cycle, while other tasks are executed 
only once. 

 When using the cyclic code approach, the task list can be made dynamically 
adjustable by keeping a list of pointers to tasks that are managed by the 
 “ pseudo operating system ”  as tasks are created and completed. Intertask 
communication could be achieved through global variables, for instance. 
Global variables , however,  should always be used with utmost care to avoid 
data integrity problems . If each task is relatively short and uniform in size, 
then adequate reactivity and simultaneity can often be achieved without inter-
rupts. Moreover, if all tasks are carefully constructed including proper syn-
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chronization through global variables, complete determinism and defi nite 
schedulability can be achieved. Cyclic code structures are, however, inade-
quate for all but the simplest of real - time systems, because of the diffi culties 
in uniformly dividing the tasks and in the lengthy response times that are 
potentially created. 

 State - driven code uses nested  if-then  statements,  case  statements, or 
 fi nite state machine s ( FSM s) to break up the processing of individual functions 
into multiple code segments. The separation of tasks allows each to be tempo-
rarily suspended before completion, without loss of critical data. This capabil-
ity to be suspended and then resumed, in turn, facilitates multitasking via a 
scheme, such as coroutines, which we will discuss shortly. State - driven code 
works well in conjunction with cyclic code structures when the tasks are too 
long or largely nonuniform in size. Finally, because rigorous techniques for 
reducing the number of states exist, programs based on FSMs can be automati-
cally optimized. A rich theory surrounds FSMs, and relevant theoretical results 
will be outlined in Chapter  5 . 

 Not all tasks lend themselves naturally to division into multiple states; some 
tasks are therefore unsuitable for this technique. In addition, the schedule 
tables needed to implement the code can become quite large. Besides, the 
manual translation process from the fi nite state machine notation to tabular 
form is error - prone. 

 Coroutines or cooperative multitasking systems require highly disciplined 
programming and an appropriate application. These types of pseudokernels 
are employed in conjunction with code driven by FSMs. In this scheme, two 
or more tasks are coded in the state - driven fashion just discussed, and after 
each phase is completed, a call is made to a central dispatcher. The dispatcher 
holds the program counter for a list of tasks that are executed in round - robin 
fashion; that is, it selects the next task to execute. This task then executes until 
its next phase is completed, and the central dispatcher is called again. Note 
that if there is only one coroutine, then it will be repeated cyclically. Such a 
system is called a cyclic code structure. Communication between the tasks is 
achieved via global variables. Any data that need to be preserved between 
dispatches must be deposited to the global variable space. 

 Example: Coroutines 

 Consider a system in which two tasks are executing  “ in parallel ”  and in 
isolation. After executing  phase_a1 ,  task_a  returns control to the central 
dispatcher by executing break . The dispatcher initiates  task_b , which 
executes phase_b1  to completion before returning control to the dis-
patcher. The dispatcher then starts  task_a , which begins  phase_a2 , and 
so on. An illustrative C code is given below for  task_a  and  task_b , in 
the case of three phases. 
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void task_a(void) 
{
for(;;)

{
switch(state_a)
 { 
 case 1: phase_a1(); 
 break; /* to dispatcher  */

 case 2: phase_a2(); 
 break; /* to dispatcher  */

 case 3: phase_a3(); 
 break; /* to dispatcher  */

 } 
}

}
void task_b(void) 
{
for(;;)

{
switch(state_b)
 { 
 case 1: phase_b1(); 
 break; /* to dispatcher  */

 case 2: phase_b2(); 
 break; /* to dispatcher  */

 case 3: phase_b3(); 
 break; /* to dispatcher  */

 } 
}

}

 Note that the variables  state_a  and  state_b  in the above example are state 
counters that are global variables managed by the dispatcher. Indeed, for 
simplicity, intertask communication and synchronization are maintained 
entirely via global variables and coordinated by the dispatcher. The coroutine 
approach can be extended to any number of tasks, each divided into an arbi-
trary number of phases. If each programmer provides calls to the dispatcher 
at known intervals, the response time is easy to determine because this system 
is written without hardware interrupts. 

 A variation of this scheme occurs when a polled loop must wait for a par-
ticular event while other processing can continue. Such a scheme reduces the 
amount of time wasted polling the event fl ag, and allows for processing time 
for other tasks. In short, coroutines are the easiest type of  “ fairness scheduling ”  
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that can be implemented. It should be noted, however, that in most embedded 
applications, the fairness of scheduling does not have much value, because 
different tasks are typically of different importance and urgency. In addition, 
the coroutine tasks can be written by independent parties, and the fi nal number 
of tasks need not be known beforehand. Certain programming languages, such 
as Ada, have effi cient built - in constructs for implementing coroutines. 

 In the past, even large and complex real - time applications were successfully 
implemented using coroutines; for example, IBM ’ s transaction processing 
system,  Customer Information Control System  ( CICS ), was originally con-
structed entirely via coroutines. Unfortunately, any use of coroutines assumes 
that each task can relinquish the CPU at regular intervals. It also requires a 
communication scheme involving global variables, which is usually an unde-
sired approach. Finally, tasks cannot always be decomposed uniformly, which 
can adversely affect response times, since the minimum response time is 
asymptotically constrained by the longest phase.  

   3.1.2    Interrupt - Only Systems 

 In interrupt - only systems, the  “ main program ”  is just a single  jump-to-self
instruction. The various tasks in the system are scheduled via either hardware 
or software interrupts, whereas task dispatching is performed by interrupt -
 handling routines. 

 When pure hardware interrupt scheduling is used, a real - time clock or other 
external device issues interrupt signals that are directed to an interrupt con-
troller. The interrupt controller issues interrupt signals for the CPU, depending 
on the order of arrival and priority of the interrupts involved. If the processor 
architecture supports multiple interrupts, then the hardware handles explicit 
dispatching as well. If only a single interrupt level is available, then the 
interrupt - handling routine will have to read the interrupt status register on 
the interrupt controller, determine which interrupt(s) occurred, and dispatch 
the appropriate task. Some processors implement this in microcode, and 
so the operating system designer is relieved of this duty. 

 In embedded applications, the real - time software usually needs to service 
interrupts from one or more special purpose devices. In some cases, the soft-
ware engineer will need to write a device driver from scratch or adapt a generic 
driver code in which interrupts are needed for synchronization. Whatever the 
case, it is important for the software engineer to understand interrupt mecha-
nisms and their proper handling. 

 There are two kinds of interrupts: hardware interrupt and software inter-
rupt (see Sections  2.1.3  and  2.4.1 ). The fundamental difference between hard-
ware and software interrupts is in the trigger mechanism. While the trigger of 
a hardware interrupt is an electrical signal from some external device, the 
trigger of a software interrupt is the execution of a specifi c machine - language 
instruction. An additional feature found in most processors is that of an excep-
tion, which is an internal interrupt that is triggered by a program ’ s attempt to 
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perform a special, illegal, or unexpected operation. These three situations 
cause the CPU to transfer execution to a predetermined location and then 
execute the  interrupt handler  ( IH ) associated with that specifi c situation. 

 Hardware interrupts are asynchronous or sporadic in nature, that is, an 
interrupt may take place at any time. When interrupted, the program is sus-
pended while the CPU invokes the IH. Frequently, an application developer 
is required to write an IH for a specifi c type of hardware interrupt. In such 
case, it is important to understand what constitutes the CPU state, and whether 
IHs must preserve anything in addition to work registers. 

 Access to resources shared with an IH is usually controlled by disabling 
interrupts in the application around any code that reads or writes to the shared 
resource. Standard synchronization mechanisms cannot be used in an IH, 
because it is not practical for an IH to wait for a resource to be available. When 
interrupts are disabled, the system ’ s ability to receive stimuli from the outside 
world is minimal (only via the nonmaskable interrupt). Therefore, it is impor-
tant to keep the critical sections of code in which the interrupts are disabled 
as short as possible. If the interrupt handler takes a signifi cant time to process 
an interrupt, the external device may be kept waiting too long before its next 
interrupt is serviced. 

 Reentrant code can execute simultaneously in two or more contexts. An IH 
is said to be reentrant if, while the IH is servicing an interrupt, the same inter-
rupt can occur again and the IH can safely process the second occurrence of 
the interrupt before it has fi nished processing the fi rst. To create strictly reen-
trant code, the following general rules must be fulfi lled (Simon,  1999 ):

 •      Reentrant code is not allowed to use any data in a nonatomic way except 
when they are saved on the stack.  

 •      Reentrant code is not allowed to call any other code that is not itself 
reentrant.  

 •      Reentrant code is not allowed to use any hardware resources in a non-
atomic way.  

 •      Reentrant code is not allowed to change its own code.    

 An  atomic  operation refers to a group of suboperations that can be combined 
to appear as a single (noninterruptible) operation. Regardless of the type of 
IH to be written, a snapshot of the current system state — called the context —
 must be preserved upon switching tasks so that it can be restored upon resum-
ing the interrupted task. Context switching is thus the process of saving and 
restoring suffi cient information for a software task so that it can be resumed 
after being interrupted. The context is ordinarily saved to a stack data struc-
ture managed by the CPU. Context - switching time is a major contributor to 
the composite response time, and, therefore, must be minimized. The prag-
matic rule for saving context is simple:  save the minimum amount of informa-
tion necessary to safely restore any task after it has been interrupted . This 
information typically includes: contents of work registers, content of the 
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program counter register, content of the memory page register, and images of 
possible memory - mapped I/O locations. 

 Normally, within the interrupt handlers, interrupts are disabled during the 
critical context - switching period. Sometimes, however, after suffi cient context 
has been saved, interrupts can be enabled after just a partial context switch in 
order to handle a burst of interrupts, to detect spurious interrupts, or to 
manage a time - overload condition. 

 The fl exible stack model for context switching (see Section  3.4 ) is used 
mostly in embedded systems where the number of interrupt - driven tasks is 
fi xed. In the stack model, each interrupt handler is associated with a hardware 
interrupt and is invoked by the CPU, which vectors to the stream of instruc-
tions stored at the appropriate interrupt - handler location. The context is then 
saved to a stack data structure. 

 Example: Interrupt - Only System 

 Consider the following pseudocode for a partial real - time system, written 
in C, and consisting of a trivial  jump-to-self  main program and three 
interrupt handlers. Each of the interrupt handlers saves the context using 
the stack model. The interrupt handlers ’  starting addresses should be loaded 
into appropriate interrupt vector locations upon system initialization. 

void main(void) 
{
init(); /* system initialization  */
while(TRUE); /* jump -to-self */

}
void int_l(void) /* interrupt handler 1  */
{
save(context); /* save context to stack  */
task_1(); /* execute task 1  */
restore(context); /* restore context  */

}
void int_2(void) /* interrupt handler 2  */
{
save(context); /* save context to stack  */
task_2(); /* execute task 2  */
restore(context); /* restore context  */

}
void int_3(void) /* interrupt handler 3  */
{
save(context); /* save context to stack  */
task_3(); /* execute task 3  */
restore(context); /* restore context  */

}
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 In this simplifi ed example, the procedure  save  pushes critical registers 
and possibly other context information to a stack data structure, whereas 
restore  pops that information back from the stack. Both  save  and  restore
may have one argument: a pointer to data structure representing the context 
information. The stack pointer is automatically adjusted by the CPU, as will 
be discussed in Section  3.1.4 .  

   3.1.3    Preemptive Priority Systems 

 A higher - priority task is said to preempt a lower - priority one if it interrupts the 
executing lower - priority task. Systems that use preemption schemes instead of 
round - robin or fi rst - come - fi rst - served scheduling are called preemptive prior-
ity systems. The priorities assigned to each interrupt are based on the impor-
tance and urgency of the task associated with the interrupt. For example, the 
nuclear power plant supervision system is best designed as a preemptive prior-
ity system. While appropriate handling of intruder events, for example, is criti-
cal, nothing is more important than processing the core overtemperature alert. 

 Prioritized interrupts can be either of fi xed priority or dynamic priority 
type. Fixed priority systems are less fl exible, since the task priorities cannot be 
changed after system initialization. Dynamic priority systems, on the other 
hand, allow the priority of tasks to be adjusted at runtime to meet changing 
real - time demands. Nonetheless, most embedded systems are implemented 
with fi xed priorities, because there are limited situations in which the system 
needs to adjust priorities at runtime. A common exception to this practice is, 
however, the problematic priority inversion condition that is discussed in 
Section  3.3.6 . 

 Preemptive priority schemes can suffer from resource hogging by higher -
 priority tasks. This may lead to a lack of available resources for lower - priority 
tasks. In such case, the lower - priority tasks are said to be facing a serious 
problem called starvation. The potential hogging/starvation problem must be 
carefully addressed when designing preemptive priority systems. 

 A special class of fi xed - rate, preemptive priority, interrupt - driven systems, 
called rate - monotonic systems, comprises those real - time systems where the 
priorities are assigned so that the higher the execution rate, the higher the 
priority. This scheme is common in embedded applications like avionics systems, 
and has been studied extensively. For example, in the aircraft navigation system, 
the task that gathers accelerometer data every 10   ms has the highest priority. 
The task that collects gyro data, and compensates these data and the acceler-
ometer data every 40   ms, has the second highest priority. Finally, the task that 
updates the pilot ’ s display every second has the lowest priority. The valuable 
theoretical aspects of rate - monotonic systems will be studied in Section  3.2.4 .  

   3.1.4    Hybrid Scheduling Systems 

 Some hybrid scheduling systems include interrupts that occur at both fi xed 
rates and sporadically. The sporadic interrupts can be used, for example, to 

www.it-ebooks.info

http://www.it-ebooks.info/


FROM PSEUDOKERNELS TO OPERATING SYSTEMS 91

handle a critical error condition that requires immediate attention, and thus 
have the highest priority. This type of hybrid - interrupt system is common in 
embedded applications. 

 Another type of hybrid scheduling system found in commercial operating 
systems is a combination of round - robin and preemptive priority systems. In 
these systems, tasks of higher priority can always preempt those of lower prior-
ity. However, if two or more tasks of the same priority are ready to run simul-
taneously, then they run in round - robin fashion, which will be described shortly. 

 To summarize, interrupt - only systems are straightforward to code and typi-
cally have fast response times because task scheduling can be done via hard-
ware. Interrupt - only systems are a special case of foreground/background 
systems, which are widely used in embedded systems. Typical weaknesses of 
interrupt - only systems are the time wasted in the  jump - to - self  loop and 
the diffi culty in providing advanced services. Such services include device 
drivers and interfaces to layered communications networks. Besides, interrupt -
 only systems are vulnerable to several types of malfunctions due to timing 
variations, unanticipated race conditions, electromagnetic interferences, and 
other problems. 

 Foreground/background systems are a small but meaningful improvement 
over the interrupt - only systems in that the  jump - to - self  loop is replaced 
by low - priority code that performs useful processing. Foreground/background 
systems are, in fact, the most common architecture for embedded applications. 
They involve a set of interrupt - driven tasks called the foreground and a single 
noninterrupt - driven task called the background (Fig.  3.3 ). The foreground 
tasks run in round - robin, preemptive priority, or hybrid fashion. The back-
ground task is fully preemptable by any foreground task, and, therefore, rep-
resents the lowest priority task in the real - time system.   

 All the real - time solutions discussed above can be seen as special cases of 
the foreground/background system. For example, the simple polled loop is a 
foreground/background system with no foreground, and a polled loop as a 
background. Adding a delay (based on the real - time clock interrupt) for avoid-
ing problems related to contact bouncing yields a full foreground/background 

     Figure 3.3.     An interrupt - driven foreground/background system.  
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system. State - driven code is a foreground/background system with no fore-
ground and phase - driven code for a background. A coroutine system is just a 
complicated background task. Finally, interrupt - only systems are foreground/
background systems without any useful background processing. 

 As a noninterrupt - driven task, the background processing should solely 
include anything that is not time critical. While the background task is the task 
with the lowest priority, it should always execute to completion provided the 
system utilization is below 100% and no deadlock occurs. It is common, for 
instance, to increment a counter in the background task in order to provide a 
measure of time loading or to detect if any foreground task has hung up. It 
might also be desirable to provide individual counters for each of the fore-
ground tasks, which are reset in the corresponding tasks. If the background 
task detects that one of the counters is not being reset often enough, it can be 
assumed that the corresponding task is not being executed properly and, that 
some kind of failure is indicated. This is a form of  software watchdog  timer. 
Certain low - priority self - testing can also be performed in the background. 
Moreover, low - priority display updates, parameter entry through keypads, 
logging to printers, or other interfaces to slow devices can be conveniently 
performed in the background. 

 Initialization of the foreground/background system usually consists of the 
following six steps:

   1.     Disable interrupts.  
  2.     Set up interrupt vectors and stacks.  
  3.     Initialize peripheral interface units and other confi gurable hardware.  
  4.     Perform self - tests.  
  5.     Perform necessary software initializations.  
  6.     Enable interrupts.    

 Initialization is always the fi rst part of the background task. It is important to 
disable interrupts because some systems start up with interrupts enabled, while 
certain time is defi nitely needed to set up the entire real - time system. This 
setup consists of initializing the interrupt vector addresses, setting up the stack 
or stacks (if it is a multiple - level interrupt system), confi guring hardware 
appropriately, and initializing any buffers, counters, data, and so on. In addi-
tion, it is often useful to perform some self - diagnostic tests before enabling 
interrupts. Finally, real - time processing can begin. 

 Example: Initialization and Context Saving/Restoring 

 Suppose it is desired to implement an interrupt handler for a CPU with a 
single interrupt. That is, we have just one interrupt - driven task in addition 
to the background task. The  EPI  and  DPI  instructions can be used to enable 
and disable the maskable interrupt, and it is assumed that upon receiving 
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an interrupt request, the CPU will hold off other interrupts until explicitly 
reenabled with an EPI  instruction. 

 For simplicity, assume it is adequate to save the four work registers, 
RO  –  R3 , on the stack for context - switching purposes. Here, the context 
switching involves saving the status of the CPU when it is used by the 
background task. The foreground task will run to completion so its context 
is never saved. Further, assume that the interrupt - handler exists in memory 
location int , and the stack should begin from memory location  stack . 

 The following assembly code could be used to minimally initialize this 
foreground/background system:

DPI    ; Disable interrupts . 

MOVE handler, &int    ; Set interrupt handler ’ s address . 

LDSP &stack    ; Set stack pointer . 

EPI    ; Enable interrupts .   

 Now, the interrupt handler could look as follows:

DPI    ; Disable interrupts . 

PUSH R0    ; Save  R0  . 

PUSH R1    ; Save  R1 .  

PUSH R2    ; Save  R2  . 

PUSH R3    ; Save  R3  . 

...    ; Code of  TASK_1 .  

POP R3    ; Restore  R3  . 

POP R2    ; Restore  R2  . 

POP R1    ; Restore  R1  . 

POP R0    ; Restore  R0  . 

EPI    ; Enable interrupts . 

RETI    ; Return from interrupt .   

 It should be noted that the order of  pushing  registers to the stack must be 
reverse from the order of popping  them from the stack. Figure  3.4  shows the 
behavior of the stack during context saving and restoring. In many processors, 
specifi c machine language instructions are available for saving and restoring 
all relevant registers with just a single instruction.   

 Example: Background Task 

 The background task would include a one - time initialization procedure and 
any continuous processing that is not time critical. If the program were to 
be written in C, it might appear as: 
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 Foreground/background systems (as well as interrupt - only systems) typically 
have good response times, since they rely completely on hardware to perform 
task scheduling. Hence, they are the preferred solution for many embedded 
real - time systems. Nevertheless,  “ homegrown ”  foreground/background 
systems have at least one noticeable drawback: interfaces to complicated 
devices and possible communications networks usually need to be written 
from scratch (occasionally, open - source software can be used or adapted, but 
then there are software licensing issues to be considered). The process of 
writing device drivers and interfaces can be tedious and error - prone. In addi-
tion, foreground/background systems are best implemented when the number 
of foreground tasks is fi xed and known  a priori . Although programming lan-
guages that support dynamic allocation of memory could handle a variable 
number of tasks, this can be tricky. In general, the straightforward foreground/
background system shares nearly all the weaknesses of interrupt - only systems 
discussed above. 

 The foreground/background scheme can be extended into a full - blown 
operating system by adding typical complementary functions, such as com-
munications network interfaces, device drivers, and real - time debugging 
tools. Such complete systems are widely available as commercial products. 
These commercial products rely on relatively complex software structures 
using round - robin, preemptive priority, or a hybrid of those schemes to 
provide scheduling, and the operating system itself represents the highest 
priority task.  

 void main(void) 
 { 
 init();                             / *  initialize system  * / 
 while(TRUE)                / *  repetitious loop  * / 
       background();   / *  not time critical  * / 
 }  

     Figure 3.4.     The behavior of stack during context saving and restoring; here, the context 
is solely four registers.  
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   3.1.5    The Task Control Block Model 

 The  task control block  ( TCB ) model is the most popular approach for imple-
menting commercial, full - featured, real - time operating systems, because the 
number of software tasks can vary. This architecture is used particularly in 
interactive online systems of soft real - time type where tasks, typically associated 
with users, come and go. The TCB model can be used in round - robin, preemp-
tive priority, or hybrid scheduling systems, although it is often associated with 
round - robin systems with a fi xed time - slicing clock. In preemptive systems, 
however, it can be used to facilitate dynamic task prioritization. The main 
drawback of the fl exible TCB model is that when a large number of tasks are 
created, the bookkeeping overhead of the dispatcher may become signifi cant. 

 In the task control block model, each task is associated with a private 
data structure, called a task control block depicted in Figure  3.5 . The oper-
ating system stores these TCBs in one or more data structures, typically in a 
linked list.   

 The operating system manages the TCBs by keeping track of the state or 
status of each task. Typically, a task can be in any one of the four following 
states:

   1.     Executing  
  2.     Ready  
  3.     Suspended  
  4.     Dormant    

 The executing task is the one that is currently executing, and in a uniprocessor 
environment, there can be only one such task at any time. A task can enter 
the executing state when it is created (if no other tasks are ready), or from the 
ready state (if it is eligible to run based on its priority or position in the round -
 robin queue). When a task is completed, it returns to the suspended state. 

     Figure 3.5.     A typical task - control block.  
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 Tasks in the ready state are those that are ready to execute but are not 
executing. A task enters the ready state if it was executing and its time slice 
ran out, or it was preempted by a higher priority task. If it was in the suspended 
state, then it can enter the ready state if an event that initiates it occurs. Tasks 
that are waiting for a particular resource, and thus are not ready to execute, 
are said to be suspended or blocked. 

 The dormant state is used only in systems where the number of TCBs is 
fi xed. This state allows for determining specifi c memory requirements before-
hand, but limits available system memory. A task in this state is best described 
as a task that exists but is currently unavailable for scheduling. Once a task 
has been created, it can become dormant by deleting it. 

 The operating system is in essence the highest priority task. Every hardware 
interrupt and every system call (such as a request on a resource) invokes the 
real - time operating system. The operating system is responsible for maintain-
ing a linked list containing the TCBs of all the ready tasks, and another linked 
list of those in the suspended state. It also keeps a table of resources and a 
table of resource requests. Each TCB contains the essential information nor-
mally tracked by the interrupt handler. Hence, the difference between the 
TCB model and the interrupt - handler model is that the resources are managed 
by the operating system in the TCB model, while in the IH model, tasks track 
their own resources. The TCB model is advantageous when the number of 
tasks is indeterminate at design time or can change when the real - time system 
is in operation. That is, the TCB model is very fl exible. 

 When it is invoked, the operating system checks the ready list to see if 
another task is eligible for execution. If that is the case, then the TCB of the 
currently executing task is moved to the end of the ready list (round - robin 
approach), and the newly eligible task is removed from the beginning of the 
ready list and its execution begins. 

 Task state management can be achieved by manipulating the status word 
appropriately. For example, if all of the TCBs are set up in the list with their 
status words initialized to  “ dormant, ”  then each task can be added to active 
scheduling by simply changing the status to  “ ready. ”  During runtime, the status 
words of tasks are updated accordingly, either to  “ executing ”  in the case of 
the next eligible task or back to  “ ready ”  in the case of the preempted task. 
Blocked tasks have their status word changed to  “ suspended. ”  Completed 
tasks can be removed from the active task list by resetting the status word to 
 “ dormant. ”  This approach reduces runtime overhead, because it eliminates the 
need for dynamic memory management of the TCBs. It also provides more 
deterministic performance because the TCB list is of constant size. 

 In addition to scheduling, the operating system tracks the status of resources 
waited in the suspended list. If a task is suspended due to some wait for 
a resource, then that task can enter the ready state only upon availability of 
the resource. The list structure is used to arbitrate multiple tasks that are 
suspended on the same resource. If a resource becomes available to a sus-
pended task, then the resource and resource request tables are updated 
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correspondingly, and the eligible task is moved from the suspended list to the 
ready list.   

   3.2    THEORETICAL FOUNDATIONS OF SCHEDULING 

 In order to take advantage of certain theoretical results in real - time operating 
systems, a somewhat rigorous formulation is necessary. Most real - time systems 
are inherently concurrent, that is, their natural interaction with external events 
typically requires multiple  virtually  (in uniprocessor environments) or  truly  
(in multiprocessor environments) simultaneous tasks to cope with various 
features of control systems, for example. A task is the active object of a real -
 time system and is the basic unit of processing managed by the scheduler. As 
a task is running, it dynamically changes its state, and at any time, it may be 
in one, but only one, of the four states defi ned above in Section  3.1.5  (i.e., 
 executing ,  ready ,  suspended , or  dormant ). In addition, a fi fth possible state, 
 terminated , is sometimes included. In the  “ terminated ”  state, the task has fi n-
ished its running, has aborted or self - terminated, or is no longer needed. 

 A partial state diagram corresponding to task (process or thread) states is 
depicted in Figure  3.6 . It should be noted that different operating systems have 
different naming conventions, but the fundamental states represented in this 
nomenclature exist in one form or another in all real - time operating systems. 

     Figure 3.6.     A representative task state diagram as a partially defi ned fi nite state 
machine.  

Terminated

SuspendedReady

Executing

Dormant

Schedule

Task

Aborted

Resource

Missing

Resource

Released

Preempted

Task with

Highest Priority

No Longer

Needed

Delete

Task

www.it-ebooks.info

http://www.it-ebooks.info/


98 REAL-TIME OPERATING SYSTEMS

Many full - featured operating systems allow processes created within the same 
program to have unrestricted access to the shared memory through a thread 
facility. The hierarchical relationship between regular processes and threads is 
discussed in Section  3.1 .   

   3.2.1    Scheduling Framework 

 Scheduling is a primary operating system function. In order to meet a pro-
gram ’ s temporal requirements in some real - time environment, a solid strategy 
is required for ordering the use of system resources, and a practical scheme is 
needed for predicting the worst - case performance (or response time) when a 
particular scheduling policy is applied. There are two principal classes of 
scheduling policies: pre - runtime and runtime scheduling. The obvious goal of 
both types of scheduling is to strictly satisfy response time specifi cations. 

 In pre - runtime scheduling, the objective is to manually (or semiautomati-
cally) create a feasible schedule offl ine, which guarantees the execution order 
of tasks and prevents confl icting access to shared resources. Pre - runtime 
scheduling also takes into account and reduces the cost of context switching 
overhead, hence increasing the chance that a feasible schedule can be found. 

 In runtime scheduling, on the other hand, fi xed or dynamic priorities are 
assigned and resources are allocated on a priority basis. Runtime scheduling 
relies on relatively complex runtime mechanisms for task synchronization and 
intertask communication. This adaptive approach allows events to interrupt 
tasks and demand resources periodically, aperiodically, or even sporadically. 
In terms of performance analysis, engineers must usually rely on stochastic 
system simulations to verify these types of designs. 

 The workload on processors consists of individual tasks each of which is a 
unit of processing  to be allocated CPU time and other resources when needed. 
Every single CPU is assigned to at most one task at any time. Moreover, every 
task is assigned to at most one CPU at a time. No task (or job) is scheduled 
before its release time. Each task,  τi , is typically characterized by the following 
temporal parameters:

 •      Precedence constraints :      Specify if any task needs to precede other tasks.  
 •      Release time r i,j  :      The release time of the  j th instance of task  τi .  
 •      Phase ϕi  :      The release time of the fi rst instance of task  τi .  
 •      Response time :      The time span between the task activation and its 

completion.  
 •      Absolute deadline d i  :      The instant by which task  τi  must complete.  
 •      Relative deadline D i  :      The maximum allowable response time of task  τi .  
 •      Laxity type :      The notion of urgency or leeway in a task ’ s execution.  
 •      Period p i  :      The minimum length of interval between two consecutive 

release times of task τi .  
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   •      Execution time e i  :      The maximum amount of time required to complete 
the execution of task  τ   i   when it executes alone and has all the resources 
it needs.    

 Mathematically, some of the parameters just listed are related as follows:

    φ φi i i j i ir r j p= = + −( ), , .1 1and     (3.1)   

  d i   ,   j   is the absolute deadline of the  j th instance of task  τ   i  , and it can be expressed 
as follows:

    d j p Di j i i i, .= + −( ) +φ 1     (3.2)   

 If the relative deadline of a periodic task  τ   i   is equal to its period  p i  , then

    d r p kpi k i k i i i, , ,= + = +φ     (3.3)  

where  k  is a positive integer greater than or equal to one, corresponding to 
the  k th instance of that task. 

 Next, a basic task model is presented in order to describe some standard 
scheduling policies used in real - time systems. The task model has the following 
simplifying assumptions:

    •      All tasks in the task set considered are strictly periodic.  
   •      The relative deadline of a task is equal to its period.  
   •      All tasks are independent; there are no precedence constraints.  
   •      No task has any nonpreemptible section, and the cost of preemption is 

negligible.  
   •      Only processing requirements are signifi cant; memory and I/O require-

ments are negligible.    

 For real - time systems, it is of utmost importance that the scheduling algorithm 
applied produces a predictable schedule, that is, at all times, it is known 
which task is going to execute next. Many real - time operating systems 
use a round - robin scheduling policy, because it is simple and predictable. 
Therefore, it is of interest to describe that popular scheduling algorithm more 
rigorously.  

   3.2.2    Round - Robin Scheduling 

 In a round - robin system, several tasks are executed sequentially to completion, 
often in conjunction with a cyclic code structure. In round - robin systems with 
time slicing, each executable task is assigned a fi xed time quantum called a 
time slice in which to execute. A fi xed - rate clock is used to initiate an interrupt 
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at a rate corresponding to the time slice. The dispatched task executes until it 
completes or its time slice expires, as indicated by the clock interrupt. If the 
task does not execute to completion, its context must be saved and the task is 
placed at the end of the round - robin queue. The context of the next executable 
task in the queue is restored, and it resumes execution. Essentially, round -
 robin scheduling achieves fair allocation of the CPU resources to tasks of the 
same priority by straightforward time multiplexing. 

 Furthermore, round - robin systems can be combined with preemptive prior-
ity systems, yielding a kind of hybrid system. Figure  3.7  illustrates such a hybrid 
system with three tasks and two priority levels. Here, Tasks A and C are of the 
same priority, whereas Task B is of higher priority. First, Task A is executing 
for some time before it is preempted by Task B, which executes until comple-
tion. When Task A resumes, it continues until its time slice expires, at which 
time Task C begins executing for its time slice.    

   3.2.3    Cyclic Code Scheduling 

 The  cyclic code  ( CC ) approach is widely used, as it is simple and generates a 
complete and highly predictable schedule. The CC refers to a scheduler that 
deterministically interleaves and makes sequential the execution of periodic 
tasks on a CPU according to a pre - runtime schedule. In general terms, the CC 
scheduler is a fi xed table of procedure calls, where each task is a procedure, 
within a single  do  loop. 

 In the CC approach, scheduling decisions are made periodically, rather than 
at arbitrary times. Time intervals during scheduling decision points are referred 
to as frames or minor cycles, and every frame has a length,  f , called the frame 
size. The major cycle is the minimum time required to execute tasks allocated 
to the CPU, ensuring that the deadlines and periods of all tasks are met. The 
major cycle or the hyperperiod is equal to the  least common multiple  ( lcm ) 
of the periods, that is,   p p pnhyper = ( )lcm ,1 … . 

 As scheduling decisions are made only at the beginning of every frame, 
there is no preemption within each frame. The phase,  ϕ   i  , of each periodic task 

     Figure 3.7.     Hybrid (round - robin/preemptive) scheduling of three tasks with two prior-
ity levels.  
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is a non - negative integer multiple of the frame size. Furthermore, it is assumed 
that the scheduler carries out certain monitoring and enforcement actions at 
the beginning of each frame. 

 Frames must be suffi ciently long so that every task can start and complete 
within a single frame. This implies that the frame size,  f , is to be longer than 
the execution time,  e i  , of every task,  τ   i  , that is,

    C : max .
,

1
1

f ei
i n

≥ ( )
∈[ ]

    (3.4)   

 In order to keep the length of the cyclic schedule as short as possible, the frame 
size,  f , should be chosen so that the hyperperiod has an integer number of 
frames:

    C hyper hyper2 0: .p f p f⎢⎣ ⎥⎦ − =     (3.5)   

 Moreover, to ensure that every task completes by its deadline, frames 
must be short so that between the release time and deadline of every task, 
there is at least one frame. The following relation is derived for a worst - 
case scenario, which occurs when the period of a task starts just after the 
beginning of a frame, and, consequently, the task cannot be released until the 
next frame:

    C3 : gcd , .2 f p f Di i− ( ) ≤     (3.6)  

where  “ gcd ”  is the greatest common divisor, and  D i   is the relative deadline of 
task  τ   i  . This condition should be evaluated for all schedulable tasks. 
    

 Example: Calculation of Frame Size 

 To demonstrate the calculation of frame size, consider a set of three tasks 
specifi ed in Table  3.1 . The hyperperiod,  p  hyper , is equal to 660, since the least 
common multiple of 15, 20, and 22 is 660. The three necessary conditions, 
C 1 , C 2 , and C 3 , are evaluated as follows:

  TABLE 3.1.    Example Task Set for Frame - Size 
Calculation 

    τ   i        p i        e i        D i    

   τ  1     15    1    15  
   τ  2     20    2    20  
   τ  3     22    3    22  
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   3.2.4    Fixed - Priority Scheduling: Rate - Monotonic Approach 

 In the fi xed - priority scheduling policy, the priority of each periodic task is fi xed 
relative to other tasks. A seminal fi xed - priority algorithm is the  rate - monotonic  
( RM ) algorithm of Liu and Leyland (Liu and Layland,  1973 ). It is an optimal 
fi xed - priority algorithm for the basic task model previously described, in which 
a task with a shorter period is given a higher priority than a task with a longer 
period. The theorem, known as the rate - monotonic theorem is, from the practi-
cal point of view, the most important and useful result of real - time systems 
theory. It can be stated as follows (Liu and Layland,  1973 ). 

   
 Theorem: Rate - Monotonic 

 Given a set of periodic tasks and preemptive priority scheduling, then 
assigning priorities such that the tasks with shorter periods have higher 
priorities (rate - monotonic), yields an optimal scheduling algorithm. 

 In other words, the optimality of the RM algorithm implies that  if a schedule 
that meets all the deadlines exists with fi xed priorities, then the RM algorithm 
will produce a feasible schedule . The formal proof of the theorem is rather 
involved. However, a compact sketch of the proof by Shaw uses an effective 
inductive argument (Shaw,  2001 ). 

   
 Proof: Rate - Monotonic Theorem 

 Initial step: consider two fi xed -  but non - RM priority tasks  τ  1     ≡    { p  1 ,  e  1 ,  D  1 } and 
 τ  2     ≡    { p  2 ,  e  2 ,  D  2 }, where  τ  2  has the highest priority and  p  1    <    p  2 . Suppose both 
tasks are released at the same time. It is obvious that this leads to the worst -
 case response time for  τ  1 . However, at this point, in order for both tasks to 
be schedulable, it is necessary that  e  1    +    e  2    ≤    p  1 ; otherwise,  τ  1  could not meet 
its period (or deadline). Because of this explicit relation between the execu-
tion times and the period of  τ  2 , we can obtain a feasible schedule by simply 
reversing priorities, thereby scheduling  τ  1  fi rst — that is, with RM assignment. 
Thus, the RM theorem holds true at least with two tasks. 

 Induction step: suppose next that  n  tasks,  τ  1 ,    . . .     τ   n  , are schedulable 
according to RM, with priorities in ascending order, but the assignment is 

    C : max
,

1
1 3

3f e fi
i

≥ ( ) ⇒ ≥
∈[ ]  

   C 2, 3, 4, 5, 6, 10,hyper hyper2 0: p f p f f⎢⎣ ⎥⎦ − = ⇒ = …  

    C 2, 3, 4, 5, 6, 73 : gcd ,2 f p f D fi i− ( ) ≤ ⇒ =     

 From these conditions that must be valid  simultaneously , it can be inferred 
that a possible value for  f  could be any one of the values of 3, 4, 5, or 6. 
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 A critical instant of a task is defi ned to be an instant at which a request for 
that task will have the largest response time. Liu and Layland further proved 
that a critical instant for any task occurs whenever the task is requested simul-
taneously with requests for all higher - priority tasks. It is then shown that to 
check for rate - monotonic schedulability, it suffi ces to check the case where all 
tasks phases are zero (Liu and Layland,  1973 ). This useful result was used also 
in the above proof sketch. 
   

not RM. Let  τ   i   and  τ   i    + 1 , 1   ≤    i    <    n , be the fi rst two tasks with non - RM priori-
ties. That is,  p i     <    p i    + 1 . This sketch of the proof proceeds by interchanging the 
priorities of these two tasks and showing the set is still schedulable using 
the initial step result with  n    =   2. The inductive proof continues by inter-
changing non - RM task pairs in this way until the assignment becomes RM. 
Therefore, if some fi xed - priority assignment can produce a feasible sched-
ule, so can RM assignment. 

 Example: Rate - Monotonic Scheduling 

 To illustrate rate - monotonic scheduling, consider the set of three tasks 
defi ned in Table  3.2 . All tasks are released at time 0. Since task  τ  1  has the 
shortest period, it is the highest priority task and is scheduled fi rst. The 
successful RM - schedule for the task set is depicted in Figure  3.8 . Note that 
at time 4, the second instance of task  τ  1  is released, and it preempts the 
currently running task  τ  3 , which has the lowest priority. The utilization 
factor,  u i  , is equal to the fraction of time a task with execution time  e i   and 
period  p i   keeps the CPU busy. Recall that the overall CPU utilization factor 
for  n  tasks is given by Equation  1.2 , and is here   U e pi i i= ∑ ==1

3 0 9.  (cor-
responds to the  “ dangerous ”  zone of Table  1.3 ).     

  TABLE 3.2.    Example Task Set for  RM  Scheduling 

    τ   i        p i        e i        u i    

   τ  1     4    1    0.25  
   τ  2     5    2    0.4  
   τ  3     20    5    0.25  

 From a practical point of view, it is important to know under what conditions 
a feasible schedule exists in the fi xed - priority case. The following theorem (Liu 
and Layland,  1973 ) yields a schedulable utilization of the  rate - monotonic 
algorithm  ( RMA ). Note that the relative deadline of every task is assumed to 
be equal to its period. 
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 This means that whenever  U  is at or below the given utilization bound, a suc-
cessful schedule can be constructed with RM. In the limit, when the number 
of tasks  n    →   ∞, the maximum utilization limit is

    lim ln .
n

nn
→∞

−( ) = ≈2 1 2 0 691     (3.7)   

 Table  3.3  shows the RMA bounds (%) for various values of  n . Note that these 
RMA bounds are  suffi cient , but not necessary. That is, it is not uncommon in 
practice to compose a periodic task set with CPU utilization greater than the 
corresponding RMA bound but still being RM schedulable. For example, the 
task set shown in Table  3.2  has a total utilization of 0.9, which is greater than 
the RM utilization bound of 0.78 for three tasks, but it is still schedulable using 
the RM policy as illustrated in Figure  3.8 .    

   3.2.5    Dynamic Priority Scheduling: Earliest Deadline First Approach 

 In contrast to fi xed - priority algorithms, in dynamic - priority schemes, the prior-
ity of a task with respect to that of other tasks changes as tasks are released 
and completed. One of the most well - known dynamic algorithms, the  earliest 
deadline fi rst algorithm  ( EDFA ), deals with deadlines rather than execution 
times. At any point of time, the ready task with the earliest deadline has the 
highest priority. The following theorem gives the necessary and suffi cient con-

 Theorem: The  RMA  Bound 

 Any set of  n  periodic tasks is RM schedulable if the CPU utilization factor, 
 U , is no greater than  n (2 1/   n     −   1). 

  TABLE 3.3.    Upper Bounds of the  CPU  Utilization Factor,  U  (%), for  n  Periodic 
Tasks Scheduled Using the  RMA  

   n     1    2    3    4    5    6     . . .      → ∞  
  U (%)    100    83    78    76    74    73     . . .     69  

     Figure 3.8.     Rate - monotonic task schedule for the task set of Table  3.2 .  
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dition under which a feasible schedule exists under the  earliest deadline fi rst  
( EDF ) priority scheme (Liu and Layland,  1973 ). 

    Theorem: The  EDFA  Bound 

 A set of  n  periodic tasks, each of which relative deadline equals its period, 
can be feasibly scheduled by the EDFA if and only if   U e pi

n
i i= ∑ ≤=1 1. 

 EDF is optimal for a uniprocessor with task preemption being allowed. In 
other words, if a feasible schedule exists, then the EDF policy will also produce 
a feasible schedule. And there is never processor idling prior to a missed 
deadline. 
   

 Example: Earliest Deadline First Scheduling 

 To illustrate earliest deadline fi rst scheduling, consider the pair of tasks 
defi ned in Table  3.4 , with  U    =   0.97 ( “ dangerous ” ). The EDF schedule for 
this task pair is depicted in Figure  3.9 . Although  τ  1  and  τ  2  release simultane-
ously,  τ  1  executes fi rst because its deadline is earliest. At  t    =   2,  τ  2  can begin 
to execute. Even though  τ  1  releases again at  t    =   5, its deadline is not earlier 
than that of  τ  2 . This regular sequence continues until time  t    =   15, when  τ  2  is 
preempted, because its deadline is later ( t    =   21) than the deadline of  τ  1  
( t    =   20);  τ  2  resumes when  τ  1  completes.     

  TABLE 3.4.    Task Pair for the Example 
of  EDF  Scheduling 

    τ   i        p i        e i        u i    

   τ  1     5    2    0.4  
   τ  2     7    4    0.57  

     Figure 3.9.     Earliest deadline - fi rst task schedule for the task pair of Table  3.4 .  
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 What are the principal differences between RM and EDF scheduling? 
Schedulable CPU utilization is an objective measure of performance of algo-
rithms used to schedule periodic tasks. It is desired that a scheduling algorithm 
yields a maximally schedulable utilization. By this criterion, dynamic - priority 
algorithms are evidently better than fi xed - priority scheduling algorithms. Thus, 
EDF is more fl exible and achieves better utilization. However, the temporal 
behavior of a real - time system scheduled by a fi xed - priority algorithm is more 
predictable than that of a system scheduled according to a dynamic - priority 
algorithm. In case of overloads, RM is stable in the presence of missed dead-
lines; the same lower - priority tasks miss their deadlines every time. There is 
no effect on higher - priority tasks. In contrast, when tasks are scheduled using 
EDF, it is diffi cult to predict which tasks will miss their deadlines during pos-
sible overload conditions. Also, note that a late task that has already missed 
its deadline has a higher priority than a task whose deadline is still in the 
future. If the execution of a late task is allowed to continue, this may cause 
numerous other tasks to be late. An effective overrun management scheme is 
hence needed for dynamic - priority algorithms employed in such systems 
where occasional overload conditions cannot be avoided. Finally, as a general 
comment, RM tends to need more preemption; EDF only preempts when an 
earlier deadline task arrives.   

   3.3    SYSTEM SERVICES FOR APPLICATION PROGRAMS 

 The basic task model being considered in Section  3.2  assumes that all tasks 
are independent, and they can be preempted at any point of their execution. 
However, from a practical viewpoint, this assumption is unrealistic, and 
coordinated task interaction is needed in most real - time applications. In 
this section, the use of synchronization mechanisms to maintain the consis-
tency and integrity of shared data or resources is discussed together with 
various approaches for intertask communication. The main concern is how 
to minimize time - consuming blocking that may arise in a real - time system 
when concurrent tasks use shared resources. Related to this concern is the 
issue of sharing critical resources that can only be used by one task at a 
time. Moreover, the potential problems of  deadlock  and  starvation  should 
always be kept in mind when designing and implementing resource - sharing 
schemes. 

 In Section  3.2 , fundamental techniques for multitasking were discussed 
in a way that each task operated in isolation from the others. In practice, 
strictly controlled mechanisms are needed that allow tasks to communicate, 
share resources, and synchronize their activities. Most of the mechanisms 
and phenomena discussed in this section are easy to understand casually, 
but a deep understanding may be harder to attain. Misuse of these tech-
niques, semaphores in particular, can lead to disastrous effects — such as a 
deadlock. 
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   3.3.1    Linear Buffers 

 A variety of mechanisms can be employed to transfer data between individual 
tasks in a multitasking system. The simplest and fastest among these is the use 
of global variables. Global variables, though considered contrary to good soft-
ware engineering practices, are still used successfully in high - speed operations 
with semaphore protection. One of the potential problems related to using 
global variables alone is that tasks of higher priority can preempt lower -
 priority tasks at inopportune times, hence corrupting the global data. 

 In another typical case, one task may produce data at a constant rate of 
1000 units per second, whereas another task may consume these data at a rate 
less than 1000 units per second. Assuming that the data production burst is 
relatively short, the slower consumption rate can be accommodated if the 
producer task fi lls an intermediate storage buffer with the data. This linear 
buffer holds the excess data until the consumer task can process it; such a 
buffer can be a queue or some other data structure. Naturally, if the consumer 
task cannot keep up with the speed of producer task, overfl ow problems occur. 
Selection of an appropriate buffer size is critical in avoiding such problems. 

 A common use of global variables is in double buffering. This fl exible tech-
nique is used when time - correlated data need to be transferred between tasks of 
different rates, or when a full set of data is needed by one task, but can only be 
supplied gradually by another task. This situation is clearly a variant of the classic 
bounded buffer problem in which a block of memory is used as a repository for 
data produced by  “ writers ”  and consumed by  “ readers. ”  A further generalization 
is the readers - and - writers problem in which there are multiple readers and mul-
tiple writers of a shared resource, as shown in Figure  3.10 . The bounded buffer 
can only be written to or read from by one writer or reader at a time.   

 Many telemetry systems, which transmit blocks of data from one unit to 
another, use double - buffering schemes with a software or hardware switch to 
alternate the buffers. This effective strategy is also used routinely in graphics 

     Figure 3.10.     Readers and writers problem, with  n  readers and  m  writers; the shared 
resource is a bounded buffer.  

Reader 1 Reader 2 Reader n 

Writer 1 Writer 2 Writer m

Bounded Buffer

...

...
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interfaces, navigation equipment, elevator control systems, and many other 
places. For example, in the operator display for the pasta sauce factory, suppose 
lines and other graphics objects are drawn on the screen one by one until the 
entire image is completed. In this animated system, it is undesirable to see the 
object - by - object drawing process. If, however, the software draws the full 
image fi rst on a hidden screen while displaying the other, and then fl ips the 
hidden/shown screens, the individual drawing actions will not disturb the 
process supervisor (Fig.  3.11 ).   
    

     Figure 3.11.     Double - buffering; two identical buffers are fi lled and emptied by alternat-
ing tasks; switching is accomplished by either software or hardware.  

Buffer 1 Buffer 2
Swap Buffers

with
Interrupts off

Fill Here Empty Here

 Example: Time - Correlated Buffering 

 Consider again the inertial measurement unit implemented as a preemptive 
priority system. It reads  x ,  y , and  z  accelerometer pulses in a 10 - ms task. 
These raw data are to be processed in a 40 - ms task, which has lower priority 
than the 10 - ms task (RM scheduling). Therefore, the accelerometer data 
processed in the 40 - ms task must be time - correlated; that is, it is not allowed 
to process  x  and  y  accelerometer pulses from time instant  k  along with  z  
accelerometer pulses from instant  k    +   1. This undesired scenario could 
occur if the 40 - ms task has completed processing the  x  and  y  data, but gets 
interrupted by the 10 - ms task before processing the  z  data. To avoid this 
problem, use buffered variables  xb ,  yb , and  zb  in the 40 - ms task, and buffer 
them with  interrupts disabled . The 40 - ms task might contain the following 
C code to handle the buffering:  

 introff();                             / *  disable interrupts  * / 
 xb = x;                                             / *  buffer x data  * / 
 yb = y;                                             / *  buffer y data  * / 
 zb = z;                                             / *  buffer z data  * / 
 intron();                                / *  enable interrupts  * / 
 process(xb,yb,zb);   / *  use buffered data  * / 
  ...   
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   3.3.2    Ring Buffers 

 A special data structure, called a ring buffer (or circular queue), is used in the 
same way as a regular queue and can be used to solve the problem of synchro-
nizing multiple reader and writer tasks. Ring buffers are easier to manage than 
double buffers or regular queues when there are more than two readers or 
writers. In the ring buffer, simultaneous input and output operations are pos-
sible by maintaining separate head and tail indices. Data are loaded at the tail 
and read from the head. This is illustrated in Figure  3.12 .   
   
 Example: Ring Buffering 

 Suppose the ring buffer is a data structure of type  ring_buffer  that 
includes an integer array of size  n  called  contents , as well as the head 
and tail indices called  head  and  tail , respectively. Both of these indices 
are initialized to  0 , that is, the start of the buffer, as shown below:  

 typedef struct ring_buffer 
 { 
       int contents[n];   / *  buffer area  * / 
       int head = 0;                   / *  head index  * / 
       int tail = 0;                   / *  tail index  * / 
 }  

 An implementation of the  read(data, & s)  and  write(data, & s)  oper-
ations, which reads from and writes to the ring buffer  s , respectively, are 
given below in C code:  

 void read(int data,ring_buffer  * s) 
 { 
    if (s - >head = =s - >tail) 

     Figure 3.12.     A ring buffer; tasks write data to the buffer at the tail index and read from 
the head index.  
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 An additional piece of code,  error() , is needed to handle the possible over-
fl ow condition in the ring buffer. In addition, the task using the ring buffer 
needs to test the read data for the underfl ow ( NULL ) value. An overfl ow occurs 
when an attempt is made to write data to a full buffer. Underfl ow, on the other 
hand, is the condition when a task attempts to retrieve data from an empty 
buffer.  

   3.3.3    Mailboxes 

 Mailboxes provide an intertask communication mechanism, and are available 
in many commercial operating systems. A mailbox is actually a special memory 
location that one or more tasks can use to transfer data, or more generally for 
synchronization. The tasks rely on the kernel to allow them to write to the 
mailbox via a post  operation or to read from it via a  pend  operation —  direct
access to any mailbox is not allowed . Two system calls,  pend(d,&s)  and 
post(d,&s) , are used to  receive  and  send  mail, respectively. Here, the fi rst 
parameter,  d , is the mailed data and the second parameter,  &s , is the mailbox 
location. Recall that C language passes parameters by value unless forced to 
pass by reference with a pointer; therefore, when calling functions like  pend
and post , the dereferencing operator  “ & ”  must be used. 

 The important difference between the  pend  operation and simply polling 
the mailbox location is that the pending task is suspended  while waiting for 
data to appear. Thus, no CPU time is wasted for polling the mailbox. 

 The mail that is passed via a mailbox can be a fl ag used to protect a critical 
resource (called a key), a single piece of data, or a pointer to a data structure. 
For example, when the key is taken from the mailbox, the mailbox is emptied. 
Thus, although several tasks can  pend  on the same mailbox, only one task can 

 data =NULL; /* buffer underflow */
else
{
 data =s->contents+head; /* read data  */
 s ->head=(s->head+1) % n; /* update head  */
}
}
void write(int data,ring_buffer *s)
{
if ((s ->tail+1) % n ==head)
 error(); /* buffer overflow */
else
{
 s ->contents+tail=data; /* write data  */
 tail =(tail+1) % n; /* update tail  */
}
}
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receive the key. Since the key represents access to a critical resource, simulta-
neous access is precluded. 

 Mailboxes are typically implemented in operating systems based on the 
TCB model with a supervisor task  of highest priority. A status table containing 
a list of tasks and needed resources (e.g., mailboxes, A/D converters, printers, 
etc.) is kept along with a second table containing a list of resources and their 
current states. For example, in Tables  3.5  and  3.6 , three resources exist: an A/D 
converter and two mailboxes. Here, the A/D converter is being used by task 
10, while Mailbox 1 is being used (read from or written to) by task 11. Task 
12 is pending on Mailbox 1, and is suspended because the resource needed is 
not available. Mailbox 2 is currently not being used or pended on by any task.   

 When the supervisor task is invoked by some system call or hardware inter-
rupt, it checks those tables to see if some task is pending on a mailbox. If the 
corresponding mail is available (mailbox status is  “ full ” ), then the state of that 
task is changed to ready. Similarly, if a task posts to a mailbox, then the super-
visor task must ensure that the mail is placed in the mailbox and its status 
updated to  “ full. ”  

 Sometimes, there are additional operations available on the mailbox. For 
example, in certain implementations, an  accept  operation is provided; 
accept  allows tasks to read the mail if it is available, or immediately return 
an error code if the mail is not available. In other implementations, the  pend
operation is equipped with a timeout to prevent deadlocks. This feature is 
particularly useful in autonomous systems operating in harsh environments 
with high levels of electromagnetic interferences (to recover from sporadically 
vanishing interrupts). 

 Some operating systems support a special type of mailbox that can queue 
multiple pend requests. These systems provide  qpost ,  qpend , and  qaccept
operations to post, pend, and accept data to/from the queue. In this case, the 

  TABLE 3.5.    Task Resource Request Table 

   Task No.     Resource     Status  

  10    A/D converter    Has it  
  11    Mailbox 1    Has it  
  12    Mailbox 1    Pending  

  TABLE 3.6.    Resource Table Used Together with Task 
Resource - Request Table 

   Resource     Status     Owner  

  A/D converter    Busy    10  
  Mailbox 1    Busy    11  
  Mailbox 2    Empty    None  
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queue can be regarded as any array of mailboxes, and its implementation is 
facilitated through the same resource tables already discussed. 

 Mailbox queues should not be used ineffectively to pass arrays of data; 
pointers should be preferred in such purposes. A variety of device servers, 
where a pool of devices is involved, can be conveniently implemented using 
mailbox queues. Here, a ring buffer holds requests for a device, and mailbox 
queues are used at both the head and tail to control access to the ring buffer. 
Such a secure scheme is useful in the construction of device - controlling 
software.  

   3.3.4    Semaphores 

 Multitasking systems are usually concerned with resource sharing. In most 
cases, these resources can only be used by a single task at a time, and use of 
the resource cannot be interrupted. Such resources are said to be serially reus-
able, and they include certain peripherals, shared memory, and also the CPU. 
While the CPU protects itself against simultaneous use, the code that interacts 
with the other serially reusable resources cannot do the same. Such a segment 
of code is called a critical region. If two tasks enter the same critical region 
simultaneously, even a catastrophic error may occur. 

 To illustrate, consider two tasks,  Task_A  (high priority) and  Task_B  (low 
priority), which are running in a preemptive priority system and sharing a 
single printer.  Task_B  prints the message  “  Louisville is in Kentucky  ”  
and Task_A  prints the message  “  Finland, Europe   ” . In the midst of print-
ing,  Task_B  is interrupted by  Task_A , which begins and completes its print-
ing. The result is the incorrect printout:  “  Louisville is in Finland,
Europe Kentucky  ” . The emphasis is placed on the text of  Task_A  to high-
light that it interrupted the text of Task_B . 

 Truly serious complications could arise in practice if both tasks were per-
forming measurements by a single A/D converter for selectable (an analog 
multiplexer in front of the A/D converter; see Section  2.4.3 ) quantities in an 
embedded control system. Overlapping use of a serially reusable resource 
results in a collision. Hence, the imperative concern is to provide a reliable 
mechanism for preventing collisions. 

 The most common mechanism for protecting critical resources involves a 
binary variable called a semaphore, which is functionally similar to the tradi-
tional railway semaphore device. A semaphore,  s , is a specifi c memory location 
that acts as a lock to protect critical regions. Two system calls,  wait(&s)  and 
signal(&s) , are used either to  take  or to  release  the semaphore. Analogous 
to the mailboxes discussed above, tasks rely on the kernel to allow them to 
take the semaphore via a wait  operation or to release it via a  signal
operation —direct access to any semaphore is not allowed . The  wait(&s)
operation suspends the calling task until the semaphore s  is available, whereas 
the signal(&s)  operation makes the semaphore  s  available. Thus, each 
wait / signal  call also activates the scheduler. 

www.it-ebooks.info

http://www.it-ebooks.info/


SYSTEM SERVICES FOR APPLICATION PROGRAMS 113

 Any code that enters a critical region is surrounded by appropriate calls to 
wait  and  signal . This prevents more than one task from entering the critical 
region simultaneously. 

 Example: Serially Reusable Resource 

 Consider a preemptive priority embedded system with separate measure-
ment channels for acceleration and temperature, and a single A/D converter 
to be used by Task_1  and  Task_2  for periodically measuring those two 
quantities. Before starting an A/D conversion, the desired measurement 
channel must be selected. How would you share the serially reusable 
resource with Task_1  (high priority) and  Task_2  (low priority)? 

 A binary semaphore,  s , can be used to protect the critical resource, and 
it should be initialized to 1  ( “ one resource available ” ) before either task is 
started. Proper use of the semaphore  s  is shown by the following pseudo-
code fragments: 

/* Task_1  */
...
wait(&s);  / * wait until A/D available  */
select_channel(acceleration);
a_data=ad_conversion(); /* measure  */
signal(&s) /* release A/D  */
...

/* Task_2  */
...
wait(&s);  / * wait until A/D available  */
select_channel(temperature);
t_data=ad_conversion(); /* measure  */
signal(&s) /* release A/D  */
...

 If the semaphore primitives are not provided by the operating system, mail-
boxes can be used to implement binary semaphores. Using a dummy mail,  key , 
the wait  operation can be implemented as shown below:

void wait(int s) 
{
int key =O;
pend(key,&s);
}

 The accompanying  signal  operation utilizes the mailbox  post  operation in 
the following way:
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void signal(int s) 
{
int key =O;
post(key,&s);
}

 Until now, the semaphores have been called binary semaphores, because they 
can only take one of two values: 0 or 1. Alternatively, a counting semaphore 
(or general semaphore) can be used to protect pools of resources. This particu-
lar semaphore must be initialized to the total number of free resources before 
real - time processing can commence. For instance, when using ring buffers, the 
data access is often synchronized with a counting semaphore initialized to the 
size of ring buffer. Corresponding wait and signal semaphore primitives, 
multi_wait  and  multi_signal , are needed with counting semaphores. 
Some real - time kernels provide only binary semaphores, while others have 
just counting semaphores. The binary semaphore is a special case of the count-
ing semaphore, where the count never exceeds 1. In some operating systems, 
the wait / multi_wait  operation is equipped with a timeout to recover from 
possible deadlocks. 

 Semaphores provide an effective solution to a variety of resource - sharing 
problems. However, their trouble - free usage requires strict rules for applying 
them, a high level of programming discipline, and careful coordination between 
different programmers within the software project. Typical problems associ-
ated with the use of semaphores are listed below (Simon,  1999 ):

 •      The use of a specifi c semaphore is forgotten :      Leads to confl icts between 
simultaneous users of a single resource or shared data.  

 •      A wrong semaphore is used in error :      Equally serious as forgetting to use 
a specifi c semaphore.  

 •      The semaphore is held for an overly long time :      Other tasks — even higher -
 priority ones — may miss their deadlines.  

 •      The semaphore used is not released at all :      Eventually leads to a deadlock. 

 All these problems are clearly programmer originated, and should be 
managed, therefore, as an integral part of the product development and quality 
control processes applied in the organization — through the entire software 
lifecycle.  

   3.3.5    Deadlock and Starvation Problems 

 When several tasks are competing for the same set of serially reusable 
resources, then a deadlock situation (or deadly embrace) may ensue. The 
notion of deadlock is best illustrated by an example. 
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 Pictorially, if semaphore  s1  guards resource 1 and semaphore  s2  guards 
resource 2, then the realization of resource sharing might appear as the 
resource diagram in Figure  3.13 .   

 Example: Deadlock Problem 

 Suppose  TASK_A  requires resources 1 and 2, as does  Task_B .  Task_A  is 
in possession of resource 1, but is waiting on resource 2.  Task_B  is in pos-
session of resource 2, but is waiting on resource 1. Neither  Task_A  nor 
 Task_B  will relinquish the resource until its other request is satisfi ed. The 
cumbersome situation is illustrated as follows, where two semaphores,  s1  
and  s2 , are used to protect resource 1 and resource 2, respectively:

 / *  Task_A  * / 
  ...  
 wait( & s1);   / *  wait for resource 1  * / 
  ...         / *  use resource 1  * / 
 wait( & s2);   / *  wait for resource 2  * / 
  deadlock here 
   ...         / *  use resource 2  * / 
 signal( & s2);   / *  release resource 2  * / 
 signal( & s1);   / *  release resource 1  * / 
  ...  
  
 / *  Task_B  * / 
  ...  
 wait( & s2);   / *  wait for resource 2  * / 
  ...         / *  use resource 2  * / 
 wait( & s1);   / *  wait for resource 1  * / 
  deadlock here 
   ...         / *  use resource 1  * / 
 signal( & s1);   / *  release resource 1  * / 
 signal( & s2);   / *  release resource 2  * / 
  ...   

     Figure 3.13.     Deadlock realization as a loop in a resource diagram.  
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 Deadlock is a burdensome problem, because it cannot always be detected 
even through relatively comprehensive testing. Besides, it may occur very 
infrequently, making the pursuit of a known deadlock problem diffi cult. The 
general solution to the deadlock problem is by no means straightforward and 
may have unintended consequences, such as increasing response times. 

 Although it is unlikely that such an obvious deadlock scenario as the one 
just described is going to be created in practice, bad designs and their careless 
implementations might be masked by complex structures. If the system 
resource diagram contains subgraphs that resemble Figure  3.13 , that is,  it
contains loops , then a deadlock can occur. Petri - net simulation and analysis 
can be helpful in identifying such situations (see Chapter  5 ). 

 In a deadlock condition, two or more tasks cannot advance due to simulta-
neously waiting for some resource from each other, and this condition lasts 
infi nitely. A related problem, starvation, differs from deadlock in that at least 
one task is satisfying its requirements, while one or more others are not able 
to fulfi ll their needs within a reasonable period (Tai,  1994 ). The following four 
conditions are necessary for a deadlock (Havender,  1968 ):

   1.     Mutual exclusion  
  2.     Circular wait  
  3.     Hold and wait  
  4.     No preemption    

Mutual exclusion  applies to those resources that cannot be shared, for instance, 
communications channels, disk drives, and printers. It can be relieved or even 
eliminated using special buffering services, such as daemons and spoolers, that 
allow these resources to be virtually shareable by multiple tasks. 

 The  circular wait  condition occurs when a sequential chain of tasks exists 
that holds resources needed by other tasks further down the chain (such as in 
typical cyclic code structures). One way to eliminate circular wait is to impose 
an explicit ordering on the resources and to force all tasks to request all
resources above the number of the lowest one needed. For example, suppose 
that a collection of devices is ranked as shown in Table  3.7 . Now, if some 
task needs to use just the printer, it will be assigned the printer, scanner, 
and monitor. Then, if another task requests the monitor only, it will have to 

  TABLE 3.7.    Device Ordering Scheme to Eliminate the 
Circular Wait Condition 

   Device     Number  

  Disk drive    1  
  Printer    2  
  Scanner    3  
  Monitor    4  
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wait until the fi rst task releases the reserved three resources — although the 
fi rst task does not actually use the monitor. It is easy to see that such a straight-
forward approach eliminates the circular wait at the potential cost of 
starvation.   

 The  hold - and - wait  condition occurs when tasks request a resource and then 
lock that resource until other subsequent resource requests are also fi lled. One 
solution to this problem is to allocate to a task all potentially required resources 
at the same time, as in the previous case. However, this approach can lead to 
starvation in other tasks. Another solution is to never allow a task to lock more 
than one resource at a time. For example, when copying one semaphore -
 protected fi le record to another fi le, lock the source fi le and read the record, 
unlock that fi le, lock the destination fi le and write the record, and fi nally 
unlock that fi le. This, of course, can lead to ineffi cient resource utilization, as 
well as apparent windows of opportunity for other tasks to interrupt and 
interfere with disk - drive utilization. 

 Finally, eliminating the  no - preemption  condition will preclude a deadlock. 
This can be accomplished, for example, by using a timeout with the problem -
 causing  wait  (or  pend ) system call. However, such a violent action leads to 
starvation in the low - priority task that was using the preempted resource, as 
well as to other potential problems. For instance, what if the low - priority task 
had locked the printer for output, and now the high - priority task starts print-
ing? Nevertheless, this is the ultimate solution to any deadlock condition. 

 In complex real - time systems, the detection and identifi cation of deadlock 
may not always be easy, although watchdog timers or real - time debuggers can 
be used for this purpose. Therefore, the best way to deal with deadlock is to 
avoid it altogether! Several techniques for avoiding deadlock are available. 
For example, if the semaphores (or  “ key ”  mailboxes) protecting critical 
resources are implemented with timeouts, then true deadlocking cannot occur, 
but starvation of one or more tasks is highly probable. 

 Suppose a lock refers to any semaphore used to protect a critical region. 
Then the following six - step resource - management approach is recommended 
to help avoid deadlock:

   1.     Minimize the number of critical regions and their length.  
  2.     All tasks must release any lock as soon as possible.  
  3.     Do not suspend any task while it controls a critical region.  
  4.     All critical regions must be 100% error free.  
  5.     Do not lock any devices in interrupt handlers.  
  6.     Always perform validity checks on pointers used within critical regions.    

 Nevertheless, rules 1 – 6 may be diffi cult to fulfi ll, and, hence, additional means 
are often necessary to avoid deadlocks. 

 Assuming that a deadlock situation can be detected by using a semaphore 
timeout, what could be done about it? If the deadlock appears to occur very 
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infrequently, for instance, once per month, and the real - time system is not a 
critical one, simply ignoring the problem may be acceptable. For example, if 
in a console game this problem is known to occur rarely, the effort needed to 
identify and correct the problem may not be justifi ed, given the cost and 
purpose of the system. Nonetheless, for any hard or fi rm real - time system 
discussed in Chapter  1 , ignoring this problem is naturally unacceptable. How 
about handling the deadlock by resetting the system (possibly by a watchdog 
timer; see Section  2.5.2 )? Again, this may be unacceptable for critical systems. 
Finally, if a deadlock is detected, some form of rollback to a predeadlock state 
could in certain cases be performed, although this may lead to a recurrent 
deadlock; and particular operations, such as writing to some fi les or peripherals, 
cannot always be rolled back without special hardware/software arrangements.  

   3.3.6    Priority Inversion Problem 

 When a lower - priority task blocks a higher - priority one, a priority inversion is 
said to occur. Consider the following example, where priority inversion takes 
place. 
   
 Example: Priority Inversion Problem 

 Let three tasks,  τ  1 ,  τ  2 , and  τ  3 , have decreasing priorities (i.e.,  τ  1     �     τ  2     �    τ 3 , 
where  “  �  ”  is the precedence symbol), and  τ  1  and  τ  3  share some data or 
resource that requires exclusive access, while  τ  2  does not interact with either 
of the other two tasks. Access to the critical section is carried out through 
the  wait  and  signal  operations on semaphore  s . 

 Now, consider the following execution scenario, illustrated in Figure  3.14 . 
Task  τ  3  starts at time  t  0 , and locks semaphore  s  at time  t  1 . At time  t  2 ,  τ  1  arrives 
and preempts  τ  3  inside its critical section. After a while,  τ  1  requests to use 
the shared resource by attempting to lock  s , but it gets blocked, as  τ  3  is 
currently using it. Hence, at time  t  3 ,  τ  3  continues to execute inside its critical 
section. Next, when  τ  2  arrives at time  t  4 , it preempts  τ  3 , as it has a higher 

     Figure 3.14.     A typical priority - inversion scenario.  
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 The problem of priority inversion in real - time systems has been studied inten-
sively for both fi xed - priority and dynamic - priority scheduling. One useful 
result, the  priority inheritance protocol  (Sha et al.,  1990 ), offers a simple solu-
tion to the problem of unbounded priority inversion. 

 In the priority inheritance protocol, the priorities of tasks are dynamically 
adjusted so that the priority of any task in a critical region gets the priority of 
the highest - priority task pending on that same critical region. In particular, 
when a task,  τi , blocks one or more higher - priority tasks, it temporarily inherits 
the highest priority of the blocked tasks. The fundamental principles of the 
protocol are:

 •      The highest - priority task relinquishes the CPU whenever it seeks to lock 
the semaphore guarding a critical section that is already locked by some 
other task.  

 •      If task  τ1  is blocked by  τ2 , and  τ1     �    τ2 , task  τ2  inherits the priority of  τ1  as 
long as it blocks τ1 . When  τ2  exits the critical section that caused the block, 
it reverts to the priority it had when it entered that section.  

 •      Moreover, priority inheritance is transitive: if  τ3  blocks  τ2  that blocks  τ1

(with τ1     �    τ2     �    τ3 ), then  τ3  inherits the priority of  τ1  via  τ2 .    

 Thus, in the three - task example just discussed, the priority of  τ3  would be 
temporarily raised to that of τ1  at time  t3 , thereby preventing  τ2  from preempt-
ing it at time t4 . The resulting schedule incorporating the priority inheritance 
protocol is shown in Figure  3.15 . Here, the priority of  τ3  reverts to its original 
at time t5 , and  τ2  gets to execute only after  τ1  completes its execution, as desired.   

 It is important to point out that the priority inheritance protocol does not 
prevent a deadlock occurring. In fact, priority inheritance can sometimes lead 
to deadlock or multiple blocking. Nor can it prevent any other problems 
induced by semaphores. For example, consider the following lock – unlock 
sequences (with τ1     �    τ2 ):

τ1 : Lock S 1 ; Lock S 2 ; Unlock S 2 ; Unlock S 1
τ2 : Lock S 2 ; Lock S 1 ; Unlock S 1 ; Unlock S 2

priority and does not interact with either τ1  or  τ3 . The execution time of  τ2

increases the blocking time of τ1 , as it is no longer dependent solely on the 
length of the critical section executed by τ3 . Similar unfair conditions could 
also arise between other intermediate priority tasks — if available — and 
thereby could lead to an excessive blocking delay. Task  τ1  resumes its execu-
tion at time t6 , when  τ3  fi nally completes its critical section. A priority inver-
sion is said to occur within the time interval [ t4 ,  t5 ], during which the highest 
priority task,  τ1 , has been unduly prevented from execution by a medium -
 priority task  τ2 . On the other hand, the acceptable blocking of  τ1  during the 
periods [ t3 ,  t4 ] and [ t5 ,  t6 ] by  τ3 , which holds the lock, is necessary to maintain 
the integrity of the shared resources.   
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 Here two tasks,  τ  1  and  τ  2 , use two semaphores for locking critical sections, S 1  
and S 2 , in a nested fashion, but in reverse order. This problem is similar to the 
one depicted in Figure  3.13 . Although this deadlock does not depend in any 
sense on the priority inheritance protocol (it is caused by careless use of sema-
phores), the priority inheritance protocol cannot either prevent this kind of 
problem. To get around such a problem, it is necessary to use the  priority 
ceiling protocol  (Chen and Lin,  1990 ), which imposes a total ordering on the 
semaphore access. This protocol will be introduced shortly. 

 A notorious incident of the priority inversion problem occurred in 1997 
in NASA ’ s Mars Pathfi nder space mission ’ s Sojourner rover vehicle, which 
was used to explore the surface of Mars. In that case, the MIL - STD - 1553B 
information bus manager was synchronized with mutexes. A mutex is an 
enhanced binary semaphore that contains priority inheritance and other 
optional features. Accordingly, a meteorological data - gathering task that was 
of low priority and low execution rate blocked a communications task that 
was of higher priority and higher rate. This infrequent scenario caused the 
entire system to reset. The problem would have been avoided if the optional 
priority inheritance mechanism provided by the (commercial) real - time oper-
ating system had been enabled. But, unfortunately, it had been disabled. 
Nevertheless, the problem was successfully diagnosed in ground - based testing 
and remotely corrected by simply enabling the priority inheritance mechanism 
(Cottet et al.,  2002 ). 

 The priority ceiling protocol extends to the priority inheritance protocol 
through chained blocking in such a way that no task can enter a critical section 
in a way that leads to blocking it. To achieve this, each resource is assigned a 
priority (the priority ceiling) equal to the priority of the highest priority task 
that can use it. 

 The priority ceiling protocol is largely the same as the priority inheritance 
protocol, except that a task,  τ   i  , can also be blocked from entering a critical 
section if there exists any semaphore currently held by some other task whose 
priority ceiling is greater than or equal to the priority of  τ   i  . For example, con-
sider the scenario illustrated in Table  3.8 . Suppose that  τ  2  currently holds a 
lock on section S 2 , and  τ  1  is initiated. Task  τ  1  will be blocked from entering 

     Figure 3.15.     Illustration of the priority - inheritance protocol.  
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  TABLE 3.8.    Data for the Priority Ceiling 
Protocol Illustration 

   Critical Section     Accessed by     Priority Ceiling  

  S 1      τ  1 , τ  2      P ( τ  1 )  
  S 2      τ  1 , τ  2 , τ  3      P ( τ  1 )  

section S 1 , because its priority is not greater than the priority ceiling of section 
S 2 . A more demanding example will be discussed next to clearly show the 
advantages of the priority ceiling protocol.   
   

 Example: Priority Ceiling Protocol 

 Consider the three tasks with the following sequence of lock – unlock opera-
tions, and having decreasing priorities ( τ  1     �    τ 2     �    τ 3 ):

    τ  1 : Lock S 1 ; Unlock S 1   

   τ  2 : Lock S 1 ; Lock S 2 ; Unlock S 2 ; Unlock S 1   

   τ  3 : Lock S 2 ; Unlock S 2     

 Following the basic rules of assigning a priority ceiling to semaphores, the 
priority ceilings of S 1  and S 2  are  P ( τ  1 ) and  P ( τ  2 ), respectively. The following 
description and Figure  3.16  illustrate the operation of the priority ceiling 
protocol. Suppose that  τ  3  starts executing fi rst, locks the section S 2  at time 
 t  1 , and enters the critical section. At time  t  2 ,  τ  2  preempts  τ  3 , starts executing, 
and attempts to lock section S 1  at time  t  3 . At this time,  τ  2  is suspended, 
because its priority is not higher than the priority ceiling of section S 2 , 

     Figure 3.16.     Illustration of the priority - ceiling protocol.  

Time

τ1

τ2

τ3

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

Acquire S
2

Attempt to
Acquire S

1

Acquire S
1

Acquire S
2

Acquire S
1

t
9

www.it-ebooks.info

http://www.it-ebooks.info/


122 REAL-TIME OPERATING SYSTEMS

 When applying the priority ceiling protocol, a task can be blocked by a 
lower - priority task only once, and at most the duration of one critical section 
only.  

   3.3.7    Timer and Clock Services 

 In developing real - time software, it is desirable to have easy - to - use timing 
services available. For example, suppose a diagnostic task checks the  “ health ”  
of an elevator system periodically. Essentially, the task would execute one 
round of diagnostics and then wait for a notifi cation to run again, with the task 
repeating forever. This is usually accomplished by having a programmable 
timer that is set to create the required time interval. 

 A system call,  delay , is commonly available to suspend the executing task 
until the desired time has elapsed, after which the suspended task is moved to 
the ready list. The  delay  function has one integer parameter,  ticks , to 
specify the length of the delay. In order to generate an appropriate time refer-
ence, a timer circuit is confi gured to interrupt the CPU at a fi xed rate, and the 
internal system time is incremented at each timer interrupt. The interval of 
time with which the timer is programmed to interrupt defi nes the unit of time 
in the system — also called a  “ tick ”  or time resolution. 

 Example: Delay Uncertainty 

 Suppose we have a delay service available and the tick is initialized to 25   ms. 
Now, if we want to suspend the diagnostics task for 250   ms (corresponding 
to 10 ticks), we could simply call  delay(10) . 

 But how accurate is this delay? As the  clock signal ’ s phase  and the  calling
instant  of the delay function are asynchronous to each other,  delay(10)
will actually generate a varying delay from 225 to 250   ms. Hence, this kind 
of delay function always has an uncertainty of one tick at maximum. The 
random variation could naturally be reduced by reducing the tick length. 
However, a very short tick length may cause signifi cant interrupt overhead 
to the CPU. An appropriate tick value is a compromise between the delay 
uncertainty allowed and the interrupt overhead tolerated. 

currently locked by τ3 . Now task  τ3  temporarily inherits the priority of  τ2

and resumes execution. At time  t4 ,  τ1  arrives, preempts  τ3 , and executes until 
time t5 , when it needs to lock the section S 1 . Note that  τ1  is allowed to lock 
the section S 1  at time  t5 , as its priority is greater than the priority ceiling of 
all the sections currently being locked (in this case, it is compared with S 2 ). 
Task  τ1  completes its execution at  t6 , and makes  τ3  execute to completion at 
t7 . Task  τ2  is then allowed to lock S 1 , and subsequently S 2  at  t8 , and it fi nally 
completes at t9 .   
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 Timers provide a convenient mechanism to control the rate of task execution. 
In some operating system environments, it is possible to select what kind of 
timer functionality is used — a one - shot timer or a repeating (periodic) timer. 
The one - shot timer is armed with an initial expiration time, expires only once, 
and then is disarmed. A timer becomes a repeating timer with the addition of 
a repetition period. The timer expires, and then loads the repetition period 
again, rearming the timer to expire after the repetition period has elapsed, and 
so on. The delay function discussed above represents a basic one - shot timer. 

 If very precise timing is needed for some task and it is not practical to 
shorten the tick to an adequate length, it is best to use a dedicated hardware 
timer for that particular purpose. Nonetheless, the obvious advantage of the 
delay  function over the use of dedicated timers is that a single hardware 
timer can support multiple timing needs simultaneously. 

 In addition to these timer functions, it is also desirable to have facilities to 
set and get the real time and possibly the date. For those purposes, specifi c 
set_time  and  get_time  functions are available in many real - time operat-
ing systems.  

   3.3.8    Application Study: A Real - Time Structure 

 After presenting a variety of operating system services for application pro-
grams, it is instructive to take a look at a real - world example of their usage. 
In this section, we study an elevator control system from its real - time struc-
ture ’ s viewpoint. Hence, our interests are in such issues as tasks and their 
priorities, the use of hardware interrupts and semaphores, buffering and safe 
usage of global variables, as well as the use of real - time clock. 

 The elevator control system considered represents a controller of a single 
elevator, which operates as a part of a multi - car elevator bank. Therefore, the 
elevator controller communicates with the so - called group dispatcher that 
periodically performs optimal hall call allocation for the entire bank of eleva-
tors. The number of elevators in a typical bank is up to eight, and the number 
of fl oors served is usually no more than 30 — true high - rise buildings with more 
fl oors are handled with separate low - rise, mid - rise, and high - rise banks of 
elevators. Such multi - bank elevator installations are used, for instance, in 
major offi ce buildings and large hotels. 

 Figure  3.17  illustrates the serial communications connection between the 
group dispatcher and fi ve individual elevator controllers with 15 fl oors to 
service. This bus - type connection is of  master – servant  type: the group dis-
patcher is the  “ master ”  and fully coordinates the communications sessions, 
while the elevator controllers are  “ servants ”  that are allowed to send data 
solely when requested to do so. The group dispatcher has a serial interface for 
registering and canceling hall calls (a  “ hall call ”  is the event when a person 
presses the  “ up ”  or  “ down ”  button to summon an elevator), and it allocates 
registered calls dynamically to the most suitable elevators depending on their 
current status (e.g., occupancy, car position, running direction, and registered 

www.it-ebooks.info

http://www.it-ebooks.info/


124 REAL-TIME OPERATING SYSTEMS

car calls). Thus, the group dispatcher needs to periodically collect status infor-
mation from each individual elevator. Hall calls are allocated using computa-
tionally intelligent optimization methods with multiple objectives to minimize 
the average waiting times of passengers and to avoid excessive waiting periods.   

 All elevator controllers within a bank are identical, and hence we concen-
trate on a single (somewhat simplifi ed) controller and its specifi c real - time 
structure. A high - level diagram of the real - time framework is depicted in 
Figure  3.18 ; it contains fi ve software tasks, Task 1 – Task 5, which are next intro-

     Figure 3.17.     Architecture of an elevator bank control system.  
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     Figure 3.18.     Real - time structure of an elevator controller.  
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duced in priority order. The real - time operating system is a foreground/
background kernel with preemptive priority scheduling, counting semaphores 
for synchronization, and a delay system call for creating desired execution 
periods.

   1.     This highest - priority task communicates with the group dispatcher 
through a 19.2   K bit/s serial link, and takes care of the proprietary com-
munications protocol. Its execution period is approximately 500   ms; 
each communications session lasts no more than 15   ms and is always 
initiated by the group dispatcher. In addition, Task 1 unpacks the received 
data and writes them to a global variable area, Global 1 (to be read by 
Task 2).    

  2.     This task has an execution period of 75   ms, and it performs multiple 
functions that are related to each other: updates the car position informa-
tion; registers and cancels car calls; determines the destination fl oor of 
next/current run; and packs status data — to be sent to the group dis-
patcher by Task 1 — to a double buffer (Buffers). In addition, Task 2 
writes some status variables to another global variable area, Global 2 (to 
be read by Tasks 3 and 4).  

  3.     The actual fl oor - to - fl oor runs are performed by this task (a  “ fl oor - to - fl oor 
run ”  is the sequence of operations between a start and a stop). Moreover, 
this task controls the door opening and closing operations, as well as the 
car position indicator and direction arrows. There is no regular execution 
period for Task 3, but it runs when specifi cally requested to do so — in 
fact, it is a fi nite state machine.  

  4.     The lowest - priority foreground task performs various supervision and 
self - diagnostics operations at the rate of 500   ms. This task also runs a 
shuttle traffi c - type backup system (the  “ shuttle traffi c - type backup 
system ”  circulates the elevator according to a predetermined fl oor sched-
ule) when there is no communications connection to the group dis-
patcher, or the critical hall call interface in the group dispatcher is broken. 
This uncomplicated backup solution is needed for providing at least 
some service to waiting passengers in a failure situation. When the 
backup system is in use, Task 4 writes commands to the same global 
variable area, Global 1, where Task 1 unpacks the received data during 
normal operation.  

  5.     Finally, the background task is executed when the CPU does not have 
anything more urgent to process. Task 5 runs a versatile real - time debug-
ger that is commanded from a service tool through a 2.4   K bit/s serial 
link.    

 The priority order of Tasks 1 – 5 is based on the following rationale. While the 
elevator controller is a servant for the group dispatcher, it must be ready to 
communicate whenever the master wants to begin a communications session. 
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Therefore, Task 1 has the top priority. Task 2 performs fundamental and time -
 critical operations related to updating the destination fl oor, and hence its 
priority is the highest one of the elevator - specifi c tasks. The complete run to 
the destination fl oor and associated door operations are handled by Task 3 per 
need basis. Thus, its priority is just below that of Task 2. The next task, Task 4, 
is performing supervision - type operations that are not directly related to the 
normal operation of the elevator. Its priority is hence below the priorities of 
the primary tasks. Finally, the remaining CPU capacity is allocated to the 
background task, Task 5. 

 A few hardware interrupts are used with the most time - critical inputs/
outputs. Only minimal processing is performed in interrupt handlers (with 
interrupts disabled), which signal the corresponding tasks by specifi c sema-
phores. The more time - consuming interrupt - triggered service is thus per-
formed at tasks (with interrupts enabled). Below is a list of hardware interrupts 
in priority order:

 •      Communications interrupts: receiver ready, transmitter ready, and trans-
mitter empty (asynchronous).  

 •      Real - time clock interrupt: tick length 25   ms.  
 •      Door zone interrupt for initiating door opening (asynchronous).  
 •      Door interrupts: closed, some need to reopen, and closing timeout 

(asynchronous).  
 •      Service tool interrupts: receiver ready and transmitter ready (asynchronous). 

 In addition to semaphores that are explicitly connected to the hardware inter-
rupts, other semaphores are used for locking global variable areas and buffers, 
as well as for signaling from one task to another. Those noninterrupt - related 
semaphores are listed below:

 •      Semaphore for protecting the swapping of double buffers (Buffers), which 
Task 2 fi lls periodically for Task 1.  

 •      Semaphore that Task 2 sets for Task 3 when there is a need to start a run.  
 •      Semaphore that Task 2 sets for Task 3 when there is a need to start decel-

eration to the next possible fl oor.  
 •      Two semaphores for protecting the global variable areas Global 1 and 

Global 2.    

 Double buffering (see Section  3.3.1 ) is used between Tasks 1 and 2, because 
they have very different execution periods (500   ms/75   ms), and Task 1 should 
always obtain the most recent status from Task 2. Furthermore, this status data 
is strictly time - correlated. It should be emphasized that although global vari-
ables are generally considered as a source of potential problems in real - time 
programming, they can be used safely  if appropriate locking mechanisms are 
used with them . Nonetheless, it is a good practice to minimize the number of 
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global variables, and allow every variable to be written by a single task only 
(while the others are just reading). 

 The delay function discussed in Section  3.3.7  is used in Tasks 2 and 4 for 
generating the 75 and 500   ms execution periods, respectively. However, it 
should be remembered that this kind of timing is never precise, but always has 
a maximum uncertainty of one tick (here 25   ms). Hence, the two execution 
periods are, in practice, 50 – 75   ms and 475 – 500   ms. Such wide tolerances are 
acceptable for this application. 

 The real - time structure discussed represents a kind of minimum solution; 
everything is kept simple and hence the predictability of this fi rm real - time 
system is high. Because semaphores are used for protecting critical regions, 
their consistent use is of utmost signifi cance and requires high discipline 
among the programming team.   

   3.4    MEMORY MANAGEMENT ISSUES 

 An often - neglected topic in real - time operating systems, dynamic memory 
allocation, is important in terms of both the use of on - demand memory by 
applications tasks and the memory requirements of the operating system itself. 
Application tasks use memory explicitly, for example, through requests for 
heap memory, and implicitly through the maintenance of the runtime memory 
needed to support sophisticated high - level languages. The operating system 
has to perform effective memory management in order to keep the tasks iso-
lated, for instance. 

 Risky allocation of memory is any allocation that can preclude system 
determinism. Such an allocation can destroy event determinism by overfl ow-
ing the stack, or it can destroy temporal determinism by causing a deadlock 
situation. Therefore, it is truly important to avoid risky allocation of memory, 
while at the same time reducing the overhead incurred by memory manage-
ment. This overhead is a signifi cant component of the context - switch time and 
must be minimized. 

   3.4.1    Stack and Task Control Block Management 

 In a multitasking system, the context of each task needs to be saved and 
restored in order to switch tasks successfully. This can be accomplished by 
using one or more runtime stacks or the task control block model. Runtime 
stacks are adequate for interrupt - only and foreground/background systems, 
whereas the TCB model is more appropriate for full - featured operating 
systems. 

 If a stack is to be used to handle the runtime saving and restoring of context, 
two simple routines —  save  and  restore  — are needed. The  save  routine is 
called by an interrupt handler to save the current context of the system into 
a stack area; this call should be made immediately after interrupts have been 
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disabled. Moreover, the  restore  routine should be called just before inter-
rupts are reenabled, and before returning from the interrupt handler (see 
Section  3.1.4  for an example of context saving and restoring). 

 On the other hand, if the alternative task control block model (see Section 
 3.1.5 ) is used, then a list of TCBs needs to be maintained. This list can be either 
fi xed or dynamic. In the fi xed case,  n  task control blocks are allocated during 
system initialization, with all tasks in the dormant state. As a task is created, 
its status in the TCB is changed to  “ ready. ”  Prioritization or time slicing will 
then move the ready task to the execute state. If some task is to be deleted, 
its status in the task control block is simply changed to  “ dormant. ”  In the case 
of a fi xed number of TCBs, no real - time memory management is needed. 

 In the more fl exible dynamic case, task control blocks are inserted to a 
linked list or some other dynamic data structure as tasks are created. The tasks 
are in the suspended state upon creation and enter the ready state via an 
operating system call or some event. The tasks enter the execute state owing 
to priority or time slicing. When a task is deleted, its TCB is removed from the 
linked list, and its heap memory allocation is returned to the available or 
unoccupied status. In this scheme, real - time memory management consists of 
managing the heap needed to supply the task control blocks. 

 A runtime stack cannot be used in a round - robin system because of the 
 fi rst - in, fi rst - out  ( FIFO ) nature of the scheduling principle. In this case, a ring 
buffer can be used conveniently to save context. The context is saved to the tail 
of the ring buffer and restored from the head. To accomplish these operations, 
the basic save  and  restore  functions should be modifi ed accordingly. 

 The maximum amount of memory space needed for the runtime stack 
needs to be known a priori . In general, the stack size can be determined rather 
easily if recursion is not used and heap data structures are avoided. If no 
(conservative) stack memory estimate is available, then a risky memory alloca-
tion may occur, and the real - time system may fail to satisfy its behavioral and 
temporal specifi cations. In practice, a provision for at least one additional task 
than anticipated should be allocated to the stack to allow margin for spurious 
interrupts and time overloading, for example.  

   3.4.2    Multiple - Stack Arrangement 

 Often, a single runtime stack is inadequate or cumbersome to manage with 
several tasks in, say, a foreground/background system. A more fl exible multiple -
 stack scheme uses a single runtime stack for the context and one additional 
task stack for every task. A typical multiple - stack arrangement is illustrated 
in Figure  3.19 . Using multiple stacks in real - time systems offers clear advantages:

 •      It permits tasks to interrupt themselves, thus allowing for handling tran-
sient overload conditions or for detecting spurious interrupt bursts.    

 •      The real - time software can be written in a programming language that 
supports reentrancy and recursion. Individual task stacks, which contain 
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the appropriate activation records with dynamic links needed to support 
recursion, can be maintained for each task. A pointer to these stacks needs 
to be saved in the context or task control block associated with the par-
ticular task.  

   •      Only elementary nonreentrant languages, such as assembly language, are 
recommended with a single - stack model.     

   3.4.3    Memory Management in the Task Control Block Model 

 When implementing the TCB model for real - time multitasking, the principal 
memory management issue is the maintenance of two linked lists for the ready 
and suspended tasks. This bookkeeping activity is illustrated with an example 
in Figure  3.20 . In step 1, the currently executing task releases some resource 

     Figure 3.19.     Multiple - stack arrangement.  

Task 1

Stack

Task 2

Stack

Task 3

Stack

Task n

Stack

Context

Stack

...

Stack

Pointer

Executing Task 

     Figure 3.20.     Linked - lists management in the task - control - block model.  
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needed by a suspended high - priority task. Therefore, the executing task is 
inserted to the ready list in step 2, and the suspended high - priority task begins 
executing in step 3. Hence, by properly managing the linked lists, updating the 
status word in the TCBs (see Fig.  3.5 ), and adhering to the appropriate sched-
uling policy by checking the priority word in the TCBs, round - robin, preemp-
tive priority, or some hybrid scheduling scheme can be induced. Other memory 
management responsibilities may include the maintenance of certain blocks 
of memory that are allocated to individual tasks as requested.   

 An alternative to multiple linked lists involves just a single linked list, in 
which only the status variable in the TCB is modifi ed rather than moving the 
entire block to another list. Thus, for instance, when a task is switched from 
the suspended to ready state or from the ready to executing state, only the 
single status word needs to be changed. This straightforward approach has the 
obvious advantage of lighter list management. Nonetheless, it leads to slower 
traversal times, since the entire list must be traversed during each context 
switch to search for the next highest priority task that is ready to run.  

   3.4.4    Swapping, Overlaying, and Paging 

 Probably the simplest scheme that allows an operating system to allocate 
memory to two tasks  “ simultaneously ”  is swapping. In this case, the operating 
system itself is always memory resident, and only one task can co - reside in 
the available memory space not used by the operating system, called the 
user space. When a second task needs to run, the fi rst task is suspended and 
then swapped, along with its context, to a secondary storage device, usually 
a hard disk. The second task, along with its context, is then loaded into the 
user space and initiated by the task dispatcher. This type of memory manage-
ment scheme can be used along with round robin or preemptive priority 
systems, and it is highly desirable to have the execution time of each task be 
long relative to the lengthy memory - disk - memory swap delay. The varying 
access time to the secondary storage — typically milliseconds with a hard 
disk — is the principal contributor to the context - switch overhead and real - time 
response delays. Hence, it ruins the real - time punctuality of such a real - time 
system. 

 Overlaying is a general technique that allows a single program to be larger 
than the allowable memory. In this case, the program is broken up into depen-
dent code and data sections called overlays, which can fi t into the available 
memory space. Special program code must be included that permits new over-
lays to be swapped into memory as needed (over the existing overlays), and 
care must be exercised in the design of such systems. Also, this technique has 
negative real - time implications, because the overlays must be swapped from 
slow and nondeterministic secondary storage devices. Nevertheless, fl exible 
overlaying can be used to extend the available address space. Some commer-
cial real - time operating systems support overlaying in conjunction with com-
monly used programming languages and popular CPUs. 
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 Note that in both swapping and overlaying, one portion of memory is never 
swapped or overlaid. This critical memory segment contains the swap or 
overlay manager; in the case of overlaying, any code that is common to all 
overlays is called the  root . 

 A more effi cient scheme than simple swapping allows more than one task 
to be memory resident at any one time by dividing the user space into a 
number of fi xed - size partitions. This scheme is particularly useful in systems 
where the fi xed number of tasks to be executed is known  a priori . Partition 
swapping to disk can occur when a task is preempted. Tasks, however, must 
reside in continuous partitions, and the dynamic allocation and deallocation 
of memory may be challenging. 

 In some cases, the main memory can become fragmented with unused but 
existing partitions, as illustrated in Figure  3.21 . In this case, the  “ checkered ”  
memory space is said to be externally fragmented. This type of fragmentation 
causes problems when memory requests cannot be satisfi ed because a  contigu-
ous  block of the size requested does not exist, even though a lot of memory 
is still available.   

 Another related problem, internal fragmentation, occurs in fi xed - partition 
schemes when, for example, a task in a real - time Unix environment requires 
1   M bytes of memory when only 2   M - byte partitions are available. The amount 
of wasted memory (or internal fragmentation) can be reduced by creating 
fi xed partitions of several sizes and then allocating the smallest partition 
greater than the required memory space. Both internal and external fragmen-
tation hamper effi cient memory usage and ultimately degrade real - time per-
formance because of the considerable overhead associated with their regular 
repairing. 

 This type of dynamic memory allocation uses memory ineffi ciently, because 
of the overhead associated with fi tting a task to available memory and 

     Figure 3.21.     Fragmented memory (a) before and (b) after compaction; the unmovable 
blocks represent the root program of the real - time operating system.  
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performing disk swapping. However, in some implementations, particularly in 
commercial real - time operating systems, memory can be divided into regions 
in which each region contains a collection of different - sized, fi xed - sized parti-
tions. For example, one region of memory might consist of 10 blocks of size 
16   M bytes, while another region might contain 5 blocks of 32   M bytes, and so 
on. The operating system then tries to satisfy a memory request so that the 
smallest available partitions are used. This approach tends to reduce internal 
fragmentation effectively. 

 In an alternative scheme, memory is allocated in chunks that are not fi xed, 
but rather are determined by the requirements of the task to be loaded into 
memory. This technique is more appropriate when the number of real - time 
tasks is unknown or varies. In addition, memory utilization is better for this 
technique than for fi xed - block schemes, because little or no internal fragmen-
tation occurs, as the memory is allocated in the exact amount needed for each 
task. External fragmentation can still occur because of the dynamic nature of 
memory allocation and deallocation, and because memory must still be allo-
cated to every single task contiguously. 

 Compressing fragmented memory or compaction has to be used to mitigate 
internal fragmentation (see Fig.  3.21 ). Compaction is a CPU - intensive process 
and, therefore, is not practical in hard or fi rm real - time systems during normal 
operation. If compaction must be performed, it should be done in the back-
ground, and it is imperative that interrupts be disabled while memory is being 
shuffl ed. 

 In demand page systems, program segments are permitted to be loaded in 
noncontiguous memory as they are requested in fi xed - size chunks called pages. 
This scheme helps to eliminate external fragmentation. Program code that is 
not held in main memory is swapped to some secondary storage, usually a disk. 
When a memory reference is made to a location within a page not loaded in 
main memory, a page - fault exception is raised. The interrupt handler for this 
exception checks for a free page slot in memory. If none is found, a page block 
must be selected and swapped to disk (if it has been altered), a process called 
page stealing. Paging, which is provided by most commercial operating systems, 
is advantageous because it allows nonconsecutive references to pages via a 
page table. In addition, paging can be used in conjunction with bank - switching 
hardware to extend the virtual address space. In either case, pointers are used 
to access the desired page. These pointers may represent memory - mapped 
locations to map into the desired hardwired memory bank, may be imple-
mented through associative memory, or may be simple offsets into memory, 
in which case the actual address in main memory needs to be calculated for 
each memory reference. 

 Nevertheless, paging can lead to problems, including very high paging activ-
ity called thrashing, internal fragmentation, and even a deadlock. It is unlikely 
that an operating system would use so complex a scheme as paging in an 
embedded real - time application, where the overhead would be overly high 
and the associated hardware support is not usually available. On the other 
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hand, in nonembedded real - time applications, such as the airline booking and 
reservation system, paging is used routinely. 

 Several standard methods are used to determine which page should be 
swapped out of memory to disk, and the same techniques are applicable 
to cache block replacement as well (Torng,  1998 ). The most straightforward 
algorithm is FIFO. Its management overhead is only the recording of the 
exact loading sequence of the pages. However, the best nonclairvoyant 
scheme is the  least recently used  ( LRU ) algorithm, which states that the 
least recently used page will be swapped out if a page fault occurs. The 
management overhead for the LRU scheme rests in recording the access 
sequence to all pages, which can be quite substantial. Therefore, the benefi ts 
of using LRU need to be weighed against the effort in implementing it  vis - à -
 vis  FIFO. 

 In addition to thrashing, the main disadvantage of page swapping in real -
 time systems is the lack of predictable execution times. Therefore, it is often 
desirable to lock certain parts of a task into main memory in order to reduce 
the overhead involved in paging and to make the execution times more pre-
dictable. Some commercial real - time operating systems provide this feature, 
called memory locking. These operating systems typically allow code or data 
segments (or both) for a particular task, as well as the task - stack segment, to 
be locked into main memory. Any task with one or more locked pages is then 
prevented from being swapped out to disk. Memory locking decreases execu-
tion times for the locked modules and, more importantly, can be used to 
improve real - time punctuality. At the same time, it makes fewer pages avail-
able for the application, encouraging contention. 

 Garbage is memory that has been allocated but is no longer being used by 
a task, that is, the task has abandoned it. Garbage can accumulate when pro-
cesses terminate abnormally without releasing memory resources. In C, for 
example, if memory is allocated using the  malloc  procedure and the pointer 
for that memory block is lost, then that block can neither be used nor properly 
freed. Garbage can also develop in object - oriented systems and as a normal 
byproduct of nonprocedural languages such as C + +. Real - time garbage col-
lection is an important function that must be performed either by the program-
ming language ’ s runtime support (e.g., in Java) or by the operating system if 
garbage collection is not part of the language. Garbage collection techniques 
are discussed further in Chapter  4 .   

   3.5    SELECTING REAL - TIME OPERATING SYSTEMS 

 Selecting a specifi c  real - time operating system  ( RTOS ) for a particular appli-
cation is a problem for which there is no obvious solution strategy. A related 
question that is typically asked at the time of systems requirements specifi ca-
tion is  “ Should a commercial RTOS be used or should one be built from 
scratch? ”  
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   3.5.1    Buying versus Building 

 While the answer to that vital question depends naturally on the entire situa-
tion, commercial kernels are frequently chosen because they generally provide 
robust services, are easy to use, and may even be portable. Commercially avail-
able real - time operating systems are wide - ranging in features and perfor-
mance, and can support many standard devices and communications network 
protocols. Often, these systems come equipped with helpful development and 
debugging tools, and they can run on a variety of hardware platforms. In short, 
commercial RTOSs are best used when they can satisfy the response - time 
requirements at a competitive cost, and if the real - time system must run on a 
variety of platforms. 

 While full - blown RTOSs provide fl exibility in scheduling discipline and the 
number of tasks supported, there are clear drawbacks in their use. For example, 
they are usually slower than using the plain interrupt - driven framework, 
because signifi cant overhead is incurred in implementing the task control 
block model, discussed in Section  3.4.3 , which is the typical architecture for 
commercial real - time operating systems. Furthermore, commercial solutions 
can include many unneeded features, which are incorporated in order for the 
RTOS product to have the widest appeal on the market. The execution time 
and memory costs of these features may be excessive. Finally, manufacturers 
may be tempted to make somewhat misleading claims, or give best - case per-
formance fi gures only. The worst - case response times, on the other hand, which 
would be truly valuable, are generally not available from the RTOS vendors. 
If they are known, they are often not published because they could place the 
product in an unfavorable light among its rivals. 

 For embedded systems, when the per - unit license charge for commercial 
RTOS products is too high, or when some desired features are unavailable, or 
when the system overhead is too high, the only alternative is to develop/
subcontract the real - time kernel oneself. But this is not a trivial task, and 
requires substantial development and maintenance effort during the whole 
lifecycle. Therefore, commercial real - time operating systems should be seri-
ously considered wherever possible. 

 There are many commercial RTOSs available for real - time systems, but 
deciding which one is most suitable for a given application is diffi cult (Anh 
and Tan,  2009 ). Many features of embedded real - time operating systems must 
be considered, including cost, reliability, and speed. However, there are many 
other characteristics that may be as important or even more important, 
depending on the application. For example, the RTOS usually resides in some 
form of ROM and often controls hardware that will not tolerate any faults; 
hence, the RTOS should also be fault tolerant. Besides, the hardware typically 
needs to be able to react to different events in the system very rapidly; there-
fore, the real - time operating system should be able to handle multiple tasks 
in an effi cient manner. Finally, because the hardware platform on which the 
operating system will reside may have a strictly limited memory space, the 
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RTOS must use a reasonable amount of memory for its code and data 
structures. 

 In fact, there are so many functional and nonfunctional attributes of any 
commercial RTOS that evaluation and comparison become unavoidably a 
subjective endeavor. Nonetheless, some rational criteria and metrics should be 
utilized to support the heuristic decision - making process. Using a standard set 
of carefully formulated criteria provides a guiding  “ road sign ”  toward a suc-
cessful decision (Laplante,  2005 ).  

   3.5.2    Selection Criteria and a Metric for Commercial 
Real - Time Operating Systems 

 From business and technical perspectives, the selection of a commercial real -
 time operating system represents a potential make - or - break decision. It is 
therefore imperative that a broad and rigorous set of selection criteria be used. 
The following are desirable characteristics for real - time systems (this discus-
sion is adapted from Laplante [ 2005 ]):

 •      Fault tolerance  
 •      Maintainability  
 •      Predictability  
 •      Survival under peak load  
 •      Timeliness    

 Hence, the selection criteria should explicitly refl ect these desiderata (Buttazzo, 
 2000 ). Unfortunately, unless a comprehensive experience base exists using 
several commercial RTOSs in multiple, identical application domains, there 
are basically two ways to determine the fi tness of an RTOS product for a given 
application. The fi rst is to rely on third - party reports of success or failure. These 
abound and are published widely on the Web, and, particularly, in real - time 
systems conferences. The second is to compare alternatives based on the 
manufacturer ’ s published information from brochures, technical reports, and 
websites. 

 The following discussion presents a  semi - objective   “ apples - to - apples ”  tech-
nique for comparing commercial real - time operating systems based on market-
ing information. This straightforward technique should be used in conjunction 
with supplemental information from actual experience and third - party reports. 

 Consider 13 selection criteria,  m1 ,    . . .     m13 , each having a range  mi    ∈   [0, 1], 
where unity represents the highest possible satisfaction of the criterion and 
zero represents complete nonsatisfaction.

   1.     The  minimum interrupt latency ,  m1 , measures the time between the 
occurrences of hardware interrupt and when the corresponding inter-
rupt service routine begins executing. A low value represents relatively 
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high interrupt latency, while a high value represents a lower latency. 
This criterion is important because, if the minimum latency is greater 
than that required by the particular embedded system, a different oper-
ating system must be selected.  

  2.     This criterion,  m2 , defi nes the  maximum number of tasks  the RTOS can 
simultaneously support. Even though the operating system could 
support a large number of tasks, this metric is usually constrained by 
the available memory. This criterion is important for high - end systems 
that need numerous simultaneous tasks. A relatively high number of 
tasks supported would result in m2    =   1, while fewer tasks supported 
would suggest a lower value for m2 .  

  3.     Criterion  m3  specifi es the  total memory required  to support the RTOS. 
It does not include the amount of additional memory required to run 
the system ’ s application software. Rating  m3    =   1 suggests a minimal 
memory requirement, while  m3    =   0 would represent a large memory 
requirement.  

  4.     The  scheduling mechanism  criterion,  m4 , enumerates whether preemp-
tive, round - robin, or some other task - scheduling mechanism is used by 
the operating system. If several alternative or hybrid mechanisms were 
supported, then a high value would be assigned to  m4 .  

  5.     Criterion  m5  refers to the available methods the operating system has 
to allow tasks to communicate/synchronize  with each other. Among 
possible choices are binary, counting and  mutual - exclusion  ( mutex ) 
semaphores, mailboxes, message queues, ring buffers, shared memory, 
and so on. Let  m5    =   1 if the RTOS provides all desired communication 
and synchronization mechanisms. A lower value for  m5  implies that 
fewer mechanisms are available.  

  6.     Criterion  m6  refers to the  after - sale support  an RTOS company puts 
behind its product. Most vendors offer some sort of free technical 
support for a short period of time after the sale, with the option of 
purchasing additional support if required. Some companies even offer 
on - site consultation. A high value might be assigned to a strong and 
relevant support program, while  m6    =   0 if no support is provided.  

  7.      Application availability ,  m7 , refers to the amount of application software 
available (either that ships with the RTOS or is available elsewhere) to 
develop applications to run on the real - time operating system. For 
example, RTLinux is supported by the GNU ’  s suite of software, which 
includes the gcc C compiler and many freely available software debug-
gers, as well as other supporting software. This may be an important 
consideration, especially when starting to use an unfamiliar RTOS. Let 
m7    =   1 if a large amount of software were available, while  m7    =   0 would 
mean that little or nothing was available.  

  8.     Criterion  m8  refers to the different  CPUs supported , and is important 
in terms of portability and compatibility with off - the - shelf hardware 
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and software. This criterion also encompasses the range of peripherals 
that the operating system can support. A high value for the criterion 
represents a highly portable and compatible RTOS.  

  9.     Criterion  m  9  refers to whether the  source code  of the real - time operat-
ing system will be available to the developer, for tweaking or changes. 
The source code also gives insight to the RTOS architecture, which 
may be useful for debugging purposes and systems integration. 
Setting  m  9    =   1 would suggest open source code or free source code, 
while a lower value might be assigned in proportion to the purchase 
price of the source code. Let  m  9    =   0 if the source code were 
unavailable.  

  10.     Criterion  m  10  refers to the time it takes for the RTOS kernel to  save the 
context  when it needs to switch from one task to another. A relatively 
fast context switch time would result in a higher value for  m  10 .  

  11.     The criterion  m  11  is directly related to the  cost  of the RTOS alone (one -
 time license fee and possible per - unit royalties). This is critical because 
for some low - end systems, the RTOS cost may be disproportionately 
high. In any case, a relatively high cost would be assigned a very low 
value, while a low cost would merit a higher value for  m  11 .  

  12.     This criterion,  m  12 , rates which  development platforms  are available. In 
other words, it is a record of the other real - time operating systems that 
are compatible with the given RTOS. A high value for  m  12  would rep-
resent wide compatibility, while a low  m  12  would indicate a single 
platform.  

  13.     Finally, the criterion  m  13  is based on a record of what  communications 
networks and network protocols  are supported by the given RTOS. This 
would be useful to know because it rates what communications methods 
the software running on this RTOS would be able to use to communi-
cate with other computers. A high value for the criterion represents a 
relatively large variety of networks supported.    

 Recognizing that the importance of individual criteria will differ greatly 
depending on the application, a weighting factor,  w i     ∈   [0, 1], will be used for 
each criterion  m i  ,  i    ∈   {1, 2,    . . .    13}, where unity is assigned if the criterion has 
highest importance, and zero if the criterion is unimportant in the particular 
application. Then an average fi tness metric,   M ∈[ ]0 1, , for supporting the 
decision - making process, is formed as:

    M w mi i

i

=
=
∑1

13 1

13

    (3.8)   

 Obviously, a high value of   M means that the RTOS is well suited to the appli-
cation, and a low value means that the RTOS is poorly suited for the applica-
tion. While selection of the values for  w i   and  m i   will be somewhat 
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subjective for any given RTOS and any given application, the availability of 
this clear - cut metric provides a handle for  semi- objective  comparison.  

   3.5.3    Case Study: Selecting a Commercial Real - Time Operating System 

 A representative commercial RTOS is fi rst examined based on the 13 criteria 
just introduced. Although the data are mostly real, the manufacturer name is 
omitted, as our intention is not to imply a recommendation of any product —
 this case study is for illustration purposes only. For all the compared RTOSs, 
equal and fair operating conditions are assumed. 

 In the cases where a quantitative criterion value can be assigned, this is 
done right away. Where the criteria are  “ CPU dependent ”  or indeterminate, 
absent a real application, assignment of a numerical rating is postponed, and 
a value of  “ * ”  is given. This  “ unknown ”  value is approximated later at the time 
of application analysis. Note too that the values between columns of the com-
parison table need to be consistent. For example, if a 6 - μs interrupt latency 
yields m1    =   1 for RTOS X, the same 6 - μs latency should yield  m1    =   1 for RTOS 
Y as well. 

 Consider a commercial RTOS A. Table  3.9  summarizes the criteria and 
ratings, which were based on the following rationale. The product literature 
indicated that the minimum interrupt latency is CPU dependent, therefore 
m1    =   * is assigned here. Context switch time and compatibility with other 
RTOSs are not given, and so  m10    =    m12    =   * are indicated. In all these cases, the 
 “ * ”  will be later resolved as 0.5 for the purposes of evaluating the metric of 
Equation  3.8 . RTOS A supports 32 task - priority levels, but it is not known if 
there is a limit on the total number of tasks, so a value of  m2    =   0.5 is assigned. 
RTOS A itself requires 60   K bytes of memory, which is somewhat more than 
some of the alternatives, so a value of  m3    =   0.7 is assigned. The operating 

  TABLE 3.9.    Summary Data for  RTOS   A  

   Criterion     Description     Rating     Comment  

m1   Minimum interrupt latency     *     CPU dependent  
m2   Maximum number of tasks    0.5    32 task - priority levels  
m3   Total memory required    0.7    ROM: 60   K bytes  
m4   Scheduling mechanism    0.25    Preemptive only  
m5   Communicate/synchronize    0.5    Direct message passing  
m6   After - sale support    0.5    Paid phone support  
m7   Application availability    1    Various  
m8   CPUs supported    0.8    Various  
m9   Source code    1    Available  
m10   Save the context     *     Unknown  
m11   Cost    0.5    $2500   +   royalty fee  
m12   Development platforms     *     Unknown  
m13   Networks and protocols    1    Various  
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system provides only one form of scheduling, preemptive priority, so a low 
value,  m  4    =   0.25, is assigned here. Intertask communication and synchroniza-
tion is available only through direct message passing, so a relatively low 
 m  5    =   0.5 is assigned. RTOS A is available for various hardware platforms, but 
fewer than its competitors, hence  m  8    =   0.8.   

 The company behind RTOS A provides paid phone support, which is not 
as generous as other companies, so a value of  m  6    =   0.5 is assigned. The initial 
license fee is moderate, and there is some royalty per each produced unit, so 
 m  11    =   0.5 was assigned. Finally, there is a wide range of software support for 
the product, including the available source code and communications network 
protocols, so values of unity are given for these three criteria ( m  7    =    m  9    =    m  13    =   1). 

 Consider the following application and a set of fi ve real - time operating 
systems, including RTOS A just described and RTOS B - E, whose criteria were 
determined in a similar manner; see Laplante  (2005)  for more details. 

 The hard real - time software controlling an inertial measurement system of 
a fi ghter aircraft requires substantial input/output processing, which inherently 
causes a high rate of hardware interrupts. This is an extremely reactive and 
mission - critical system that requires fast context switching ( w  10    =   1), minimal 
interrupt latency ( w  1    =   1), compact hardware implementation ( w  3    =   1), versa-
tile synchronization ( w  5    =   1), and a well - supported system ( w  6    =    w  7    =   1). 
Hardware compatibility is not critical, because there is little need to port the 
system, and the number of tasks supported is relatively low, therefore, 
 w  2    =    w  8    =   0.1. Cost of the RTOS is not so important in this application, hence 
 w  11    =   0.4. The other criteria are set to 0.5, because they are only moderately 
important,  w  4    =    w  9    =    w  12    =    w  13    =   0.5. 

 The weights and corresponding ratings assigned are summarized in Table 
 3.10 , and the metric   M suggests that RTOS D is the best match for our inertial 
measurement system with   M = 0 527. , while the maximum possible rating is 
here   Mmax .= 0 662. Nevertheless, the metric of RTOS E (  M = 0 489. ) is only 
7.2% lower than that of RTOS D, and hence it represents the second - best 
match. The other candidates have their metrics 20.4 – 23.0% below the best one. 
Furthermore, it should be noted that all the real - time operating systems con-
sidered have relatively high standard deviation (0.269 – 0.384) of the weighted 
selection metrics. This is partly explained by the comparable standard devia-
tion of the weights  w i   (0.352).   

 In practice, both RTOS D and RTOS E would next be taken a closer look 
at before approaching the fi nal decision. Figure  3.22  illustrates the weighted 
ratings for RTOS D and RTOS E. We can observe that RTOS D has a 
higher weighted rating than RTOS E in four of the six imperative criteria 
weighted with unity. Moreover, the rating of fi rst criterion (minimum interrupt 
latency) is 0.5 for RTOS D, because it is defi ned vaguely as  “ CPU dependent. ”  
On the other hand, the minimum interrupt latency of RTOS E is provided 
explicitly as 6   μs ( ⇒     m  1    =   1). These and other specifi c details are available 
from Laplante  (2005) . Before making the actual decision, an exact value cor-
responding to this critical criterion should defi nitely be found out. The same 
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  TABLE 3.10.    Decision Table for the Inertial Measurement System 

   Criterion     Description     Weight 
 w i    

   A     B     C     D     E  

   m  1     Minimum interrupt latency    1    0.5    0.8    1    0.5    1  
   m  2     Maximum number of tasks    0.1    0.5    0.5    0.5    1    1  
   m  3     Total memory required    1    0.7    0.2    0.5    1    0.9  
   m  4     Scheduling mechanism    0.5    0.25    0.5    0.25    1    0.25  
   m  5     Communicate/synchronize    1    0.5    1    0.5    1    1  
   m  6     After - sale support    1    0.5    0.5    1    0.8    1  
   m  7     Application availability    1    1    0.75    1    1    0.5  
   m  8     CPUs supported    0.1    0.8    0.5    0.2    1    0.2  
   m  9     Source code    0.5    1    1    0    0.4    1  
   m  10     Save the context    1    0.5    0.5    0.5    1    0.5  
   m  11     Cost    0.4    0.5    0.5    0.1    0.1    0.7  
   m  12     Development platforms    0.5    0.5    0.5    0.5    0.5    0.5  
   m  13     Networks and protocols    0.5    1    1    1    1    0.6  

    M            0.405    0.417    0.419    0.527    0.489  

   STD  weighted             0.269    0.295    0.384    0.382    0.364  

     Figure 3.22.     Individual criterion weights (white) and weighted criterion ratings for 
RTOS D (black) and RTOS E (gray).  
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applies to the  “ save the context ”  criterion for RTOS E. After obtaining those 
additional data, and considering supplemental information from concrete 
experience and possible third - party reports, we are ready to begin close nego-
tiations with the company behind RTOS D or RTOS E. Finally, all the factors 
that guided us to the semi - objective decision should be thoroughly docu-
mented for future needs.    

   3.5.4    Supplementary Criteria for Multi - Core and Energy - Aware Support 

 For many years, the fundamental selection criteria,  m i  ,  i    ∈   {1, 2,    . . .    13}, just 
discussed have remained fairly static; no major advancement has occurred in 
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evaluating the suitability of an RTOS for a specifi c application by utilizing the 
standard metric of Equation  3.8 . Only quantitative expansion has taken place, 
particularly, within the application availability (criterion  m7 ), as well as the 
availability of communications networks and network protocols (criterion 
m13 ). Recently, however, two new criteria have become pertinent when select-
ing a real - time operating system for multi - core environments (Sindhwani and 
Srikanthan,  2005 ) or energy - aware embedded systems (Saran et al.,  2005 ). 

 Multi - core processors (see Section  2.3.3 ) are used increasingly in both 
nonembedded and embedded real - time applications, because they can offer 
high instruction throughput and true concurrency for real - time multitasking. 
To take full advantage of the available parallel - processing capability, a special 
RTOS is needed that is designed and confi gured for multi - core architectures. 
Just a few commercial RTOSs exist with explicit multi - core support, such as a 
hybrid multitasking scheme that provides both intra - core  and  inter - core  mul-
titasking with a double - level operating system hierarchy. This intra - core mul-
titasking resembles the behavior of a conventional multitasking system in a 
uniprocessor environment, while the higher - level inter - core multitasking pro-
vides true concurrency that is only possible with two or more cores. In some 
cases, even a single task could be split across more than one core by an online 
scheduler (Lakshmanan et al.,  2009 ). Therefore, to support the latest needs, 
we introduce another criterion,  multi - core support  ( m14 ), which is used when 
the desired processing environment is not a traditional uniprocessor. Here, 
m14    =   0 corresponds to an RTOS with no multi - core support, and  m14    =   1 if 
extensive multi - core features and associated load - balancing utility software 
are available. 

 Energy - aware operating systems are used increasingly in wireless sensor 
network applications, including environmental monitoring, high - tech bridges, 
military surveillance, smart buildings, and traffi c monitoring (Eswaran et al., 
 2005 ). Those tiny, spatially distributed, and highly cooperative real - time 
systems are usually battery operated, and there is a primary requirement to 
maximize the battery lifetime. In its simplest form,  “ energy - aware ”  means just 
a capability of the RTOS to put the idling CPU (no task is scheduled to execute 
within a specifi ed time window) to a sleep mode, where the power consump-
tion can be reduced to �� 1% of the active mode consumption. A hardware 
interrupt from a real - time clock or communications controller awakes the 
CPU back to the active mode in a few microseconds. More sophisticated 
energy - aware operating systems may provide adaptable  quality - of - service  
( QoS ) for communications performance; higher data loss and transmission 
error probabilities are traded off against lower energy consumption, and vice 
versa (Raghunathan et al.,  2001 ). The QoS is regulated by adjusting the supply 
voltage and clock frequency of the CPU appropriately. In that way, signifi cant 
energy savings can be obtained with acceptable QoS levels in ad hoc networks. 
For supporting these emerging needs, we introduce another criterion,  energy -
 aware support  ( m15 ). It is used when the application has specifi c energy aware-
ness requirements. If the RTOS offers no energy - aware support,  m15  is set to 
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zero. A high value for  m15  implies that several energy - saving options are pro-
vided. Some of the light - overhead energy - aware operating systems are based 
on an event - driven programming model that differs from the traditional 
scheduling approaches (Rossetto and Rodriguez,  2006 ). 

 Finally, after introducing two supplementary selection criteria,  m14  and  m15 , 
we have to modify the metric of Equation  3.8  accordingly. In the future, when 
the processor and applications technologies evolve, it is likely that additional 
criteria will be introduced every now and then. Moreover, certain real - time 
applications have already unique application - specifi c criteria to consider in 
addition to the standard ones discussed above.   

   3.6    SUMMARY 

 In this chapter, we gave a thorough presentation on central issues related to 
real - time operating systems. The practical discussion has both extensive 
breadth and considerable depth, and hence it forms a solid basis for under-
standing, designing, and analyzing multitasking systems having shared 
resources. Our presentation — contrary to most other textbooks on real - time 
systems — also covers a heterogeneous collection of pseudokernels, because 
the primary goal of a software designer is to create a competitive real - time 
system , not merely to use an operating system (that should be seen as a tool). 

 But what are the general conclusions and suggestions that follow from that 
discussion? Real - time software engineering requires understanding the 
purpose to be achieved, the available resources, and the manner in which they 
may be allocated collectively to achieve the ultimate objective — a predictable 
and maintainable real - time system, which fulfi lls all response - time require-
ments with adequate punctuality. To contribute to the burdensome process of 
achieving the ultimate objective, we next compose a set of pragmatic rules that 
are derived from the contents of Sections  3.1  –  3.5 :

 •      From Pseudokernels to Operating Systems .      There is a variety of  “ operating -
 system ”  architectures available but consider fi rst the simple ones, since 
they are usually more predictable and their computational overhead is 
lower; if you decide to use other than pseudokernels in embedded systems, 
minimize the number of tasks, because task switching and synchronization 
are time - consuming operations.  

 •      Theoretical Foundations of Scheduling .      Internalize the general principles 
of fi xed -  and dynamic - priority scheduling, as they are helpful when you 
prioritize tasks or interrupts in a practical real - time system.  

 •      System Services for Application Programs .      Never use global buffers 
without a safe locking mechanism; always pay special attention to dead-
lock avoidance when you share critical resources between multiple tasks; 
beware of priority inversion; although system services make the program-
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ming work easier, remember that most system calls are time - consuming 
because they end up to scheduling.  

 •      Memory Management Issues .      If your operating system uses multiple 
stacks, reserve an adequate (worst - case) space for them — sporadic stack 
overfl ows are disastrous and diffi cult to debug; computing platforms with 
virtual memory are for soft and fi rm real - time systems only, since page 
swapping between the main memory and secondary storage is overly 
time - consuming; moreover, the main memory and secondary storage need 
regular garbage collection and compaction, which may disturb time -
 critical tasks.  

 •      Selecting Real - Time Operating Systems .      If you choose above  “ kernel ”  in 
the operating system taxonomy (see Fig.  3.2 ), a commercial solution is 
usually the best choice; devote substantial expertise and effort to the 
selection process, because you usually have to live with the selected RTOS 
for several years; collect fi rst the relevant technical information to obtain 
some objectiveness to your decision - making strategy; admit that the fi nal 
decision can only be semi - objective (at its best), because you have a multi -
 objective optimization problem with obvious uncertainties in the compos-
ite cost function; do not be afraid of subjective criteria or  “ feelings, ”  as 
many complicated problems, such as selecting one ’ s career or employer, 
are often successfully solved with largely subjective arguments; anyhow, 
the RTOS selected should only be  “ good enough. ”     

 During recent years, the requirements set for real - time operating systems have 
somewhat evolved due to developments in processor and applications tech-
nologies. Multi - core processors and energy - aware sensor networks have set 
totally new challenges for RTOS developers. Besides, there is still a lot of space 
for innovations and associated research in those and other emerging segments. 
Thus, the fi eld of real - time operating systems is vital from both engineering 
and research viewpoints.  

  3.7     EXERCISES 

3.1.    Explain what is meant by task concurrency in a uniprocessor 
environment.   

3.2.    What are the desirable features that an operating system should have to 
provide for predictability in time - critical applications?   

3.3.    For some sample real - time systems described in Chapter  1 , discuss which 
operating system architecture is most appropriate.

(a)     Inertial measurement system.  
(b)     Nuclear monitoring system.  
(c)     Airline reservations system.  
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  (d)     Pasta sauce bottling system.  
  (e)     Traffi c light controller.    

 Make whatever assumptions you like, but document them and justify 
your answers.   

    3.4.    What determines the priority of a task in an embedded application with 
fi xed priorities?   

    3.5.    Construct a cyclic code structure with four procedures, A, B, C, and D. 
Procedure A runs twice as frequently as B and C, and procedure A runs 
four times as frequently as D.   

    3.6.    What is the principal difference between a background task and a fore-
ground task?   

    3.7.    Exceptions can be used conveniently as a framework for error recovery. 
Defi ne the following terms:

   (a)     A synchronous exception.  
  (b)     An asynchronous exception.  
  (c)     An application - detected error.  
  (d)     An environment - detected error.      

    3.8.    Should an interrupt service routine be allowed to be interruptible? If it 
is, what are the consequences?   

    3.9.    Write some simple assembly language routine that is not reentrant. How 
could you make it reentrant?   

    3.10.    Write  save  and  restore  routines (see Section  3.1.4 ) in assembly code, 
assuming push all ( PUSHALL ) and pop all ( POPALL ) instructions are 
available for saving and restoring all work registers.   

    3.11.    Discuss the difference between fi xed and dynamic, online and offl ine, 
optimal and heuristic scheduling algorithms.   

    3.12.    Show mathematically that the upper limit for CPU utilization with the 
rate - monotonic approach,   lim

n

nn
→∞

−( )2 11 , is exactly ln   2 as stated in 
Equation  3.7 .   

    3.13.    Discuss the advantages of earliest deadline fi rst scheduling over rate -
 monotonic scheduling and vice versa.   

    3.14.    Explain what is meant by context - switching overhead, and how to 
account for it in the rate - monotonic and earliest deadline fi rst schedu-
lability analysis.   

    3.15.    Show with an example that the earliest deadline fi rst algorithm is no 
longer an optimal scheduling algorithm if preemption is not allowed.   
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3.16.    Give two different explanations why the following three periodic tasks 
are schedulable by the rate - monotonic algorithm:  τ1      ≡     {0.8, 2},  τ2     ≡    {1.4, 
4}, and  τ3     ≡    {2, 8}. Here, the notation  τi     ≡    { ei ,  pi } gives the execution time, 
ei , and period,  pi , of task  τi .   

3.17.    Verify the schedulability under rate - monotonic algorithm and construct 
the schedule of the following task set:  τ1     ≡    {3, 7},  τ2     ≡    {5, 16}, and  τ3     ≡    {3, 
15}. Here, the notation  τi     ≡    { ei ,  pi } gives the execution time,  ei , and period, 
pi , of task  τi .   

3.18.    Verify the schedulability under earliest deadline fi rst algorithm and con-
struct the schedule of the following task set:  τ1     ≡    {1, 5, 4},  τ2     ≡    {2, 8, 6}, 
and τ3     ≡    {1, 4, 3}. Here, the notation  τi     ≡    { ei ,  pi ,  Di } gives the execution 
time,  ei , period,  pi , and relative deadline,  Di , of task  τi .   

3.19.    What effect does the length of a ring buffer have on its performance? 
How would you determine the suitable length for a specifi c case?   

3.20.    Write  save  and  restore  routines (see Section  3.1.4 ) in assembly code 
so that they save and restore the context to/from the head and tail of a 
ring buffer, respectively — instead of using a stack.   

3.21.    Assume a preemptive priority system with two tasks,  τ1  and  τ2  (with 
τ1     �    τ2 ), which share a single critical resource. Show with an appropriate 
execution scenario that a simple software fl ag (a global variable) at the 
level of application tasks is not adequate for providing safe sharing of 
the critical resource.   

3.22.    An operating system provides 256 fi xed priorities to tasks in the system, 
but only 32 priority levels for their messages exchanged through message 
queues. Suppose that each posting task chooses the priority of its mes-
sages by mapping the 256 priorities to 32 message - priority levels. Discuss 
some potential problems associated with this uniform mapping scheme. 
What kind of approach would you take?   

3.23.    Write two pseudocode routines to access ( read  from and  write  to) a 20 -
 item ring buffer. The routines should use binary semaphores to allow 
more than one user to access the buffer safely.   

3.24.    Give an example from the real world in which a deadlock sometimes 
occurs in practice. How is that situation usually solved?   

3.25.    Show how priority inheritance can cause a deadlock. Consider three 
tasks (with τ1     �    τ2     �    τ3 ) and appropriate lock – unlock sequences.   

3.26.    What knowledge is needed to determine the size of runtime stack in a 
multiple - interrupt system? What safety precautions are necessary?   

3.27.    Write a pseudocode procedure compacting 64   M bytes of memory that 
is divided into 1   M - byte pages. Use a pointer scheme.   
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3.28.    Write a pseudocode procedure that allocates pages of memory on 
request. Assume that 100 pages of size 1   M byte, 2   M bytes, and 4   M 
bytes are available. The procedure should take the size of the page 
requested as an argument, and return a pointer to the allocated page. 
The smallest available page should be used, but if the smallest size is 
unavailable, the next smallest should be used.   

3.29.    By performing a Web search, obtain as much relevant data as you can 
for at least two commercial real - time operating systems. Summarize your 
fi ndings and compare those operating systems to each other. What are 
their main differences?   

3.30.    Identify some of the limitations of existing commercial real - time kernels 
for the development of mission -  and safety - critical applications. Perform 
a Web search to collect the necessary information.      
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     Programming languages inspired vigorous debates among programmers in the 
early  years of embedded real - time systems: should one continue to use the 
assembly language, go ahead with one of the PL/I derivatives (Intel ’ s PL/M, 
Motorola ’ s MPL, or Zilog ’ s PL/Z), or even consider the emerging C language 
for a software project? Today , there is very little such debate between practi-
tioners developing embedded software. If we consider the global community 
of professional real - time programmers, we could even condense the 
programming - language selection dilemma to two principal alternatives: C ++
or C — increasingly in this order of consideration. Of course, there are excep-
tions to our somewhat naive simplifi cation: Ada has a place in new and legacy 
projects for the U.S.  Department of Defense  ( DoD ), and Java is used widely 
in applications to be run on multiple platforms. Nevertheless, we choose to 
simplify the decision around C ++  and C: if you have a large software project 
where the productivity of programmers and the long - term maintainability of 
code produced are of primary importance, then C ++  is a good choice, while in 
smaller projects with tight response - time specifi cations and/or considerable 
material - cost pressure to make the hardware platform overly reduced, C is 
the appropriate language. And specifi cally, we are talking about new product 
generations only, that is, software to be developed largely from scratch. The 
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situation is obviously different if we want to reuse some software from earlier 
projects or merely extend an existing product. 

 Writing software is considered, increasingly, to be commoditized work that 
could be subcontracted to a software consulting company if rigorous 
requirements - engineering processes have been followed. This situation is espe-
cially true with large - scale projects, like building automation systems or cell -
 phone exchanges. On the other hand, in highly time - critical applications and 
in the core sections of innovative products, the software development effort 
may take place very close to the corresponding algorithms development to 
ensure that the required sampling rates are achieved in embedded systems 
within the  “ dangerous ”  CPU utilization zone (see Table  1.3 ), or critical intel-
lectual property needs to be protected within the organization. 

 In this chapter, we provide an evaluative discussion on programming lan-
guages for real - time systems. Recognizing that each organization and applica-
tion is unique, and the need to consider multiple language choices is often 
necessary, the discussion goes beyond the simplifi ed C ++ /C viewpoint that was 
expressed in the beginning of the chapter. Section  4.1  introduces the general 
topic of writing real - time software with a brief overview on coding standards. 
The limited but continuing use of assembly language is contemplated in 
Section  4.2 , while Sections  4.3  and  4.4  provide pragmatic discussions on the 
advantages and disadvantages of procedural and object - oriented languages, 
respectively. Section  4.5  contains a focused overview of mainstream program-
ming languages: Ada, C, C ++ , C#, and Java. Automatic code generation has 
been a dream of software engineers for a long time, but there are no general -
 purpose techniques for creating real - time software  “ automatically. ”  An intro-
duction to automatic code generation and its challenges is given in Section  4.6 . 
Section  4.7  presents some standard code - optimization strategies used in com-
pilers. These optimization strategies are particularly valuable to note when 
writing time - critical code with a procedural language, or when debugging an 
embedded system at the level of assembly - language instructions. An insightful 
summary of the preceding sections is provided next in Section  4.8 . Finally, a 
carefully composed set of exercises is available in Section 4.9.  

   4.1    CODING OF REAL - TIME SOFTWARE 

 Misuse of the underlying programming language can be the single greatest 
source of performance deterioration and missed deadlines in real - time systems. 
Moreover, when using object - oriented languages in real - time systems, such 
performance problems can be more diffi cult to analyze and control. Nonetheless, 
object - oriented languages are steadily displacing procedural languages as the 
language of choice in real - time embedded systems development. Figure  4.1  
depicts the mainstream  use of programming languages in embedded real - time 
applications from the 1970s to the present decade.   

 Some parts of this section have been adapted from Laplante  (2003) . 
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   4.1.1    Fitness of a Programming Language for Real - Time Applications 

 A programming language represents the nexus of design and structure. Hence, 
because the actual  “ build ”  of software depends on tools to compile, generate 
binary code, link, and create binary objects,  “ coding ”  should take proportion-
ally less time than the requirements engineering and design efforts. Nevertheless, 
 “ coding ”  (synonymous to  “ programming ”  and  “ writing software ” ) tradition-
ally has been more craft - like than production based, and as with any craft, the 
best practitioners are known for the quality of their tools and the associated 
skills to use them effectively. 

 The main tool in the code generation process is the language compiler. 
Real - time systems are currently being built with a variety of programming 
languages (Burns and Wellings,  2009 ), including various dialects of C, C +  + , C#, 
Java, Ada, assembly language, and even Fortran or Visual Basic. From this 
heterogeneous list, C +  + , C#, and Java are all object - oriented, while the others 
are procedural. It should be pointed out, however, that C +  +  can be abused in 
such a way that all object - oriented advantages are lost (e.g., by embedding an 
old C program into one  “ God ”  class). Furthermore, Ada 95 has elements of 
 both  object - oriented and procedural languages, and can hence be used either 
way, depending on the skills and preferences of the programmer as well as 
local project policies. 

 A relevant question that is often asked is:  “ What is the fi tness of a program-
ming language for real - time applications and what metrics could be used to 
measure or at least estimate such fi tness? ”  To address this multidimensional 
question consider, for instance, the fi ve criteria of Cardelli (Cardelli,  1996 ):

   C1.     Economy of Execution .      How fast does a program run?  
  C2.     Economy of Compilation .      How long does it take to go from multiple 

source fi les to an executable fi le?  

       Figure 4.1.     Mainstream usage of real - time programming languages over the years (the 
year limits are approximate).  
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  C3.     Economy of Small - Scale Development .      How hard must an individual 
programmer work?  

  C4.     Economy of Large - Scale Development .      How hard must a team of pro-
grammers work?  

  C5.     Economy of Language Features .      How hard is it to learn or use a pro-
gramming language?    

 Every programming language offers undoubtedly its own strengths and weak-
nesses with respect to real - time systems, and these qualitative criteria, C1 – C5, 
can be used to calibrate the features of a particular language for oranges - to -
 oranges comparison within a given application. The Cardelli criteria can be 
illustrated with a pentacle diagram (Sick and Ovaska,  2007 ) shown in Figure 
 4.2 . Such diagrams provide simple means for visual comparison of candidate 
programming languages.   

 In this chapter, we do not intend an exhaustive programming - language 
survey; instead, our focus is on those language features that could be used to 
minimize the fi nal code execution time and that lend themselves to perfor-
mance prediction. The compile - time prediction of execution performance 
directly supports a schedulability analysis. In the design of special real - time 
programming languages, the emphasis is on eliminating those constructs that 
render the language nonanalyzable, for example, unbounded recursion and 
unbounded  while  loops. Most so - called  “ real - time languages ”  strive to elimi-
nate all of these. On the other hand, when mainstream languages are used for 
real - time programming, certain problematic code structures may simply be 
prohibited through coding standards.  

   4.1.2    Coding Standards for Real - Time Software 

 Coding standards (Li and Prasad,  2005 ) are different from language standards. 
A language standard, for example, C +  +  ANSI/ISO/IEC 14882:2003, embodies 

       Figure 4.2.     Pentacle diagram for illustrating the Cardelli criteria of various economies 
(the gray pentacle corresponds to assembly language).  
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the syntactic rules of the C ++  programming language. A source program vio-
lating any of those rules will be rejected by the compiler. A coding standard, 
on the other hand, is a set of stylistic conventions or  “ best practices. ”  Violating 
these conventions will not lead to compiler rejection. In another sense, compli-
ance with language standards is mandatory, while compliance with coding 
standards is, at least in principle, voluntary. 

 Adhering to language standards fosters portability across different compil-
ers, and, hence, hardware environments. Complying with coding standards, on 
the other hand, will not foster portability, but rather in many cases, readability, 
maintainability, and reusability. Some practitioners even contend that the use 
of strict coding standards can increase software reliability. Coding standards 
may also be used to foster improved performance by encouraging or mandat-
ing the use of certain language constructs that are known to generate code 
that is more effi cient. Many agile methodologies, for instance, eXtreme 
Programming (Hedin et al.,  2003 ), embrace special coding standards. 

 Coding standards typically involve standardizing some or all of the follow-
ing elements of programming language use:

 •      Header format  
 •      Frequency, length, and style of comments  
 •      Naming of classes, data, fi les, methods, procedures, variables, and so forth  
 •      Formatting of program source code, including use of white space and 

indentation
 •      Size limitations on code units, including maximum and minimum number 

of code lines, and number of methods used  
 •      Rules about the choice of language construct to be used; for example, 

when to use case  statements instead of nested  if-then-else
statements    

 While it is unclear if conforming to these rules fosters signifi cant improvement 
in reliability, clearly close adherence can make programs easier to read 
and understand, and hence likely more reusable and maintainable (Hatton, 
 1995 ). 

 There exist many different standards for coding that are either language 
independent or language specifi c. Coding standards can be companywide, 
teamwide, user - group specifi c (e.g., the GNU software group has standards for 
C and C ++ ), or customers can require conformance to a certain standard of 
their own. Furthermore, other standards have come into the public domain. 
One example is the Hungarian notation standard (Petzold,  1999 ), named in 
honor of Charles Simonyi, who is credited with fi rst promulgating its use. 
Hungarian notation is a public - domain standard intended to be used with 
object - oriented languages, particularly C ++ . The standard uses a purposeful 
naming scheme to embed type information about the objects, methods, attri-
butes, and variables in the name. Because the standard essentially provides a 
set of rules about naming various identifi ers, it can be and has been used with 
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other languages, such as Ada, Java, and even C, as well. Another example is in 
Java, which, by convention, uses all uppercase for constants such as  PI  and  E . 
Moreover, some classes use a trailing underscore to distinguish an attribute 
like x_  from a method like  x( ) . 

 A general problem with style standards, like the Hungarian notation, is that 
they can lead to mangled variable names, and that they direct the program-
mer ’ s focus on how to name in  “ Hungarian ”  rather than choosing a meaningful 
name of the variable for its use in code. In other words, the desire to conform 
to the standard may not always result in a particularly meaningful variable 
name. Another problem is that the very strength of a coding standard can also 
be its undoing. For example, in Hungarian notation, what if the type informa-
tion embedded in the object name is, in fact, wrong? There is no way for any 
compiler to recognize this mistake. There are commercial rules wizards, remi-
niscent of the C language checking tool, lint, which can be tuned to enforce 
coding standards, but they must be programmed to work in conjunction with 
the compiler. Moreover, they can miss certain inconsistencies, leading the 
developers to a sense of false confi dence. 

 Finally, adoption of coding standards is not recommended mid - project. It is 
easier and more motivating to start conforming from the beginning than to be 
required to change an existing style to comply. The decision to use a specifi c 
coding standard is an organizational one that requires signifi cant forethought 
and open discussion.   

   4.2    ASSEMBLY LANGUAGE 

 In the mid -  to late 1970s, when the fi rst high - level languages became available 
for microprocessors, some college instructors told their students that  “ in fi ve 
years, nobody will be writing real applications in assembly language. ”  However, 
after more than 30 years from those days, assembly language still has a con-
tinuing, but limited role in real - time programming. 

 What are the reasons behind this? Well, although lacking user - friendliness 
and productivity features of high - level languages, assembly language does 
have a particular advantage for use in real - time programming; it provides the 
most direct control of the computer hardware over high - level languages. This 
advantage has extended the use of assembly language in real - time systems, 
despite the fact that assembly language is unstructured and has very limited 
abstraction properties. Moreover, assembly - language syntax varies greatly 
from processor to processor. Coding in assembly language is, in general, time -
 consuming to learn, tedious, and error prone. Finally, the resulting code is not 
easily ported across different processors, and hence the use of assembly lan-
guage in embedded real - time systems — or in any professional system — is to 
be discouraged. 

 A generation ago, the best programmers could generate assembly code that 
was often more effi cient than the code generated by a procedural - language 
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compiler. But with signifi cant improvements in optimizing compilers over the 
past decades, this is rarely the case today — if you can write your program in 
a procedural language like C, the compiler should be able to generate very 
effi cient machine - language code in terms of execution speed and memory 
usage. Thus, the need to write assembly code exists only in special circum-
stances when the compiler does not support certain machine - language instruc-
tions, or when the timing constraints are so tight that manual tuning is the only 
way to produce code that fulfi lls the extreme response - time requirements. 
Furthermore, you will fi nd assembly - language code in many legacy real - time 
applications, and even today you can still occasionally encounter situations 
where small portions of a real - time system need to be written using assembly 
language. We will discuss some of these situations shortly. 

 In terms of Cardelli ’ s criteria of various economies, assembly languages 
have excellent economy of execution, and vacuously, of compilation too 
because they are not compiled. Assembly languages, however, have poor econ-
omies of small -  and large - scale development and of language features (see Fig. 
 4.2 ). Hence, assembly language programming should be limited to use in very 
tight timing situations or in controlling hardware features that are not sup-
ported by the compiler. The continuing role of assembly language in this 
decade is summarized below:

 •      For certain kinds of code, such as interrupt handlers and for device drivers 
for unique hardware where the  “ intellectual distance ”  between the hard-
ware and software needs to be minimized.  

 •      For situations where predictable performance for the code is extremely 
diffi cult or impossible to obtain because of undesirable programming -
 language – compiler interactions.  

 •      For effectively using all architectural features of a CPU, for instance, 
parallel adders and multipliers.  

 •      For writing code with minimum execution time achievable for time - critical 
applications, such as sophisticated signal - processing algorithms with high 
sampling rates.  

 •      For writing the entire software for custom - designed CPUs with a small 
instruction set (see Section  2.5.3 ) — if no high - level language support is 
available.  

 •      For debugging hard problems below the level of high - level language code 
and tracing the stream of fetched instructions by a logic analyzer.  

 •      For teaching and learning computer architectures and internal operation 
of processors.    

 To deal with these special situations, the software developer will usually write 
a shell of the program in a high - level language and compile the code to an 
intermediate assembly representation, which is then fi ne - tuned manually to 
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obtain the desired effect. Some languages, such as Ada, provide a way for 
assembly code to be placed inline with the high - level - language code. In any 
case, the use of assembly language within a real - time system must be done 
reluctantly and with extreme caution.  

   4.3    PROCEDURAL LANGUAGES 

 Procedural languages such as Ada, C, Fortran, and Visual Basic, are those in 
which the action of the program is defi ned by a set of operations executed in 
sequence. These languages are characterized by facilities that allow for instruc-
tions to be grouped together into procedures or modules. Appropriate struc-
turing of the procedures allows for achievement of desirable properties of the 
software, for example, modularity, reliability, and reusability. 

 There are several programming - language features standing out in proce-
dural languages that are of interest in real - time systems, particularly:

 •      Modularity  
 •      Strong typing  
 •      Abstract data typing  
 •      Versatile parameter passing mechanisms  
 •      Dynamic memory allocation facilities  
 •      Exception handling    

 These language features, to be discussed shortly, help promote the desirable 
properties of software design and best real - time implementation practices. 

   4.3.1    Modularity and Typing Issues 

 Procedural languages that are amenable to the principle of information hiding 
tend to promote the construction of high - integrity real - time systems. While C 
and Fortran both have mechanisms that can support information hiding (pro-
cedures and subroutines), other languages, such as Ada, tend to foster more 
modular design  because of the requirement to have clearly defi ned inputs and 
outputs in the module parameter lists. 

 In Ada, the notion of a package embodies the concept of Parnas informa-
tion hiding (Parnas,  1972 ) exquisitely. The Ada package consists of a specifi ca-
tion and declarations that include its public or visible interface and its private 
or invisible elements. In addition, the package body, which has more externally 
invisible components, contains the working code of the package. Individual 
packages are separately compilable entities, which further enhances their 
application as black boxes. Furthermore, the C language provides for sepa-
rately compiled modules and other features that promote a rigorous top - down 
design approach, which should lead to a solid modular design. 
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 While modular software is desirable for many reasons, there is a price to 
pay in the overhead associated with procedure calls and essential parameter 
passing. This adverse effect should be considered carefully when sizing 
modules. 

 Typed languages require that each variable and constant be of a specifi c 
type (e.g., Boolean, integer, or real), and that each be declared as such before 
use.  Strongly typed  languages prohibit the mixing of different types in opera-
tions and assignments, and thus force the programmer to be exact about the 
way data are to be handled. Precise typing can prevent corruption of data 
through unwanted or unnecessary type conversion. Moreover, compiler type -
 checking is an important step to fi nd errors at compile time, rather than at 
runtime, when they are more costly to repair. Hence, strongly typed languages 
are truly desirable for real - time systems. 

 Generally, high - level languages provide integer and real types, along with 
Boolean, character, and string types. In some cases,  abstract data types  are 
supported, too. These allow programmers to defi ne their own types along with 
the associated operations. Use of abstract data types, however, may incur an 
execution - time penalty, as complicated internal representations are often 
needed to support the abstraction. 

 Some languages are typed, but do not prohibit mixing of types in arithmetic 
operations. Since these languages generally perform mixed calculations using 
the type that has the highest storage complexity , they must promote all vari-
ables to that highest type. For example, in C, the following code fragment 
illustrates automatic promotion and demotion of variable types:

int x,y; 
float a,b; 
y=x*a+b;

 Here the variable  x  will be promoted to a  float  (real) type and then multi-
plication and addition will take place in fl oating point. Afterward, the result 
will be truncated and stored in y  as an integer. The negative performance 
impact is that hidden promotion and more time - consuming arithmetic instruc-
tions are generated, with no additional accuracy achieved. Accuracy can be 
lost due to the truncation, or worse, an integer overfl ow can occur if the real 
value is larger than the allowable integer value. Programs written in languages 
that are weakly typed need to be scrutinized for such effects. Fortunately, most 
C compilers can be tuned to catch type mismatches in function parameters, 
preventing unwanted type conversions.  

   4.3.2    Parameter Passing and Dynamic Memory Allocation 

 There are several methods of  parameter passing , including the use of param-
eter lists and global variables. While each of these techniques has preferred 
uses, each has a different performance impact as well. Note that these 
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parameter - passing mechanisms are also found in object - oriented program-
ming languages. 

 The two most widely available parameter - passing methods are  call - by - value
and call - by - reference . In call - by - value parameter passing, the value of the 
actual parameter in the procedure call is copied into the procedure ’ s formal 
parameter. Since the procedure manipulates the formal parameter only, the 
actual parameter is not altered. This technique is useful either when a test is 
being performed or the output is a function of the input parameters. For 
instance, in passing accelerometer readings from the 10 - ms cycle to the 40 - ms 
cycle, the raw data need not be returned to the calling routine in changed form. 
When parameters are passed using call - by - value, they are copied onto a 
runtime stack, at additional execution - time cost. 

 In call - by - reference (or call - by - address), the address of the parameter is 
passed by the calling routine to the called procedure so that the corresponding 
memory content can be altered there. Execution of a procedure using call - by -
 reference can take longer than one using call - by - value, since in call - by - refer-
ence, indirect addressing mode instructions are needed for any operations 
involving the variables passed. However, in the case of passing large data 
structures, such as buffers between procedures, it is more desirable to use call -
 by - reference, since passing a pointer is more effi cient than passing the data 
by byte. 

 Parameter lists are likely to promote modular design because the interfaces 
between the modules are clearly defi ned. Clearly defi ned interfaces can reduce 
the potential of untraceable corruption of data by procedures using global 
access. However, both call - by - value and call - by - reference parameter - passing 
techniques can impact real - time performance when the lists are long, since 
interrupts are often disabled during parameter passing to preserve the integ-
rity of the data passed. Moreover, call - by - reference may introduce subtle 
function side effects, depending on the compiler. 

 Before deciding on a specifi c set of rules concerning parameter passing for 
optimum performance, it is advisable to construct a set of test cases that exer-
cise different alternatives. These test cases need to be rerun every time the 
compiler, hardware, or application changes in order to update the rules. 

 Global variables are variables that are within the scope of all code.  “ Within 
scope ”  usually means that references to these variables can be made with 
minimal memory fetches to resolve the target address, and thus are faster than 
references to variables passed via parameter lists, which require additional 
memory references. For example, in many image - processing applications, 
global arrays are defi ned to represent entire images, hence allowing costly 
parameter passing to be avoided. 

 However, global variables are dangerous because references to them can 
be made by unauthorized code, potentially introducing faults that can be hard 
to isolate. Use of global variables also violates the principle of information 
hiding, making the code diffi cult to understand and maintain. Therefore, 
unnecessary and wanton use of global variables is to be avoided. Global 
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parameter passing is only recommended when timing constraints so require, 
or if the use of parameter lists leads to obfuscated code. In any case, the use 
of global variables must be strictly coordinated and clearly documented. 

 The decision to use one method of parameter passing or the other may 
represent a trade - off between good software engineering practice and perfor-
mance needs. For instance, often timing constraints force the use of global 
parameter passing in instances when parameter lists would have been pre-
ferred for clarity and maintainability. 

 Most programming languages provide recursion in that a procedure can 
either call itself or use itself in its construction. While recursion may be elegant 
and is sometimes necessary, its adverse impact on real - time performance must 
be considered. Procedure calls require the allocation of storage on the stack 
for the passing of parameters and for storage of local variables. The execution 
time needed for the allocation and deallocation, as well as for storing and 
retrieving those parameters and local variables, can be costly. In addition, 
recursion necessitates the use of a large number of expensive memory -  and 
register - indirect instructions. Moreover, precautions need to be taken to ensure 
that the recursive routine will terminate, otherwise the runtime stack will 
eventually overfl ow. The use of recursion often makes it impossible to deter-
mine the exact size of runtime memory requirements. Thus, iterative tech-
niques, such as  while  and  for  loops, must be used where performance and 
determinism are crucial or naturally in those languages that do not support 
recursion. 

 The ability to dynamically allocate memory is important in the construction 
and maintenance of many data structures needed in real - time systems. While 
dynamic memory allocation  can be time - consuming, it is necessary, especially 
in the construction of interrupt handlers, memory managers, and the like. 
Linked lists, trees, heaps, and other dynamic data structures can benefi t from 
the clarity and economy introduced by dynamic memory allocation. 
Furthermore, in cases where just a pointer is used to pass a data structure, the 
overhead for dynamic allocation can be reasonable. When coding real - time 
systems, however, care should be taken to ensure that the compiler will always 
pass pointers to large data structures and not the data structures themselves. 

 Languages that do not allow dynamic allocation of memory, for example, 
some primitive high - level languages or assembly language require data struc-
tures of fi xed size. While this may be faster, fl exibility is sacrifi ced and memory 
requirements must be predetermined. Modern procedural languages, such as 
Ada, C, and Fortran 2003, have dynamic allocation facilities.  

   4.3.3    Exception Handling 

 Some programming languages provide facilities for dealing with errors or other 
anomalous conditions that may arise during program execution. These condi-
tions include the obvious, such as fl oating - point overfl ow, square root of a nega-
tive argument, divide - by - zero, as well as possible user - defi ned ones. The ability 
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to defi ne and handle exceptional conditions in the high - level language aids in 
the construction of interrupt handlers and other critical code used for real - time 
event processing. Moreover, poor handling of exceptions can degrade perfor-
mance. For instance, fl oating - point overfl ow errors can propagate bad data 
through an algorithm and instigate time - consuming error - recovery routines. 

 In ANSI - C, the  raise  and  signal  facilities are provided for creating 
exception handlers. A  signal  is a type of software interrupt handler that is 
used to react to an exception indicated by the raise  operation. Both are 
provided as function calls, which are typically implemented as macros. 

 The following prototype can be used as the front end for an exception 
handler to react to signal S .

void ( *signal (int S, void ( *func) (int)))(int); 

 When signal  S  is set, function  func  is invoked. This function represents the 
actual interrupt handler. In addition, we need a complementary prototype:

int raise (int S); 

 Here  raise  is used to invoke the task that reacts to signal  S . 
 ANSI - C includes a number of predefi ned signals needed to handle anoma-

lous conditions, such as overfl ow, memory access violations, and illegal instruc-
tion, but these signals can be replaced with user - defi ned ones. The following 
C code portrays a generic exception handler that reacts to a certain error 
condition:

#include <signal.h>
main () 
{
void handler (int sig); 
...
signal (SIGINT, handler); /* SIGINT handler  */
... /* do some processing  */
if (error) raise (SIGINT); /* anomaly detected  */
... /* continue processing  */
}
void handler (int sig) 
{
... /* handle error here  */
}

 In the C language, the  signal  library - function call is used to construct inter-
rupt handlers to react to a signal from external hardware and to handle certain 
traps, such as fl oating - point overfl ow, by replacing the standard C library 
handlers. 
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 Of the procedural languages discussed in this chapter, Ada has the most 
explicit exception handling facility. Consider an Ada exception handler to 
determine whether a square matrix is singular (i.e., its determinant is zero). 
Assume that a matrix type has been defi ned, and it can be determined that 
the matrix is singular. An associated code fragment might be:

begin
-- calculate determinant 
-- ...
--
exception
when SINGULAR : NUMERIC/ERROR => PUT ("SINGULAR"); 
when others => PUT ("FATAL Error"); 
raise ERROR; 
end;

 Here, the  exception  keyword is used to indicate that this is an exception 
handler and the raise  keyword plays a role similar to that of  raise  in the 
C exception handler just presented. The defi nition of  SINGULAR , which rep-
resents a matrix whose determinant is zero, is defi ned elsewhere, such as in a 
header fi le.  

   4.3.4    Cardelli ’ s Metrics and Procedural Languages 

 Taking the common set of procedural languages as a whole, Cardelli consid-
ered them for use in real - time systems with respect to his criteria. His com-
ments are paraphrased in the foregoing discussion. First, he notes that variable 
typing was introduced to improve code generation. Hence, economy of execu-
tion is high for procedural languages provided the compiler is effi cient. Further, 
because modules can be compiled independently, compilation of large systems 
is effi cient, at least when interfaces are stable. The more challenging aspects 
of system integration are thus eliminated. 

 Small - scale development is economical since type checking can catch many 
coding errors, reducing testing and debugging efforts. The errors that do occur 
are easier to debug, simply because large classes of other errors have been 
ruled out. Finally, experienced programmers usually adopt a coding style that 
causes some logical errors to show up as type checking errors; hence, they can 
use the type checker as a development tool. For instance, changing the name 
of a type when its invariants change even though the type structure remains 
the same yields error reports on all its previous uses. 

 Moreover, data abstraction and modularization have methodological 
advantages for large - scale code development. Large teams of programmers 
can negotiate the interfaces to be implemented, and then proceed separately 
to implement the corresponding pieces of code. Dependencies between such 
pieces of code are minimized, and code can be locally rearranged without any 
fear of global effects. 
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 Finally, procedural languages are economical because certain well - designed 
constructions can be naturally composed in orthogonal ways. For instance, in 
C, an array of arrays models two - dimensional arrays. Orthogonality of lan-
guage features reduces the complexity of a programming language. The learn-
ing curve for programmers is thus reduced, and the relearning effort that is 
constantly necessary in using complex languages is minimized (Cardelli,  1996 ).   

   4.4    OBJECT - ORIENTED LANGUAGES 

 The benefi ts of object - oriented languages, such as improved programmer pro-
ductivity, increased software reliability, and higher potential for code reuse, 
are well known and appreciated. Object - oriented languages include Ada, C ++ , 
C#, and Java. Formally, object - oriented programming languages are those that 
support data abstraction ,  inheritance ,  polymorphism , and  messaging . 

 Objects are an effective way to manage the increasing complexity of real -
 time systems, as they provide a natural environment for information hiding, 
or protected variation and encapsulation. In encapsulation, a class of objects 
and methods associated with them are enclosed or encapsulated in class defi ni-
tions. An object can utilize another object ’ s encapsulated data only by sending 
a message to that object with the name of the method to apply. For example, 
consider the problem of sorting objects. A method may exist for sorting an 
object class of integers in ascending order. A class of people might be sorted 
by their height. A class of image objects that has an attribute of color might 
be sorted by that attribute. All these objects have a comparison message 
method with different implementations. Therefore, if a client sends a message 
to compare one of these objects to another, the runtime code must resolve 
which method to apply dynamically — with obvious execution - time penalty. 
This matter will be discussed shortly. 

 Object - oriented languages provide a fruitful environment for information 
hiding; for instance, in image - processing systems, it might be useful to defi ne 
a class of type pixel, with attributes describing its position, color, and bright-
ness, and operations that can be applied to a pixel, such as add, activate, and 
deactivate. It might also be desirable to defi ne objects of type image as a col-
lection of pixels with other attributes of width, height, and so on. In certain 
cases, expression of system functionality is easier to do in an object - oriented 
manner. 

   4.4.1    Synchronizing Objects and Garbage Collection 

 Rather than extending classes through inheritance, in practice, it is often pref-
erable to use composition. However, in doing so, there is the need to support 
different synchronization policies for objects, due to different usage contexts. 
Specifi cally, consider the following common synchronization policies for 
objects:
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 •      Synchronized Objects .      A synchronization object, such as a mutex, is asso-
ciated with an object that can be concurrently accessed by multiple 
threads. If internal locking is used, then on method entry, each public 
method acquires a lock on the associated synchronization object and 
releases the lock on method exit. If external locking is used, then clients 
are responsible for acquiring a lock on the associated synchronization 
object before accessing the object and subsequently releasing the lock 
when fi nished.  

 •      Encapsulated Objects .      When an object is encapsulated within another 
object (i.e., the encapsulated object is not accessible outside of the 
enclosing object), it is redundant to acquire a lock on the encapsulated 
object, since the lock of the enclosing object also protects the encapsu-
lated object. Operations on encapsulated objects therefore require no 
synchronization.  

 •      Thread - Local Objects .      Objects that are only accessed by a single thread 
require no synchronization.  

 •      Objects Migrating between Threads .      In this policy, ownership of a migrat-
ing object is transferred between threads. When a thread transfers owner-
ship of a migrating object, it can no longer access it. When a thread 
receives ownership of a migrating object, it is guaranteed to have exclu-
sive access to it (i.e., the migrating object is local to the thread). Hence, 
migrating objects require no synchronization. However, the transfer of 
ownership does require synchronization.  

 •      Immutable Objects .      An immutable object ’ s state can never be modifi ed 
after it is instantiated. Thus, immutable objects require no synchronization 
when accessed by multiple threads since all accesses are read - only.  

 •      Unsynchronized Objects .      Objects within a single - threaded program 
require no synchronization.    

 To illustrate the necessity of supporting parameterization of synchronization 
policies, consider a class library. A developer of a class library wants to ensure 
the widest possible audience for this library, so he makes all classes synchro-
nized so that they can be used safely in both single - threaded and multi -
 threaded applications. However, clients of the library whose applications are 
single - threaded are unduly penalized with the unnecessary execution over-
head of synchronization that they do not need. Even multi - threaded applica-
tions can be unduly penalized if the objects do not require synchronization 
(e.g., the objects are thread - local). Therefore, to promote reusability of a class 
library without sacrifi cing performance, classes in a library ideally would allow 
clients to select on a per - object basis which synchronization policy to use. 

 Garbage refers to allocated memory that is no longer being used but is 
not otherwise available either. Excessive garbage accumulation can be detri-
mental, and therefore garbage must be regularly reclaimed. Garbage collec-
tion algorithms generally have unpredictable performance, although average 
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performance may be known. The loss of determinism results from the unknown 
amount of garbage, the tagging time of the nondeterministic data structures, 
and the fact that many incremental garbage collectors require that every 
memory allocation or deallocation from the heap be willing to service a page -
 fault trap handler. 

 Furthermore, garbage can be created in both procedural and object - oriented 
languages. For example, in C, garbage is created by allocating memory, but 
not deallocating it properly. Nonetheless, garbage is generally associated 
with object - oriented languages like C ++  and Java. Java is noteworthy in 
that the standard environment incorporates garbage collection, whereas C ++
does not.  

   4.4.2    Cardelli ’ s Metrics and Object - Oriented Languages 

 Consider object - oriented languages in the context of Cardelli ’ s metrics as 
paraphrased from his analysis. In terms of economy of execution, object -
 oriented style is intrinsically less effi cient than procedural style. In pure object -
 oriented style, every routine is supposed to be a method. This introduces 
additional indirections through method tables and prevents straightforward 
code optimizations, such as inlining. The traditional solution to this problem 
(analyzing and compiling whole programs) violates modularity and is not 
applicable to libraries. 

 With respect to economy of compilation, often there is no distinction 
between the code and the interface of a class. Some object - oriented languages 
are not suffi ciently modular and require recompilation of superclasses when 
compiling subclasses. Hence, the time spent in compilation may grow dispro-
portionately with the size of the system. 

 On the other hand, object - oriented languages are superior with respect to 
economy of small - scale development. For example, individual programmers 
can take advantage of class libraries and frameworks, drastically reducing their 
workload. When the project scope grows, however, programmers must be able 
to understand the details of those class libraries, and this task turns out to be 
more diffi cult than understanding typical module libraries. The type systems 
of most object - oriented languages are not expressive enough; programmers 
must often resort to dynamic checking or to unsafe features, damaging the 
robustness of their programs. 

 In terms of economy of large - scale development, many developers are 
frequently involved in developing new class libraries and tailoring existing 
ones. Although reuse is a benefi t of object - oriented languages, it is also the 
case that these languages have extremely poor modularity properties with 
respect to class extension and modifi cation via inheritance. For instance, it is 
easy to override a method that should not be overridden, or to reimplement 
a class in a way that causes problems in subclasses. Other large - scale develop-
ment problems include the confusion between classes and object types, which 
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limits the construction of abstractions, and the fact that subtype polymorphism 
is not good enough for expressing container classes. 

 Object - oriented languages have low economy of language features. For 
instance, C ++  is based on a fairly simple model, but is overwhelming in the 
complexity of its many features. Unfortunately, what started as economical 
and uniform language ( “ everything is an object ” ) ended up as a vast collection 
of class varieties. Java, on the other hand, represents a step toward reducing 
complexity, but is actually more complex than most people realize (Cardelli, 
 1996 ).  

   4.4.3    Object - Oriented versus Procedural Languages 

 There is no general agreement on which is better for real - time systems —
 object - oriented or procedural languages. This is partially due to the fact that 
there is a huge variety of real - time applications — from nonembedded airline 
booking and reservation systems to embedded wireless sensors in running 
shoes, for example. 

 The benefi ts of an object - oriented approach to problem solving and the use 
of object - oriented languages are clear, and have already been described. 
Moreover, it is possible to imagine certain aspects of a real - time operating 
system that would benefi t from objectifi cation, such as process, thread, fi le, or 
device. Furthermore, certain application domains can clearly benefi t from an 
object - oriented approach. The main arguments against object - oriented pro-
gramming languages for real - time systems, however, are that they can lead to 
unpredictable and ineffi cient systems, and that they are hard to optimize. 
Nonetheless, we can confi dently recommend object - oriented languages for 
soft and fi rm real - time systems. 

 The unpredictability argument is hard to defend, however, at least with 
respect to object - oriented languages, such as C ++ , that  do not use garbage col-
lection . It is likely the case that a predictable system — also a hard real - time 
one — can be just as easily built in C ++  as C. Similarly, it is probably just as 
easy to build an unpredictable system in C as in C ++ . The case for more unpre-
dictable systems using object - oriented languages is easier to sustain when 
arguing about garbage - collecting languages like Java. 

 In any case, the ineffi ciency argument against object - oriented languages is 
a powerful one. Generally, there is an execution - time penalty in object -
 oriented languages in comparison with procedural languages. This penalty is 
due in part to late binding (resolution of memory locations at runtime rather 
than at compile time) necessitated by function polymorphism, inheritance, 
and composition. These effects present considerable and often uncertain 
delay factors. Another problem results from the overhead of the garbage 
collection routines. One way to reduce these penalties is not to defi ne too 
many classes and only defi ne classes that contain coarse detail and high - level 
functionality. 
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 The vignette is not an endorsement of this solution strategy, however. It is 
simply an illustration of a very special case. Sometimes such cases are used to 
dispute the viability of object - oriented languages for real - time applications, 
which is not fair — many punctual and robust real - time systems are built in 
object - oriented languages. Moreover, while the client ’ s problem was solved in 
the straightforward manner described in the vignette, it is easy to see that the 
understandability, maintainability, and portability of the system will be prob-
lematic. Hence, the solution on the client ’ s case should have involved a com-
plete reengineering of the system to include reevaluation of the deadlines and 
the overall system architecture. 

 A more general problem is the inheritance anomaly in object - oriented 
languages. The inheritance anomaly arises when an attempt is made to use 
inheritance as a code reuse mechanism, which does not preserve substitut-
ability (i.e., the subclass is not a subtype). If the substitutability were preserved, 
then the anomaly would not occur. Since the use of inheritance for reuse has 
fallen out of favor in object - oriented approaches (in favor of composition), it 
seems that most inheritance anomaly rejections of object - oriented languages 
for real - time systems refl ect an antiquated view of object orientation. 

 Consider the following example from an excellent text on real - time operat-
ing systems (Shaw,  2001 ):

BoundedBuffer
{
DEPOSIT
pre: not full 
REMOVE
pre: not empty 

 Vignette: Object - Oriented Languages Lack Certain Flexibility 

 The following anecdote (reported by one of Laplante ’ s clients who prefers 
to remain anonymous) illustrates that the use of object - oriented language 
for real - time systems may present subtle diffi culties as well. A design team 
for a particular real - time system insisted that C ++  be used to implement a 
fairly simple and straightforward requirements specifi cation. After coding 
was complete, testing began. Although the developed system never failed, 
several users wished to add a few requirements; however, adding these 
features caused the real - time system to miss important deadlines. The client 
then engaged an outside vendor to implement the revised design using a 
procedural language. The vendor met the new requirements by writing the 
code in C and then hand - optimizing certain assembly - language sections 
from the compiler output. They could use this optimization approach 
because of the close correspondence between the procedural C code and 
compiler - generated assembly - language instructions. This straightforward 
option was not available to developers using C ++ . 
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}
MyBoundedBuffer extends BoundedBuffer 
{
DEPOSIT
pre: not full 
REMOVE
pre: not empty AND lastInvocationIsDeposit 
}

 Assuming that preconditions are checked and have  “ wait semantics ”  (i.e., wait 
for the precondition to become true), then clearly  MyBoundedBuffer  has 
strengthened the precondition of BoundedBuffer , and hence violated 
substitutability — and as such is a questionable use of inheritance. 

 Most opponents of object - oriented languages for real - time programming 
assert that concurrency and synchronization are poorly supported. However, 
when built - in language support for concurrency does not exist, it is a standard 
practice to create  “ wrapper - facade ”  classes to encapsulate system - concurrency 
 application program interface  ( API ) for use in object orientation (e.g., wrapper 
classes in C ++  for POSIX threads). Furthermore, there are several concur-
rency patterns available for object - oriented real - time systems (Douglass,  2003 ; 
Schmidt et al.,  2000 ). While concurrency may be poorly supported at the lan-
guage level, it is not an issue since developers use libraries instead. 

 In summary, critics of current object - oriented languages for real - time 
systems seem fi xated on Java, ignoring C ++ . C ++  is more suitable for real - time 
programming since, among other things, it does not have built - in garbage col-
lection and class methods, and by default does not use  “ dynamic binding. ”  In 
any case, there are no strict guidelines when object - oriented approaches and 
languages should be preferred. Each specifi c situation needs to be considered 
individually.   

   4.5    OVERVIEW OF PROGRAMMING LANGUAGES 

 For purposes of illustrating the aforementioned language properties, it is 
useful to review some of the languages that are currently used in programming 
real - time systems. Selected procedural and object - oriented languages are dis-
cussed in alphabetical order, and not in any rank of endorsement or salient 
properties. 

   4.5.1    Ada 

 Ada was originally planned to be the mandatory language for all U.S. DoD 
projects that included a high proportion of embedded systems. The fi rst version, 
which became standardized by 1983, had rather serious problems. Ada was 
intended to be used specifi cally for programming real - time systems, but, at the 
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time, systems builders found the resulting executable code to be bulky and 
ineffi cient. Moreover, major problems were discovered when trying to imple-
ment multitasking using the limited tools supplied by the language, such as the 
roundly criticized rendezvous mechanism. The programming language com-
munity had been aware of these problems, and virtually since the fi rst delivery 
of an Ada 83 compiler, had sought to resolve them. These reform efforts even-
tually resulted in a new version of the language. The thoroughly revised lan-
guage, called  “ Ada 95, ”  is considered the fi rst internationally standardized 
object - oriented  programming language, and, in fact, some individuals refer to 
Ada 95 as the  “ fi rst real - time language. ”  

 Three particularly useful constructs were introduced in Ada 95 to 
resolve shortcomings of Ada 83 in scheduling, resource contention, and 
synchronization:

   1.     A pragma that controls how tasks are dispatched.  
  2.     A pragma that controls the interaction between task scheduling.  
  3.     A pragma that controls the queuing policy of task -  and resource - entry 

queues.    

 Moreover, other additions to the language strived to make Ada 95 fully object -
 oriented. These included:

 •      Tagged types  
 •      Packages  
 •      Protected units    

 Proper use of these constructs allows for the construction of objects that 
exhibit the four characteristics of object - oriented languages: abstract data 
typing, inheritance, polymorphism, and messaging. 

 In October 2001, a Technical Corrigendum to the Ada 95 Standard was 
announced by ISO/IEC, and a major Amendment to the international stan-
dard was published in March 2007. This latest version of Ada is called  “ Ada 
2005. ”  The differences between Ada 95 and Ada 2005 are not extensive — in 
any case, not nearly as signifi cant as the changes between Ada 83 and Ada 95. 
Therefore, when we refer to  “ Ada ”  for the remainder of this book, we mean 
Ada 95, since Ada 2005 is not a new standard, but just an amendment. 

 The amendment, ISO/IEC 8652:1995/Amd 1:2007, includes a few changes 
that are of particular interest to the real - time systems community, such as:

 •      The real - time systems Annex contains additional dispatching policies, 
support for timing events, and support for control of CPU - time utilization. 

 •      The object - oriented model was improved to provide multiple inheritance. 
 •      The overall reliability of the language was enhanced by numerous 

improvements.    
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 Ada has never lived up to its promise of universality. Nevertheless, the 
revised language is staging somewhat of a comeback, particularly because 
selected new DoD systems and many legacy systems use Ada, and because of 
the availability of open - source versions of Ada for the popular Linux 
environment.  

   4.5.2    C 

 The C programming language, invented around 1972 at Bell Laboratories, is 
a good language for  “ low - level ”  programming. The reason for this is that it is 
descended from the clear - cut language, BCPL (whose successor, C ’ s parent, 
was  “ B ” ), which supported only one type, the machine word. Consequently, C 
supports machine - related items like addresses, bits, bytes, and characters, 
which are handled directly in this high - level language. These basic entities can 
be used effectively to control the CPU ’ s work registers, peripheral interface 
units, and other memory - mapped hardware needed in real - time systems. 

 The C language provides special variable types, such as  register ,  vola-
tile ,  static , and  constant , which allow for effective control of code 
generation at the procedural language level. For example, declaring a variable 
as a register  type indicates that it will be used frequently. This guides the 
compiler to place such a declared variable in a work register, which often 
results in faster and smaller programs. Furthermore, C supports call - by - value 
only, but call - by - reference can be implemented easily by passing a pointer to 
anything as a value. Variables declared as type  volatile  are not optimized 
by the compiler at all. This feature is necessary in handling memory - mapped 
I/O and other special instances where the code should not be optimized. 

 Automatic coercion refers to the implicit casting of data types that some-
times occurs in C. For example, a  float  value can be assigned to an  int  vari-
able, which can result in a loss of information due to truncation. Moreover, C 
provides functions, such as  printf , that take a variable number of arguments. 
Although this is a convenient feature, it is impossible for the compiler to 
thoroughly type check the arguments, which means problems may mysteri-
ously arise at runtime. 

 The C language provides for exception handling through the use of signals, 
and two other mechanisms,  setjmp  and  longjmp , are provided to allow a 
procedure to return quickly from a deep level of nesting — a particularly useful 
feature in procedures requiring an abort. The  setjmp  procedure call, which 
is actually a macro (but often implemented as a function), saves environment 
information that can be used by a subsequent longjmp  library function call. 
The  longjmp  call restores the program to the state at the time of the last 
setjmp  call. For example, suppose a procedure is called to do some processing 
and error checking. If an error is detected, a  longjmp  can be used to transfer 
to the fi rst statement after the  setjmp . 

 Overall, the C language is particularly good for embedded programming, 
because it provides for structure and fl exibility without complex language 
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restrictions. The latest version of the international standard of C language is 
from 1999 (ANSI/ISO/IEC 9899:1999).  

   4.5.3    C ++

 C ++  is a hybrid object - oriented programming language that was originally 
implemented as a macro extension of C in the 1980s. Today, C ++  stands as an 
individual compiled language, although C ++  compilers should accept standard 
C code as well. C ++  exhibits all characteristics of an object - oriented language 
and promotes better software - engineering practice through encapsulation and 
more advanced abstraction mechanisms than C. 

 C ++  compilers implement a preprocessing stage that basically performs an 
intelligent search - and - replace on identifi ers that have been declared using the 
#define  or  #typedef  directives. Although most advocates of C ++  discourage 
the use of the preprocessor, which was inherited from C, it is rather widely 
used. Most of the preprocessor defi nitions in C ++  are stored in header fi les, 
which complement the actual source - code fi les. The problem with the prepro-
cessor approach is that it provides a way for programmers to inadvertently 
add unnecessary complexity to a program. An additional problem with the 
preprocessor approach is that it has weak type checking and validation. 

 Most software developers agree that the misuse of pointers causes the 
majority of bugs in C/C ++  programming. Previously C ++  programmers used 
complex pointer arithmetic to create and maintain dynamic data structures, 
particularly during string manipulation. Consequently, they spent a lot of time 
hunting down complicated bugs for simple string management. Today, however, 
standard libraries of dynamic data structures are available. For example, the 
 standard template language  ( STL ), is a standard library of C ++ , and it has both 
a string  and  wstring  data type for regular and wide character strings, 
respectively. These data types neutralize any arguments against early C ++
releases, which were based on string manipulation issues. 

 There are three complex data types in C ++ : classes, structures, and unions. 
However, C ++  has no built - in support for text strings. The standard technique 
is to use null  - terminated arrays of characters to represent strings. 

 The regular C code is organized into functions, which are global subroutines 
accessible to a program. C ++  adds classes and class methods, which are actually 
functions that are connected to classes. However, because C ++  still supports 
C, there is nothing, in principle, to prevent C ++  programmers from using the 
regular functions. This would result in a mixture of function and method use 
that would create confusing programs, however. 

 Multiple inheritance is a helpful feature of C ++  that allows a class to be 
derived from multiple parent classes. Although multiple inheritance is indeed 
powerful, it may be diffi cult to use correctly and causes many problems oth-
erwise. It is also complicated to implement from the compiler perspective. 

 Today, more and more embedded systems are being constructed in C ++ , 
and many practitioners ask,  “ Should I implement my system in C or C ++ ? ”  
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The immediate answer is always  “ it depends. ”  Choosing C in lieu of C ++  in 
embedded applications is a diffi cult trade - off: a C program would be faster 
and more predictable but harder to maintain, and C ++  program would be 
slower and less predictable but potentially easier to maintain. So, language 
choice is tantamount to asking should I eat a  “ green apple ”  or a  “ red apple? ”  

 C ++  still allows for low - level control; for instance, it can use inline methods 
rather than a runtime call. This kind of implementation is not particularly 
abstract, nor completely low - level, but is acceptable in typical embedded 
environments. 

 To its detriment, there may be some tendency to take existing C code and 
objectify it by simply wrapping the procedural code into objects with little 
regard for the best practices of object - orientation. This kind of approach is to 
be strictly avoided since it has the potential to incorporate all of the disadvan-
tages of C ++ , and none of its benefi ts. Furthermore, C ++  does not provide 
automatic garbage collection, which means dynamic memory must be managed 
manually or garbage collection must be homegrown. Therefore, when convert-
ing a C program to C ++ , a complete redesign is required to fully capture all 
of the advantages of an object - oriented design while minimizing the runtime 
disadvantages.  

   4.5.4    C# 

 C# (pronounced  “ C sharp ” ) is a C ++  - like language that, along with its operat-
ing environment, has similarities to Java and the Java virtual machine, respec-
tively. Thus, C# is fi rst compiled into an intermediate language, which is then 
used to generate a native image at runtime. C# is associated with Microsoft ’ s 
.NET  framework for scaled - down operating systems like Windows CE. Windows 
CE is highly confi gurable, capable of scaling from small, embedded system 
footprints ( < 1   M bytes) and upwards (e.g., for real - time systems requiring 
user - interface support). The minimum kernel confi guration provides basic 
networking support, thread management, dynamic link library support, and 
virtual memory management. While a detailed discussion is beyond the scope 
of this text, it is clear that Windows CE was originally intended as a real - time 
operating system for the .NET  platform. 

 Much of this discussion is adapted from Lutz and Laplante  (2003) . 
 C# supports  “ unsafe code, ”  allowing pointers to refer to specifi c memory 

locations. Objects referenced by pointers must be explicitly  “ pinned, ”  disal-
lowing the garbage collector from altering their location in memory. The 
garbage collector collects pinned objects; it just does not move them. This 
capability could increase schedulability, and it also allows for  direct memory 
access  ( DMA ) to write to specifi c memory locations; a necessary capability in 
embedded real - time systems.  .NET  offers a generational approach to garbage 
collection intended to minimize thread blockage during mark and sweep. For 
instance, a means to create a thread at a particular instant, and guarantee the 
thread completes by a particular point in time, is not supported. Moreover, C# 
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provides many thread synchronization mechanisms, but none with this level 
of precision. C# supports an array of thread - synchronization constructs: lock, 
monitor, mutex, and interlock. A  Lock  is semantically identical to a critical 
section — a code segment guaranteeing entry into itself by only one thread at 
a time.  Lock  is a shorthand notation for the monitor class type. A mutex is 
semantically equivalent to a lock, with the additional capability of working 
across process spaces. The downside to mutexes is their performance penalty. 
Finally, interlock, a set of overloaded static methods, is used to increment and 
decrement numerics in a thread - safe manner in order to implement the 
priority - inheritance protocol. 

 Timers that are similar in functionality to the widely used Win32 timer exist 
in C#. When constructed, timers are confi gured how long to wait in milliseconds 
before their fi rst invocation, and are also supplied an interval, again in milli-
seconds, specifying the period between subsequent invocations. The accuracy 
of these timers is machine dependent, and thus not guaranteed, reducing their 
usefulness in real - time systems to be used in multiple hardware platforms. 

 C# and the  .NET  platform are not appropriate for the majority of hard real -
 time systems for several reasons, including the unbounded execution of its 
garbage - collection environment and its lack of threading constructs to ade-
quately support schedulability and determinism. Nonetheless, C# ’ s ability to 
interact effectively with operating - system APIs, shield developers from 
complex memory management logic, together with C# ’ s good fl oating - point 
performance, make it a programming language that is highly potential for soft 
and even fi rm real - time applications. However, disciplined programming style 
is required (Lutz and Laplante,  2003 ).  

   4.5.5    Java 

 Java, in the same way as C#, is an interpreted language, that is, the code com-
piles into machine - independent intermediate code that runs in a managed 
execution environment. This environment is a virtual machine (see Fig.  4.3 ), 
which executes  “ object ”  code instructions as a series of program directives. 

       Figure 4.3.     The Java interpreter as a model of a virtual machine.  
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The obvious advantage of this arrangement is that Java code can run on any 
device that implements the virtual machine. This  “ write once, run anywhere ”  
philosophy has important applications in mobile and portable computing, such 
as in cell phones and smart cards, as well as in Web - based computing.   

 However, there are also native - code Java compilers, which allow Java to 
run directly  “ on the bare metal, ”  that is, the compilers convert Java to assembly 
code or object code. For example, beginning with Java 2, Java virtual machines 
support special compilers that compile into machine code for several standard 
architectures. Furthermore, there are even special Java microprocessors, which 
directly execute Java byte code in hardware (El - Kharashi and Elguibaly,  1997 ). 

 Java is an object - oriented language and the code appears very similar to 
C++ . Like C, Java supports call - by - value, but call - by - reference can be simu-
lated, which will be discussed shortly. But Java is a pure object - oriented lan-
guage, that is, all functionality in Java has to be implemented by creating object 
classes, instantiating objects of those classes (or base classes), and manipulat-
ing objects ’  attributes through methods. Thus, it is virtually impossible to take 
legacy code that was written in a procedural language, say C, and  “ convert ”  
that code to Java without truly embodying an object - oriented design approach. 
Of course, a good object - oriented design is not guaranteed, but the design 
obtained in the conversion will be a true object - oriented one based on the 
rules of the language. This situation is quite different from the kind of false 
object - oriented conversion that can be obtained from C to C ++  in the blunt 
manner previously highlighted. 

 Java does provide a preprocessor. Constant data members are used in place 
of the #define  directive, and class defi nitions are used in lieu of the  #typedef
directive. The result is that Java source code is typically more consistent and 
easier to read than C ++  source code. The Java compiler builds class defi nitions 
directly from the source code fi les, which contain both class defi nitions and 
method implementations. However, there are natural performance penalties 
for the resultant portability. 

 The Java language does not support pointers, but it provides similar func-
tionality via references. Java passes all arrays and objects by reference, which 
prevents common errors due to pointer mismanagement. The lack of pointers 
might seem to preclude implementation of data structures, such as dynamic 
arrays. However, any pointer functionality can be conveniently accomplished 
with references, with the safety provided by the Java runtime system, such as 
boundary checking on array indexing operations — all this with performance 
penalty. 

 Java only implements one complex data type: classes. Java programmers use 
classes when the functionality of structures and unions is desired. This consis-
tency comes at the cost of increased execution time over simple data 
structures. 

 The Java language does not support standalone functions. Instead, Java 
requires programmers to bundle all routines into class methods again with 
signifi cant cost. 
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 Moreover, Java has no direct support for multiple inheritance. Interfaces, 
however, allow for implementation of multiple inheritance. Java interfaces 
provide object - method descriptions, but contain no implementations. 

 In Java, strings are implemented as fi rst - class objects ( String  and  String-
Buffer ), meaning that they are at the core of the Java language. Java ’ s imple-
mentation of strings as objects provides several advantages. First, string 
creation and access is consistent across all systems. Next, because the Java 
string classes are defi ned as part of the Java language strings function predict-
ably every time. Finally, the Java string classes perform extensive runtime 
checking, which helps eliminate errors. But all of these operations increase 
execution time. 

 Operator overloading is not supported in Java. However, in Java ’ s string 
class,  “  +  ”  represents concatenation of strings, as well as numeric addition. 

 The Java language does not support automatic coercions. In Java, if a coer-
cion will result in a loss of data, then it is necessary to explicitly cast the data 
element to the new type. Java does have implicit  “ upcasting. ”  However, any 
instance can be upcast to Object , which is the parent class for all objects. 
Downcasting is explicit, and requires a cast. This explicitness is important to 
prevent hidden loss of precision. 

 The command line arguments passed from the system into a Java program 
differ from the usual command - line arguments passed into a C ++  program. In 
C and C ++ , the system passes two arguments to a program:  argc  and  argv . 
argc  specifi es the number of arguments stored in  argv , and  argv  is a pointer 
to an array of characters containing the actual arguments. In Java, on the other 
hand, the system passes a single value to a program:  args .  args  is an array 
of strings that contains the command - line arguments.  

   4.5.6    Real - Time Java 

 This section is devoted to the real - time adaptation of Java. Although real - time 
Java is just a modifi cation of the standard Java language, it deserves a separate 
discussion, because it is used increasingly in implementing soft, fi rm, and even 
hard real - time systems, while the standard Java is mainly used for soft real -
 time systems only. While we include the discussion on real - time Java for com-
pleteness and because it illustrates several interesting points, we reiterate our 
preference for C ++  over versions of Java in most cases. 

 In addition to the unpredictable performance of garbage collection, the 
Java specifi cation provides only broad guidance for scheduling. For example, 
when there is competition for processing resources, threads with higher 
priority are generally executed in preference to threads with lower priority. 
This preference is not, however, a guarantee that the highest - priority one of 
ready threads will always be running, and thread priorities cannot be used to 
reliably implement mutual exclusion. It was soon recognized that this and 
other shortcomings rendered standard Java inadequate for most real - time 
systems. 

www.it-ebooks.info

http://www.it-ebooks.info/


OVERVIEW OF PROGRAMMING LANGUAGES 175

 In response to this problem, a  National Institute of Standards and 
Technology  ( NIST ) task force was charged with developing a version of Java 
that was particularly suitable for embedded real - time applications. The fi nal 
workshop report, published already in September 1999, defi nes nine core 
requirements for the real - time specifi cation of Java (RTSJ 1.0):

R1.     The specifi cation must include a framework for the lookup and discov-
ery of available profi les.  

R2.     Any garbage collection that is provided shall have a bounded preemp-
tion latency.  

R3.     The specifi cation must defi ne the relationships among real - time Java 
threads at the same level of detail as is currently available in existing 
standards documents.  

R4.     The specifi cation must include APIs to allow communication and syn-
chronization between Java and non - Java tasks.  

  R5.     The specifi cation must include handling of both internal and external 
asynchronous events.  

R6.     The specifi cation must include some form of asynchronous thread 
termination.  

R7 .     The core must provide mechanisms for enforcing mutual exclusion 
without blocking.  

R8 .     The specifi cation must provide a mechanism to allow code to query 
whether it is running under a real - time Java thread or a nonreal - time 
Java thread.  

R9 .     The specifi cation must defi ne the relationships that exist between real -
 time Java and nonreal - time Java threads.    

 The RTSJ 1.0 satisfi es all but the fi rst requirement, which was considered 
irrelevant because access to physical memory is not part of the NIST require-
ments, but industry input led the group to include it (Bollella and Gosling, 
 2000 ). In 2006, an enhanced version of the real - time specifi cation, RTSJ 1.1, 
was announced (Dibble and Wellings,  2009 ). 

 Most of the following discussion has been adapted from Bollella and 
Gosling  (2000) . 

 The RTSJ defi nes the real - time thread class to create threads, which the 
resident scheduler executes. Real - time threads can access objects on the heap, 
and therefore can incur delays because of garbage collection. 

 For garbage collection, the RTSJ extends the memory model to support 
memory management in a way that does not interfere with the real - time code ’ s 
ability to provide deterministic behavior. These extensions allow both short -  
and long - lived objects to be allocated outside the garbage - collection heap. 
There is also suffi cient fl exibility to use familiar solutions, such as preallocated 
object pools. 
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 RTSJ uses  “ priority ”  somewhat more loosely than is traditionally accepted. 
 “ Highest priority thread ”  merely indicates the most eligible thread — the 
thread that the scheduler would choose from among all threads ready to run. 
It does not necessarily presume a strict priority - based dispatch mechanism. 

 The system must queue all threads waiting to acquire a resource in priority 
order. These resources include the processor as well as synchronized blocks. If 
the active scheduling policy permits threads with the same priority, the threads 
are queued using the FIFO principle. Specifi cally, the system (1) orders waiting 
threads to enter synchronized blocks in a priority queue; (2) adds a blocked 
thread that becomes ready to run to the end of the ready queue for that prior-
ity; (3) adds a thread whose priority is explicitly set by itself or another thread 
to the end of the ready queue for the new priority; and (4) places a thread that 
performs a yield to the end of its priority queue. The priority - inheritance pro-
tocol is implemented by default. The real - time specifi cation also provides a 
mechanism by which a systemwide default policy can be implemented. 

 The asynchronous event facility comprises two classes:  AsyncEvent  and 
AsyncEventHandler . An  AsyncEvent  object represents something that 
can happen — like a hardware interrupt — or it represents a computed event —
 like an aircraft entering a monitored region. When one of these events occurs, 
indicated by the fire()  method being called, the system schedules associated 
AsyncEventHandlers . An  AsyncEvent  manages two things: the dispatch-
ing of handlers when the event is fi red, and the set of handlers associated with 
the event. The application can query this set and add or remove handlers. An 
AsyncEventHandler  is a schedulable object roughly similar to a thread. 
When the event fi res, the system invokes  run()  methods of the associated 
handlers. 

 Unlike other runable objects, however, an  AsyncEventHandler  has asso-
ciated scheduling, release, and memory parameters that control the actual 
execution of read or write. 

 Asynchronous control transfer allows for identifi cation of particular 
methods by declaring them to throw an   AsynchronouslyInterrupted
Exception   ( AIE ). When such a method is running at the top of a thread ’ s 
execution stack and the system calls java.lang.Thread.interrupt()  on 
the thread, the method will immediately act as if the system had thrown an 
AIE. If the system calls an interrupt on a thread that is not executing such a 
method, the system will set the AIE to a pending state for the thread and will 
throw it the next time control passes to such a method, either by calling it or 
returning to it. The system also sets the AIE ’ s state to  “ pending ”  while control 
is in, returns to, or enters synchronized blocks. 

 The RTSJ defi nes two classes for programmers who want to access physical 
memory directly from Java code. The fi rst class,  RawMemoryAccess , defi nes 
methods that let you build an object representing a range of physical addresses 
and then access the physical memory with byte ,  word ,  long , and multiple 
byte  granularity. The RTSJ implies no semantics other than the set and get 
methods. The second class,  PhysicalMemory , allows the construction of a 
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PhysicalMemoryArea  object that represents a range of physical memory 
addresses where the system can locate Java objects. For example, a new 
Java object in a particular  PhysicalMemory  object can be built using 
either the newInstance()  or  newArray()  methods. An instance of 
RawMemoryAccess  models a raw storage area as a fi xed - size sequence of 
bytes. Factory methods allow for the creation of  RawMemoryAccess  objects 
from memory at a particular address range or using a particular memory type. 
The implementation must provide and set a factory method that interprets 
these requests accordingly. A full complement of get and set methods lets the 
system access the physical memory area ’ s contents through offsets from the 
base — interpreted as  byte ,  short ,  int , or  long  data values — and copy them 
to or from byte ,  short ,  int , or  long  arrays.  

   4.5.7    Special Real - Time Languages 

 A large variety of specialized languages for real - time programming have 
appeared and received more or less success over the past decades. These 
include, for instance:

 •      PEARL .      The process and experiment automation real - time language was 
developed in the early 1970s by a group of German researchers. PEARL 
uses the augmentation strategy and has fairly wide application in Germany, 
especially in industrial controls settings. The current version is PEARL - 90. 

 •      Real - Time Euclid .      An experimental language also from the 1970s that 
enjoys the distinction of being one of the only languages to be completely 
suited for schedulability analysis. This is achieved through language 
restrictions. It descended from the Pascal programming language, but 
never found its way into mainstream applications.  

 •      Occam 2 .      A language based on the communicating - sequential - processes 
formalism that was designed to support concurrency on transputers (see 
Section  2.5.2 ). It appeared in the late eighties and found practical imple-
mentations mainly in the United Kingdom, but disappeared together with 
the transputer.  

 •      Real - Time C .      Actually a generic name for any of a variety of C macroex-
tension packages. These macroextensions typically provide timing and 
control constructs that are not found in standard C.  

 •      Neuron ®   C .      An enhancement to the standard C with extensions for event 
handling, network communications, and hardware I/O. It is intended for 
supporting LonWorks (a fi eldbus standard for control networking) appli-
cations for Neuron  ®   processors and corresponding smart transceivers, and 
is used widely within the building automation community.  

 •      Real - Time C ++  .      A generic name for one of several object - class libraries 
specifi cally developed for C ++ . These libraries augment standard C ++  to 
provide an increased level of timing and control.    
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 Furthermore, there are numerous other real - time languages and correspond-
ing operating environments, such as Anima, DROL, Erlang, Esterel, Hume, 
JOVIAL, LUSTRE, Maruti, RLUCID, RSPL, and Timber. Some of these are 
used for highly specialized applications or in research only.   

   4.6    AUTOMATIC CODE GENERATION 

 At the beginning of the embedded - systems era, it was quickly recognized that 
the productivity of average assembly language programmers was poor, and the 
availability of skilled programmers continued to be limited. As we know, this 
situation was largely relieved by adopting high - level languages (see Fig.  4.1 ); 
the productivity of programmers improved remarkably, and it was much easier 
and less time - consuming to become a skilled high - level - language programmer 
than a skilled assembly - language programmer. Of course, there were also other 
reasons behind that major transition as discussed earlier in this chapter. 

 For many years, there was a relevant concern within the developers of hard 
real - time systems that high - level - language compilers produced less effi cient 
code than would have been possible to create manually with assembly lan-
guage. Today, there are generally far fewer effi ciency concerns, as modern 
compilers are able to perform truly effective code optimization automatically; 
this will be outlined shortly in Section  4.7 . 

 The effi ciency of compilers allows us to increase the level of abstraction 
and move from programmer - generated code to automatically generated 
code — or moving from the solution space toward the higher - level problem 
space (also referred to as  “ minimizing the intellectual distance ” ). Since the 
productivity of programmers is not improving at the same rate as the size of 
most applications code is growing, there is considerable pressure toward auto-
matic code generation. At the same time, the required time - to - market of 
typical products is decreasing, but a signifi cant proportion of embedded -
 software projects are completed behind the schedule. Furthermore, the general 
availability of experienced real - time programmers is not adequate, because of 
the great expansion of the embedded - systems fi eld. Clearly, something needs 
to be changed to keep up with the growing technological opportunities. 

   4.6.1    Toward Production - Quality Code 

 Automatic code generation has been a dream of software engineers and 
project managers for decades. In fact, the original Fortran language was 
described as an  “ automatic program generator ”  (Backus et al.,  1957 ). In this 
context, an automatic code generator is assumed to produce high - level lan-
guage code (seldom assembly language) directly from a system specifi cation 
in some form without programmer ’ s intervention. Presently, however, it is 
common practice for programmers to improve automatically generated high -
 level language code manually before it is compiled. 
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 By the early 1980s, some pioneering organizations were developing  “ auto-
matic code generators ”  to speed - up and increase the reliability of the time -
 consuming and error - prone process of assembly coding. These efforts proved 
successful, for instance, in the fi eld of automotive control, where a special -
 purpose, proprietary application language was used for specifying the control 
software at a high level and then generating assembly code (Srodawa et al., 
 1985 ). 

 During the past few decades, numerous organizations have adopted auto-
matic code generators for limited use in parallel with programmer - generated 
code. Certain rigorously specifi able parts of real - time software, such as  fi nite 
state machines  and various  numerical algorithms , are automatically composed 
from system specifi cations to some high - level programming language, such as 
Ada (Alonso et al.,  2007 ) or Java (Hagge and Wagner,  2004 ). However, most 
of the  production - quality  code is still created manually. Figure  4.4  illustrates 
the ongoing evolution path from programmer - generated code to automatically 
generated code. While the ultimate destination of Figure  4.4 c is somewhat 
hazy, the  hybrid  code generation approach is the present and growing reality 
in many real - time software projects and corresponding organizations. 
Nonetheless, automatic code generation is typically used just for small portions 
of code and relatively simple applications in well - understood domains. The 

       Figure 4.4.     A three - step evolution path, (a)    →    (b)    →    (c), from programmer - generated 
code to automatically generated code.  
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hybrid approach of Figure  4.4 b is analogous to the classical two - culture situ-
ation, where coexistence of complementary cultures would eventually benefi t 
the entire community.    

   4.6.2    Remaining Challenges 

 There are two principal challenges that need to be tackled before automatic 
code generation could become the dominant approach for generating 
production - quality code for real - time systems:

   1.     How to create rigorous specifi cations of  complex  and  heterogeneous
systems effi ciently?  

  2.     How to improve the execution speed and memory usage of automatically 
generated code?    

 The fi rst challenge is related to the requirements - engineering methodologies 
to be discussed in Chapter  5 , and the second one resembles the past ineffi -
ciency concerns of high - level language compilers. Both of these areas need a 
lot of research and development effort, because designing an effi cient code 
generator even for a traditional compiler is one of the most diffi cult parts of 
compiler design — both practically and theoretically. And the abstract level of 
system specifi cations used as an input to the automatic code generator makes 
the problem much harder. To sum up, can the programmer ’ s vast knowledge 
and experience ever be captured by (artifi cial intelligence - based) automatic 
code generation? 

 Maclay sees the issue of automatic code generation connected to the aims of 
software reuse, as they both tend to minimize the amount of work performed 
by software engineers in a real - time system project (Maclay,  2000 ). He points 
out that automatic code generation is particularly useful in creating prototypes
rapidly, and thus accelerating the algorithm - centered innovation process of novel 
embedded systems. However, to be acceptable for demanding applications, such 
as automotive control, the automatically generated code should have less than 
∼ 10% effi ciency penalty compared with manually created code. Such a reason-
able penalty could be compensated by a slightly more effi cient processor. 

 Glass, on the other hand, argues that  large - scale  automatic code generation 
is  “ extremely unlikely to happen, ”  because the generator would have to know 
enough about:

 •      The application domain to translate the problem specifi cation into a high -
 level design.  

 •      The application and implementation domains to translate this high - level 
design into a detailed design.  

 •      Further about the implementation domain to translate the detailed design 
into the actual code (Glass,  1996 ).    
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 Although these pragmatic arguments were already presented in the mid -
 nineties, they are still valid since no breakthroughs on automatic code genera-
tion have taken place. Nevertheless, automatic code generation and software 
reuse are key techniques in responding to the increasing complexity of real -
 time systems.   

   4.7    COMPILER OPTIMIZATIONS OF CODE 

 For every piece of source code, there exist infi nitely many object codes that 
implement the same computations, in the sense that the codes produce the 
same outputs when presented with the same inputs. Some of these object codes 
may be faster while others may require less memory; this motivates well the 
topic of the present section. Aho and Ullman state in their classic book (Aho 
and Ullman,  1977 ) that it is theoretically impossible for a compiler to produce 
the best possible object code for every source code under any reasonable cost 
function. Hence, a more appropriate term for code optimization would simply 
be  “ code improvement. ”  Long tradition has provided us with the somewhat 
overstated term  “ code optimization, ”  though. 

 When beginning to use a new compiler, it is important to experiment with 
it to learn how it handles certain high - level language constructs, such as  case
statements versus nested if-then-else  statements, integer versus character 
variables, and so on. Therefore, a set of relevant test cases should be prepared 
for the high - level language in question to expose the intricacies of the com-
piler. No matter which programming language you use in an embedded real -
 time application, make sure that you know both the language and your 
compiler thoroughly. 

 Moreover, many of the techniques used in code optimization underscore 
the fact that in any arithmetic expression, there is no substitute for a sound 
mathematical technique. Hence, it is benefi cial to reformulate any algorithm 
or expression to eliminate time - consuming function calls, such as those that 
compute exponentials, square roots, or transcendental functions, where pos-
sible, to improve real - time performance. 

 Most of the code optimization techniques used by compilers can be exploited 
to reduce response times. Often these strategies are employed invisibly by the 
compiler, or can be turned on or off with compiler directives or switches. 
Furthermore, if a particular strategy is not being used by the compiler itself, 
it could be implemented manually at the code level instead. Nonetheless, it 
should be remembered that optimization efforts should be carried out, in 
general, solely if there is a concrete  demand  for such optimizations. Optimization 
for the sake of optimization is just wasting resources and creating unnecessary 
expenses in a software project. 

 Consider some commonly used code - optimization techniques and their 
explicit impact on real - time performance. These techniques include:
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 •      Use of arithmetic identities  
 •      Reduction in strength  
 •      Common subexpression elimination  
 •      Use of intrinsic functions  
 •      Constant folding  
 •      Loop invariant removal  
 •      Loop induction elimination  
 •      Use of registers and caches  
 •      Dead - code removal  
 •      Flow - of - control optimization  
 •      Constant propagation  
 •      Dead store elimination  
 •      Dead variable elimination  
 •      Short - circuit Boolean code  
 •      Loop unrolling  
 •      Loop jamming  
 •      Cross - branch elimination    

 Many of these techniques are facilitated through the use of so - called  “ peep-
hole ”  optimization. In peephole optimization, a small window or peephole of 
machine code is compared against known patterns that yield specifi c optimiza-
tion opportunities. These types of code optimizers are fairly straightforward 
to implement and allow for multiple optimization passes to be performed. 

   4.7.1    Standard Optimization Techniques 

 Good compilers  use arithmetic identities  to eliminate useless code. For example, 
multiplication by the constant  “ 1 ”  or addition by the constant  “ 0 ”  should natu-
rally be eliminated from executable code, although the common use of sym-
bolic constants can obscure these situations. 

Reduction in strength  refers to the use of the fastest machine - language 
instructions possible to accomplish a given operation. For instance, when 
optimizing for speed, some compilers will replace multiplication of an integer 
by another integer that is a power of two by a series of shift operations. 
Shift instructions are faster than integer multiplication in certain CPU 
environments. 

 In some compilers, character variables are rarely loaded in registers, whereas 
integer variables are. It is assumed that arithmetic operations involving inte-
gers will take place, whereas those involving characters are more unlikely. Care 
should therefore be taken in deciding whether a particular variable should be 
defi ned as a character or an integer. 

 Furthermore, it is well known that division instructions typically take longer 
to execute than multiplication instructions. Hence, it may be better to multiply 

www.it-ebooks.info

http://www.it-ebooks.info/


COMPILER OPTIMIZATIONS OF CODE 183

by the reciprocal of a number than to divide by that number. For example, 
x*0.5  would likely be faster than  x/2.0 . Many compilers will not do this 
replacement automatically. 

Repeated calculations of the same subexpression  in two different expressions 
should be avoided. For instance, the following C program fragment:

x=6+a*b;
y=a*b+z;

 could be replaced with:

t=a*b;
x=6+t;
y=t+z;

 thus eliminating the other multiplication. This can result in signifi cant savings 
if a  and  b  are fl oating - point numbers and the code exists in a tight loop. 

 When possible,  use intrinsic functions  rather than ordinary functions. 
Intrinsic functions are simply macros where the actual function call is replaced 
by inline code during compilation. This improves real - time performance 
because the need to pass parameters, create space for local variables, and 
eventually release that space is eliminated. 

 Most compilers perform  constant folding , but this should not be assumed 
when beginning to use a new compiler. As an example, the expression:

x=2.0*x*4.0;

 would be optimized by folding  2.0*4.0  into  8.0 . However, performing this 
operation manually leads to code that is easier to debug. And although the 
original expression may be more descriptive, a comment can be provided to 
explain the optimized one. 

 For example, if the program uses  π/2 , it could be precomputed during the 
initialization phase and stored as a constant named, for example,  pi_div_2 . 
This will typically save one fl oating point load and one fl oating point divide 
instruction — potentially several microseconds. In a 5 - ms real - time cycle, this 
alone could lead to time - loading savings of  ∼ 0.1%. Incidentally, using this 
strategy illustrates the common inverse relationship between execution time 
and memory utilization: code execution time has been reduced, but extra 
memory is needed to store the pre - computed constant. 

 Most compilers will move such computations outside loops that do not need 
to be performed within the loop, a process called  loop invariant removal . For 
instance, consider the following code fragment in C:

x=100;
while (x >0)
x=x-y+z;
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 It can be replaced by:

x=100;
t=y+z;
while (x >0)
x=x-t;

 This moves an addition outside the loop, but again requires more memory. 
 An integer variable  i  is called an  induction variable of a loop  if it is incre-

mented or decremented by some constant on each cycle of the loop. A common 
situation is one in which the induction variable is i  and another variable,  j , 
which is a linear function of i , is used to offset into some array. Often  i  is 
used solely for a test of loop termination. In such case, variable  i  can be 
eliminated by replacing its test for one on j  instead. For example, consider the 
following C program fragment:

for (i =1;i<=10;i++)
a[i+1]=1;

 An optimized version is:

for (j =2;j<=11;j++)
a[j]=1;

 eliminating the extra addition within the loop. 
 When programming in assembly language or when using languages that 

support register - type variables, such as C, it is usually advantageous to perform 
calculations using work registers . Typically, register - to - register operations are 
faster than register - to - memory ones. Thus, if certain variables are used fre-
quently within a module, and if enough registers are available, the compiler 
should be forced to generate register - direct instructions, if possible. 

 If the CPU architecture supports  memory caching , then it may be possible 
to force frequently used variables into the cache at the language level. Although 
most optimizing compilers will cache variables when possible, the nature of 
the source - level code affects the compiler ’ s abilities. 

 One of the easiest methods for decreasing memory utilization is to  remove 
dead or unreachable code  — that is, code that can never be reached in the 
normal fl ow - of - control. Such code might be debug instructions that are exe-
cuted only if a debug fl ag is set, or some redundant initialization instructions. 
For instance, consider the following C program fragment:

if (debug) 
{
...
}
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 In a microcontroller environment, the test of the variable  debug  may take 
several microseconds, time that is consumed regardless of whether or not the 
code is in debug mode. Therefore, debug code should preferably be imple-
mented using the conditional compile facilities available with most compilers. 
Thus, replace the previous fragment with:

#ifdef DEBUG 
{
...
}
#endif

 Here,  #ifdef  is a compiler directive that will include the code between it and 
the fi rst  #endif   only  if the symbolic constant  DEBUG  is so defi ned. Dead code 
removal may increases program reliability as well. 

 In  fl ow - of - control optimization , unnecessary branch - to - branch instructions 
are replaced by a single - branch instruction. The following pseudocode illus-
trates such a situation:

goto label_l; 
label_0: y=1;
label_l: goto label_2; 

 It can be replaced by:

goto label_2; 
label_0: y=1;
label_l: goto label_2; 

 While such code is not normally generated by skilled programmers, it might 
result from an automatic code generation or language - to - language translation 
process and escape unnoticed. 

 Certain variable - assignment expressions can be changed to  constant assign-
ments , thereby permitting registerization opportunities or the use of faster 
immediate addressing mode. In C language, the following code could appear 
as the result of an automated translation process:

x=100;
y=x;

 The corresponding assembly language code generated by a  nonoptimizing
compiler might look like:

LOAD R1,100    ; Load constant  100  to work register  R1 .  
STORE &x,R1    ; Store the content of  R1  to memory location  x .  
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LOAD R1, &x    ; Load the content of memory location  x  to  R1 .  
STORE &y,R1    ; Store the content of  R1  to memory location  y .    

 This can be replaced by:

x=100;
y=100;

 leading to associated assembly - language output:

LOAD R1,100    ; Load constant  100  to work register  R1 .  
STORE &x,R1    ; Store the content of  R1  to memory location  x .  
STORE &y,R1    ; Store the content of  R1  to memory location  y .    

 Variables that contain the  same value within a short segment of code  can be 
combined into a single temporary variable. For example,

t=y+z;
x=func(t);

 Although many compilers might generate an implicit temporary location for 
y+z , this cannot always be relied on. Replacing the code in question with the 
following:

x=func(y+z);

 forces the generation of a temporary location and eliminates the need for the 
local variable,  t . 

 A variable is said to be alive at a point in a program if its value can be used 
subsequently; otherwise it is  dead and subject to removal . The following code 
illustrates that z  is a dead variable:

x=y+z;
x=y;

 After removal of  z , what is left is:

x=y;

 While this example is trivial, again, it could arise as a result of careless coding 
or an automated code generation or translation process. 

 The test of  compound Boolean expressions  can be optimized by testing each 
subexpression separately. Consider the following:

if ((x >0) && (y >0))
z=1;
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 It could be replaced by:

if (x >0)
if (y >0)
z=1;

 In many compilers, the code generated by the second fragment will be superior 
to the fi rst. ANSI - C, however, executes  if (expression)  constructs sequen-
tially inside the ( )  and drops out at the fi rst  FALSE  condition. That is, it will 
automatically short - circuit Boolean code. 

Loop unrolling  duplicates instructions executed in a loop in order to reduce 
the number of operations, and hence the loop overhead incurred. This tech-
nique is used frequently by programmers when coding time - critical signal -
 processing algorithms. In the exaggerated case, the entire loop is replaced by 
inline code. For instance,

for (i =1;i<=6;i++)
a[i]=a[i]*8;

 is replaced by:

a[1]=a[1]*8;
a[2]=a[2]*8;
a[3]=a[3]*8;
a[4]=a[4]*8;
a[5]=a[5]*8;
a[6]=a[6]*8;

Loop jamming  or loop fusion is a technique for combining two similar loops 
into one, thus reducing loop overhead by a factor of two. For example, the 
following C code:

for (i =1;i<=100;i++)
x[i]=y[i]*8;
for (i =1;i<=100;i++)
z[i]=x[i]*y[i];

 can be effectively replaced by:

for (i =1;i<=100;i++)
{
x[i]=y[i]*8;
z[i]=x[i]*y[i];
}

www.it-ebooks.info

http://www.it-ebooks.info/


188 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS 

 If the same code appears in more than one case in a  case  or  switch  state-
ment, then it is better to combine such cases into one. This  eliminates an 
additional branch or cross branch . For example, the following code:

switch (x) 
{
case 0: x=x+1;

break;
case 1: x=x*2;

break;
case 2: x=x+1;

break;
case 3: x=2;

break;
}

 can be replaced by:

switch (x) 
{
case 0: 
case 2: x=x+1;

break;
case 1: x=x*2;

break;
case 3: x=2;

break;
}

   4.7.2    Additional Optimization Considerations 

 A sampling of supplementary optimization considerations follows next (Jain, 
 1991 ). Note that in most cases, these techniques will optimize the average case, 
not necessarily the worst case.

 •       Arrange entries in a table  so that the most frequently sought values are 
the fi rst to be compared.  

 •       Replace threshold tests on monotone functions  (continuously decreasing 
or increasing) by tests on their parameters , thereby avoiding evaluation of 
the function itself. For instance, if  exp(x)  is a function computing  ex , then 
instead of using:  

if (exp(x) < exp(y)) then ...

 use: 

if (x < y) then ...
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 which will save two evaluations of the costly function  exp() .  

 •       Link the most frequently used procedures together  to maximize the locality 
of reference (applies only in cached or paging systems).  

 •      Store procedures in memory in sequence so that calling and called pro-
cedures will be loaded together to increase the locality of reference. 
Again, this only applies in cached or paging systems.  

 •       Store redundant data elements close to each other  to increase the locality 
of reference (applies only in cached or paging systems).    

 Even though many of the optimization techniques discussed above can be and 
have been automated, some compilers only perform one optimization pass, 
overlooking opportunities that are not revealed until after at least a single 
pass. Hence, manual optimization may provide additional execution - time 
savings. To see the  cumulative effects of multiple - pass optimization , consider 
the following example. 

 Example: Multiple - Pass Optimization 

 Begin with the nonoptimized C - code fragment:

for (j =1;j<=3;j++)
{
a[j]=0;
a[j]=a[j]+2*x;
}
for (k =1;k<=3;k++)
b[k]=b[k]+a[k]+2*k*k;

Pass 1 :   First the code will be optimized by loop jamming, loop invariant 
removal, and removal of extraneous code (in this case the initialization of 
a[j] ). The resultant code is:

t=2*x;
for (j =1;j<=3;j++)
{
a[j]=t;
b[j]=b[j]+a[j]+2*j*j;
}

Pass 2 :   Loop unrolling yields:

t=2*x;
a[1]=t;
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b[1]=b[1]+a[1]+2*1*1;
a[2]=t;
b[2]=b[2]+a[2]+2*2*2;
a[3]=t;
b[3]=b[3]+a[3]+2*3*3;

Pass 3 :   After constant folding, the code is:

t=2*x;
a[1]=t;
b[1]=b[1]+a[1]+2;
a[2]=t;
b[2]=b[2]+a[2]+8;
a[3]=t;
b[3]=b[3]+a[3]+18;

Pass 4 :   Reduction in strength (assuming that multiplication is slower than 
addition) and noticing that a[1]=a[2]=a[3]=t  (thus the content of  t
should be kept in a work register) lead to the fi nal code:

t=x+x;
a[1]=t;
a[2]=t;
a[3]=t;
b[1]=b[1]+t+2;
b[2]=b[2]+t+8;
b[3]=b[3]+t+18;

 The original code involved nine additions and nine multiplications, numerous 
data movement instructions, and loop overhead. The optimized code requires 
only seven additions (22% reduction), no multiplications (100% reduction), 
less data movement, and no loop overhead. Hence, the improvement is signifi -
cant. It is very unlikely that any compiler would have been able to carry out 
such an effective optimization automatically. 

 As we saw above, it is highly benefi cial to know the optimization techniques 
used by compilers when coding real - time software for time - critical applica-
tions. Understanding the explicit mapping between high - level language source 
and assembly language translation for a particular compiler is essential in 
generating code that is optimal in either execution time or memory utilization 
viewpoints. The easiest and most reliable way to learn about any compiler is 
to run a series of tests on specifi c language constructs. For example, in many 
compilers, the  case  statement is effi cient only if more than three cases are to 
be compared, otherwise nested  if  statements should be used. Sometimes, the 
code generated for a case  statement can be quite convoluted, for instance, 
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containing a branch through a register, offset by a table value. This process 
can be time - consuming. 

 As mentioned earlier, procedure calls are costly in terms of passing of 
parameters via the stack. Hence, the software engineer should determine 
whether the compiler passes the parameters by byte or by word. 

 While modern compilers do provide effective optimization of the assembly 
language code output so as to, in many cases, make the decisions just discussed, 
it is important to discover what that optimization is specifi cally doing to 
produce the resultant code. For instance, compiler output can be affected by 
optimization for speed, memory and register usage, branches, and so on, which 
can sometimes lead to ineffi cient code, timing problems, or even critical regions. 
Thus, real - time systems engineers should preferably be masters of their com-
pilers. That is, at all times, the engineer should know what assembly language 
code will be output for a given high - level language instruction. A thorough 
understanding of a compiler can only be accomplished by developing a set of 
test cases to exercise it. The conclusions suggested by these tests can be 
included in the set of coding standards to foster improved use of the language, 
and, ultimately, improved real - time performance (Hatton,  1995 ). 

 Finally, although modern compilers usually perform effective code optimiza-
tion, that might not yet be the case when a new CPU architecture is introduced 
together with a compiler having a rather low and still unstable version number. 

 Vignette: Early Compiler Version 

 This anecdote (reported by one of Ovaska ’ s students who wants to stay 
anonymous) shows that it should not be assumed that a new  compiler can 
effectively use all the advanced features of a sophisticated CPU architec-
ture. Some years ago, a digital signal processor with fl oating - point support 
was launched with an early version of the ANSI - C compiler. In a research 
project, a fairly complex signal - processing algorithm was to be implemented 
in the new processor environment. The single software designer had two 
competing assignments: (1) use assembly language and do everything you 
can to minimize the execution time of the real - time algorithm; (2) use C 
language only and pay special attention to the clarity and understandability 
of the code. After developing and evaluating those two codes, the following 
conclusions were made: the assembly program was 53% faster than the C 
program; the assembly code used 45% less program memory and 63% less 
data memory than the C code. Hence, the differences were signifi cant. But 
what were the main reasons behind the remarkable speed improvement 
when assembly language was used? The C compiler did not use the effi cient 
circular addressing mode for implementing delay lines, but a  for  loop 
instead. In addition, the compiler did not utilize the parallel instructions of 
the processor effectively. The extra data memory locations were used by 
the C program at the initialization stage. It took about 18 hours to write 
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 Most of this code optimization discussion applies particularly to time - critical 
embedded systems, while soft real - time systems are typically programmed 
without much concern on such low - level issues — the main emphasis being on 
productivity of programmers, as well as maintainability and reusability of code, 
instead.   

   4.8    SUMMARY 

 Programming languages continue to have a vital role in the development of 
real - time systems, because they form an explicit interface between software 
engineers and real - time hardware. There is a clear trend related to the volume 
of code in embedded applications:  new products are going to have considerably 
more code than their predecessors . This increase is mainly due to enhancements 
in functionality and the use of more sophisticated computational algorithms. 

 The hardware community has responded to these demands by spatially and 
temporally distributed system architectures, advanced communications net-
works, CPUs with higher instruction throughput, and larger memories. These 
are needed for running complex signal processing and supervisory control 
algorithms, intelligent fault prognosis and self - diagnostics functions, model -
 based virtual sensors replacing physical ones, more comprehensive user -  and 
system - level interfaces, and so forth. 

 How is that global trend affecting the use of programming languages and 
the writing of real - time software? Well, the ongoing determined transition 
from procedural languages to object - oriented languages is one response to the 
growing amount of software found in typical embedded applications. Object -
 oriented languages, such as Ada, C ++ , C#, and Java (or Real - Time Java), 
provide basic means for improving the productivity of programmers, as well 
as maintainability and reusability of developed code. 

 Software reuse, which is seen as an opportunity to reduce the amount of 
redundant coding work in software projects, has also a fl ip side: excessive reuse 
of existing code may even limit the innovativeness of new products. In addi-
tion, there is a risk of propagating bad code. Hence, code reuse should be 
focused on naturally time - invariant and well - proven modules that exist in a 
specifi c application from generation to generation. Typical examples include 
local control algorithms, reference - signal generators, handling of analog and 
digital I/O, as well as standard fi eldbus interfaces. 

 From the practicing engineer ’ s viewpoint, automatic code generation can 
still be considered as only an emerging technology — even after several decades 
of evolution. Nonetheless, the need for automatic code generators is now 

and test the assembly code, while the C code was completed in less than 6 
hours. Obviously, recent versions of that C compiler perform much better 
than this early one — but you cannot know such things without running 
appropriate tests yourself. 
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greater than ever, because of the growing code size in real - time systems. It is, 
however, unlikely that automatic code generators will become a mainstream 
tool for practitioners in the foreseeable future. But they will certainly have 
steadily increasing use in coding such routine structures as fi nite state machines 
and certain numerical algorithms that do not require the problem - solving 
ability of programmers. 

 While productivity, maintainability, and reusability are truly important 
factors, they do not matter if the real - time requirements of a system are not 
met. It is challenging to run sophisticated algorithms at high sampling rates in 
a cost - effective hardware platform. Therefore, in certain application domains, 
special real - time programming languages need to be used instead of the 
general purpose ones. Such tailored languages lead to highly predictable real -
 time behavior and minimal language - originated overhead. Furthermore, it is 
still justifi able to use procedural languages, like the C language, for coding 
smaller and time - critical applications, or even use assembly language in par-
ticular rare occasions. 

 The ultimate desire of real - time programmers is a standardized program-
ming language and an associated compiler with a high level of abstraction ,  strict
real - time predictability , and  effectively optimized object - code generation . In the 
following chapter, we will discuss requirements - engineering methodologies 
that have an obvious link to the increasing level of abstraction, which appears 
to be a central issue when improving productivity of software engineers. 

 Finally, it may be time to reconsider the pioneering but largely forgotten 
work of Weinberg, where he proposed a new fi eld of study:  “ computer pro-
gramming as a human activity, or, in short, the psychology of computer pro-
gramming ”  (Weinberg,  1998 ). Although that fi eld never became a major one, 
it could offer complementary ideas for the continuing struggle to improve the 
productivity of real - time programmers.   

 4.9   EXERCISES 

4.1.    What are the reasons why the once - popular PL/I - derivative languages, 
such as Intel ’ s PL/M, Motorola ’ s MPL and Zilog ’ s PL/Z, practically 
disappeared by the late 1980s (see Fig.  4.1 )?   

4.2.    It can be argued that in some cases there exists an apparent confl ict 
between good software engineering practices and real - time performance. 
Consider the relative merits of recursive program design versus interac-
tive techniques, and the use of global variables versus parameter lists. 
Using these topics and an appropriate programming language for exam-
ples, compare and contrast real - time performance versus good software 
engineering practices as you understand them.   

4.3.    What programming restrictions should be used in a programming lan-
guage to permit straightforward analysis of real - time applications?   
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4.4.    Write a set of coding standards for use with any of the real - time applica-
tions introduced in Chapter  1  for the programming language of your 
choice. Document the rationale for each provision of the coding 
standard.   

4.5.    Why is it very important to cite the reference for any computational 
algorithm that is used in a real - time program in the program ’ s 
annotation?   

4.6.    In a procedural language of your choice, develop an abstract data type 
called  “ image ”  with associated functions. Be sure to follow the principle 
of information hiding. Make any assumptions that you need to about the 
properties of the images.   

4.7.    In the object - oriented language of your choice, design and code an 
 “ image ”  class that could be useful across a wide range of projects. Be 
sure to follow the best principles of object - oriented design.   

4.8.    How can misuse or misunderstanding of a software technology impede 
a software project? For instance, writing structured C code instead of 
classes in C ++ , or reinventing a tool for each project instead of using a 
standard one.   

4.9.    Java has been compared with Ada 95 in terms of  “ hype ”  and 
 “ unifi cation ”  — defend or refute the arguments for this comparison.   

4.10.    By using the fi ve metrics of Cardelli, compare the fi tness of C and C ++
languages for real - time programming; use pentacle diagrams (see Fig. 
 4.2 ) for visualizing your justifi ed comparison.   

4.11.    Are there any language features that are exclusive to C/C ++ ? Do these 
features provide specifi c advantage or disadvantage in embedded 
environments?   

4.12.    You are hired to defi ne a set of principal requirements for a new real -
 time programming language for embedded control applications. What 
are the most important requirements that your defi nition would contain? 
Justify your answer.   

4.13.    What compiler options are available in your favorite C compiler and 
what do they specifi cally do?   

4.14.    Develop a set of tests to exercise a compiler to determine the best use 
of the language in a real - time processing environment. For example, your 
tests should determine such things as when to use case  statements 
versus nested if-then-else  statements; when to use integers versus 
Boolean variables for conditional branching; whether to use  while  or 
for  loops, and when; and so on.   

4.15.    Use standard compiler - optimization methods and multiple optimization 
phases to optimize the following C code by hand:
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#define UNIT 1 
#define FULL 1 
void main(void) 
{
int a,b; 
a=FULL;
b=a;
if ((a ==FULL) && (b ==FULL))
{
if (debug) 
printf("a=%d b =%d",a,b);
a=(b*UNIT)/2;
a=2.0*a*4;
b=b*sqrt(a);
}

}

  REFERENCES 

    A. V.   Aho   and   J. D.   Ullman  ,  Principles of Compiler Design .  Reading, MA :  Addison -
 Wesley ,  1977 .  

    D.   Alonso  ,   C.   Vicente - Cicote  ,   P.   S á nchez  ,   B.    Á lvarez  , and   F.   Losilla  ,  “  Automatic Ada 
code generation using a model - driven engineering approach , ”   Lecture Notes in 
Computer Science ,  4498 , pp.  168  –  179 ,  2007 .  

    J. W.   Backus   et al.,  “  The FORTRAN automatic coding system , ”   Proceedings of the 
Western Joint Computer Conference , Los Angeles, CA,  1957 , pp.  188  –  198 .  

    G.   Bollella   and   J.   Gosling  ,  “  The real - time specifi cation for Java , ”   IEEE Computer ,  33 ( 6 ), 
pp.  47  –  54 ,  2000 .  

    A.   Burns   and   A.   Wellings  ,  Real - Time Systems and Programming Languages: Ada, Real -
 Time Java, and C/Real - Time POSIX ,  4th Edition .  Harlow, UK :  Pearson Education 
Limited ,  2009 .  

    L.   Cardelli  ,  “  Bad engineering properties of object - oriented languages , ”   ACM Computing 
Surveys ,  28 ( 4 ), pp.  150  –  158 ,  1996 .  

    P.   Dibble   and   A.   Wellings  ,  “  JSR - 282 status report , ”   Proceedings of the 7th International 
Workshop on Java Technologies for Real - Time and Embedded Systems , Madrid, 
Spain,  2009 , pp.  179  –  182 .  

    B. P.   Douglass  ,  Real - Time Design Patterns: Robust Scalable Architecture for Real - Time 
Systems .  Boston :  Addison - Wesley ,  2003 .  

    M. W.   El - Kharashi   and   F.   Elguibaly  ,  “  Java microprocessors: Computer architecture 
implications , ”   Proceedings of the IEEE Pacifi c Rim Conference on 
Communications, Computers and Signal Processing , Victoria, Canada,  1997 , 
pp.  277  –  280 .  

    R. L.   Glass  ,  “  Some thoughts on automatic code generation , ”   ACM SIGMIS Database , 
 27 ( 2 ), pp.  16  –  18 ,  1996 .  

www.it-ebooks.info

http://www.it-ebooks.info/


196 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS 

    N.   Hagge   and   B.   Wagner  ,  “  Mapping reusable control components to Java language 
constructs , ”   Proceedings of the 2nd IEEE International Conference on Industrial 
Informatics , Berlin, Germany,  2004 , pp.  108  –  113 .  

    L.   Hatton  ,  Safer C: Developing Software for High - Integrity and Safety - Critical Systems . 
 Maidenhead, UK :  McGraw - Hill ,  1995 .  

    G.   Hedin  ,   L.   Bendix  , and   B.   Magnusson  ,  “  Introducing software engineering by means 
of Extreme Programming , ”   Proceedings of the 25th International Conference on 
Software Engineering , Portland, OR,  2003 , pp.  586  –  593 .  

    R.   Jain  ,  The Art of Computer Systems Performance Analysis: Techniques for Experimental 
Design, Measurement, Simulation, and Modeling .  New York :  John Wiley & Sons , 
 1991 .  

    P. A.   Laplante  ,  Software Engineering for Image Processing .  Boca Raton, FL :  CRC Press , 
 2003 .  

    X.   Li   and   C.   Prasad  ,  “  Effectively teaching coding standards in programming , ”  
Proceedings of the 6th Conference on Information Technology Education , Newark, 
NJ,  2005 , pp.  239  –  244 .  

    M.   Lutz   and   P. A.   Laplante  ,  “  An analysis of the real - time performance of C# , ”   IEEE
Software ,  20 ( 1 ), pp.  74  –  80 ,  2003 .  

    D.   Maclay  ,  “  Click and code , ”   IEE Review ,  46 ( 3 ), pp.  25  –  28 ,  2000 .  
    D. L.   Parnas  ,  “  On the criteria to be used in decomposing system into modules , ”  

Communications of the ACM ,  15 ( 12 ), pp.  1053  –  1058 ,  1972 .  
    C.   Petzold  ,  Programming Windows ,  5th Edition .  Redmond, WA :  Microsoft Press ,  1999 .  
    D. C.   Schmidt  ,   M.   Stal  ,   H.   Robert  , and   F.   Bushmann  ,  Pattern - Oriented Software 

Architecture Volume 2: Patterns for Concurrent and Networked Objects .  New York : 
 John Wiley & Sons ,  2000 .  

    A. C.   Shaw  ,  Real - Time Systems and Software .  New York :  John Wiley & Sons ,  2001 .  
    B.   Sick   and   S. J.   Ovaska  ,  “  Fusion of soft and hard computing: Multi - dimensional catego-

rization of computationally intelligent hybrid systems , ”   Neural Computing  &  
Applications ,  16 ( 2 ), pp.  125  –  137 ,  2007 .  

    R. J.   Srodawa  ,   R. E.   Gach  , and   A.   Glicker  ,  “  Preliminary experience with the automatic 
generation of production - quality code for the Ford/Intel 8061 microprocessor , ”  
IEEE Transactions on Industrial Electronics ,  IE - 32 ( 4 ), pp.  318  –  326 ,  1985 .  

    G. M.   Weinberg  ,  The Psychology of Computer Programming: Silver Anniversary Edition . 
 New York :  Dorset House Publishing ,  1998 .   

www.it-ebooks.info

http://www.it-ebooks.info/


  5 
REQUIREMENTS ENGINEERING 
METHODOLOGIES

197

     Since the embedded - systems era, the emphasis of real - time software develop-
ment has evolved remarkably from programming toward requirements engi-
neering. In a typical software project today, requirements engineering activities 
may take an equal amount of effort (in person months) as code development 
and debugging. Requirements engineering is a core discipline of software and 
systems engineering that is concerned with determining the objectives, func-
tionality, and constraints of software systems in the problem space, as well as 
the representation of these aspects in forms amenable to modeling and analysis. 
The ultimate goal of requirements engineering is to compose a requirements 
document that is complete, balanced, unambiguous, correct, and easily under-
standable to both nontechnical customers and software developers. This last 
goal creates somewhat of a dilemma, as it indicates the duality of purpose of 
requirements documents: to provide (1) adequate insight for the  customers  to 
ensure the product under development meets their needs and expectations, and 
(2) a complete representation of the features and constraints of the software 
system as a basis for developers . In the real - time systems domain, the situation 
is further complicated by the obvious need to represent exact timing and per-
formance constraints, as well as the more readily elicited requirements. 

 While programming (or exploration of the solution space) is considered 
increasingly as a commoditized activity that can be outsourced, requirements 

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
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engineering is crucial activity of any systems development project, and it 
should, therefore, be conducted by the development organization — together 
with an appropriate group of customer representative. Requirements engi-
neering has a principal role in providing real - time software  on - time  and  on -
 budget  (Laplante,  2009 ), and it relies heavily on well - defi ned documentation 
practices, appropriate methodologies and supporting tools, as well as skills and 
discipline in using them. 

 In Section  5.1 , an introductory discussion on the requirements engineering 
process and the different classes of requirements is given to form a foundation 
for the succeeding sections. The discussion shows that requirements elicitation 
involves gathering requirements through a diverse collection of techniques. 
Moreover, there are standardized requirement classes that are applicable to 
practically all software projects. Formal methods in real - time system specifi ca-
tion are discussed with illustrative examples in Section  5.2 . These rigorous 
methods are particularly useful when automatic design and code generation 
approaches are to be used later in the development project. Section  5.3  is a 
dual section to the previous one as it provides a pragmatic presentation on 
leading semiformal methods for system specifi cation. The outcome of the 
requirements engineering phase, the  requirements document , is introduced 
from the structural and contents points of view in Section  5.4 . Section  5.5  gives 
a ruminative summary of this chapter. A diverse collection of revealing exer-
cises on requirements engineering is available in Section 5.6. Lastly, a compre-
hensive case study on specifying requirements for real - time software is given 
in Section  5.7 . That study of a sophisticated traffi c light control system will be 
continued from the design viewpoint in an appendix of Chapter  6 . 

 Some parts of this chapter have been adapted from Laplante  (2003; 2009 ) , 
which should be considered general references throughout.  

   5.1    REQUIREMENTS ENGINEERING FOR REAL - TIME SYSTEMS 

   5.1.1    Requirements Engineering as a Process 

 A multistep workfl ow for the requirements engineering phase is shown in 
Figure  5.1 , where specifi c engineering activities are represented as thin - line 
rectangles and the documents resulting from those activities are thick - line 
rectangles. Every requirements engineering process should begin with a pre-
liminary study. This study is an investigation into the motivation for the pos-
sible development project and the nature of primary problems to be solved. 
Such an investigation may consist of stakeholder perspectives and constraints, 
determination of project scope and feature priorities, as well as some early 
analysis of the temporal constraints imposed upon the entire real - time system. 
One of the main deliverables of the requirements engineering process is a 
feasibility report that may even advise discontinuing development of the 
planned software product. Usually, however, this will not be the case, and the 
preliminary study will be followed smoothly by requirements elicitation.   
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 Requirements elicitation involves gathering various requirements through 
a variety of techniques that may include stakeholder interviews and question-
naires, focus groups, company -  or customer - wide workshops, and prototyping. 
While requirements can be expressed in several forms ranging from natural 
language text through mathematical formalisms, it is common for high - level 
requirements to be outlined in the form of a domain model, that is, a model 
of the application domain that may include such artifacts as context diagrams, 
use cases, or entity relationship diagrams — depending on the methodology 
preferred. 

 The next stage is requirements defi nition. It is important to defi ne, precisely 
enough, each of the captured requirements so that they can be analyzed for 
completeness, consistency, and correctness in the validation stage. The overall 
outcome of this process is a requirements document containing a  software (or 
systems) requirements specifi cation  ( SRS ), which is a description of the fea-
tures, behaviors, and constraints of the fi nal system. Precise software specifi ca-
tions provide an essential basis for analyzing the requirements, validating that 
they are the stakeholder ’ s true intentions, defi ning what the designers have to 
build, and fi nally verifying that they have done so correctly (Robertson and 
Robertson,  2005 ).  

   5.1.2    Standard Requirement Classes 

 While there are a number of alternative taxonomies of requirements available, 
the most established one is the simple functional versus nonfunctional 
classifi cation. A general software - specifi cation scheme, applicable also for 

       Figure 5.1.     The requirements engineering process;  adapted from Sommerville (  2000 ).  

Preliminary

Study

Feasibility

Report

Requirements

Elicitation

Requirements

Definition

Domain

Model

Requirements

Validation

Definition of

Requirements

Requirements

Specification

Requirements

Document

www.it-ebooks.info

http://www.it-ebooks.info/


200 REQUIREMENTS ENGINEERING METHODOLOGIES

specifying real - time  software, is defi ned by the Institute of Electrical and 
Electronics Engineers (IEEE) Std 830 – 1998, Recommended Practice for 
Software Requirements Specifi cations (IEEE,  1998 ). It describes the content 
and qualities of a solid software requirements document. This widely used 
standard defi nes the following six classes of requirements:

C1.     Functional :      Fundamental actions or features  
C2.     External Interfaces :      Inputs and outputs  
C3.     Performance :      Static and dynamic numerical requirements  
C4.     Logical Database :      Logical requirements for any database information 
C5.     Design Constraints :      Standards and hardware restrictions  
C6.     Software - System Attributes :      Various quantifi able attributes    

 Here, classes C2 through C6 are considered to be nonfunctional. 
 Functional requirements include a description of all system inputs and the 

sequence of operations associated with each particular input set. Either 
through case - by - case description or some other general form of description 
(e.g., using universal quantifi cation), the exact sequence of operations and 
outputs to normal and abnormal situations must be provided for every input 
possibility. Moreover, abnormal situations might include error handling and 
recovery, including failure to meet deadlines. In essence, functional require-
ments describe the complete deterministic behavior of the real - time system. 
Generally, the functional requirements are partitioned to software and hard-
ware before requirements analysis begins, although a careful trade - off analysis 
may cause these to shift later in the project lifecycle. 

 External interface requirements are a description of all inputs and outputs 
to/from the system including:

 •      Name of item  
 •      Description of purpose  
 •      Source of input or destination of output  
 •      Valid range, accuracy, and/or tolerance  
 •      Units of measure  
 •      Timing  
 •      Relationships to other inputs/outputs  
 •      Screen formats/organization  
 •      Window formats/organization  
 •      Data formats  
 •      Command formats  
 •      End messages    

 Performance requirements include both static and dynamic numerical require-
ments placed on the software or on human interaction with the software as a 
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whole. For a nonembedded real - time system, static requirements could include 
the number of simultaneous users to be supported. The dynamic requirements, 
on the other hand, might include the number of transactions and tasks and the 
amount of data to be processed within certain time limits under both normal 
and peak workload conditions. With embedded systems, however, the indi-
vidual performance requirements may vary greatly from those of software that 
is nonembedded. 

 Logical - database requirements include the defi nitions of tabulated infor-
mation used by various functions, such as accessing capabilities, data entities 
and their relationships, data - retention requirements, frequency of use, and 
integrity constraints. 

 Design - constraint requirements are related to such imperative issues as 
standards compliance and hardware limitations. 

 Lastly, software system attribute requirements include availability, main-
tainability, portability, reliability, security, and energy usage of the real - time 
software. It is important to specify the attributes explicitly to make it possible 
to verify their proper existence objectively. These attributes are often archi-
tecture driven. 

 At this point, it is worth noting that the traditional nomenclature for func-
tional versus nonfunctional requirements is somewhat inaccurate, because the 
terms  “ functional ”  and  “ nonfunctional ”  are not necessarily separable in the 
context of real - time systems. Thus, a more logical classifi cation could be 
between a behavior that is observable  via execution (e.g., some response time) 
and behavior that is nonobservable  via execution (e.g., maintainability). Such 
a classifi cation principle has an analogy to the concept of observability in 
control theory.  

   5.1.3    Specifi cation of Real - Time Software 

 There is no single approach for specifi cation of real - time software, but real -
 time systems engineers typically use a case - specifi c combination of the follow-
ing approaches:

 •      Top - down decomposition or structured analysis  
 •      Object - oriented approaches  
 •      Software description languages or in - house pseudocode  
 •      High - level functional specifi cations that are not further decomposed  
 •       Ad hoc  techniques, including natural language, mathematical descriptions, 

and various models    

 There are three general classifi cations of specifi cation techniques:  formal , 
informal , and  semiformal . Formal methods have a rigorous, mathematical or 
logical basis. A representative sampling of these approaches is discussed in the 
following sections. Any requirements specifi cation technique is informal if it 

www.it-ebooks.info

http://www.it-ebooks.info/


202 REQUIREMENTS ENGINEERING METHODOLOGIES

cannot be completely transliterated into a rigorous mathematical notation and 
associated rules. Rudimentary informal specifi cations, such as fl owcharting, 
have little or no underlying mathematical/logical structure, and hence they 
cannot be completely  analyzed. In the case of fl owcharts, the topological struc-
ture is mathematically rigorous — either sequence or branch — but the seman-
tics in the process and decision blocks, typically expressed using natural 
language, are not. All that can be done with informal specifi cations is to fi nd 
counterexamples of where the system fails to meet the requirements or where 
there are confl icts. This is simply not adequate for most real - time systems, 
where formal substantiation of performance characteristics of requirements is 
necessary. Approaches to requirements specifi cation that defy classifi cation as 
either formal or informal are called semiformal. Semiformal approaches, while 
not appearing to be fully rigorous, might be. For example, some contend that 
the  unifi ed modeling language  ( UML ) is semiformal, because the statechart 
is formal while other metamodeling techniques it employs have a pseudomath-
ematical basis. Others contend, however, that UML is not even semiformal, 
because it has serious holes and inconsistencies — this heavy criticism applies 
to UML 1.x only. The thoroughly revised UML 2.x contains additional formal 
components, and there are serious intentions to formalize it even further 
(Miles and Hamilton,  2006 ). In any case, UML largely enjoys the benefi ts of 
both informal and formal techniques and is extensively used in real - time 
systems specifi cation and design, because it is supporting the ongoing transi-
tion from procedural programming languages to object - oriented ones.   

   5.2    FORMAL METHODS IN SYSTEM SPECIFICATION 

 Formal methods contribute signifi cantly to requirements formulation and vali-
dation by the use and extension of effective mathematical techniques (Liu, 
 2010 ). And this practice is becoming more and more feasible with the increas-
ing availability of supporting tools. These techniques and associated tools 
employ some combination of abstract algebra, discrete mathematics,  λ  - calculus, 
number theory, predicate calculus, programming language semantics, recursive 
function theory, and so forth. One of the primary benefi ts of formal methods 
is that they provide an exact scientifi c perspective to system specifi cation and 
software design. Formal requirements offer the opportunity of discovering 
errors at the earliest phase of development, when the errors can be corrected 
more easily and at a lower cost. Informal specifi cations, on the other hand, 
might not support this goal, because while they can be used to refute a specifi c 
requirement by counterexamples, such counterexamples may be diffi cult to 
create. 

 By their nature, specifi cations for real - time systems usually contain some 
formalism in the mathematical expression of the interactions with the operat-
ing environment or within systems in which they are embedded. While this 
does not justify the claim that every real - time system specifi cation is fully 
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formalizable, it does lead to certain optimism that most real - time systems are 
suitable for, at least, partial formalization. 

 Nevertheless, formal methods are generally perceived to be diffi cult to use 
by even expertly trained engineers, and may be error - prone if used without 
proper computer - based tools. For these reasons, and because they are often 
believed to increase early lifecycle costs and even delay projects, formal 
methods are, unfortunately, too often avoided. 

 It should be understood, however, that formal methods are not intended to 
take on an all - encompassing role in real - time software specifi cation and design. 
Instead, carefully selected techniques may be used in one or two stages of the 
development process. There are three typical uses for formal methods among 
software engineers:

   1.     Consistency Checking .      This is where the system ’ s behavioral require-
ments are described using a mathematics - originated notation.  

  2.     Model Checking .      Finite state machines or their extensions are used to 
verify whether a given property is satisfi ed under all conditions.  

  3.     Theorem Proving .      Here, axioms of system behavior are used to derive a 
proof that a system will behave in a given way.    

 In addition, formal methods offer unique opportunities for reusing require-
ments. Embedded systems are often developed as families of similar products, 
or as incremental redesigns of existing products. For the fi rst situation, formal 
methods can help to identify a consistent set of core requirements and abstrac-
tions to reduce duplicate engineering effort. For redesigns, having formal 
specifi cations for the existing system provides an unambiguous reference for 
baseline behavior and a convenient way to analyze proposed changes (Bowen 
and Hinchey,  1995 ). 

 Example: Consistency Proof of Requirements 

 Consider the following excerpt from a software requirements specifi cation:

R1.   If interrupt A arrives, then task B stops executing.  

  R2.     Task A begins executing upon arrival of interrupt A.  

R3.   Either Task A is executing and Task B is not, or Task B is executing 
and Task A is not, or both are not executing.    

 These textual requirements can be formalized by rewriting each in terms 
of their component propositions, namely:

p : Interrupt A arrives.  

q : Task B is executing.  

r : Task A is executing.    
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 Then rewriting the requirements using these propositions and standard 
logical connectives yields:

R1.      p     ⇒      ¬ q

R2.      p     ⇒     r

R3.     ( r     ∧      ¬ q )    ∨    ( q     ∧      ¬ r )    ∨    (  ¬ q     ∧      ¬ r )    

 Notice the obvious diffi culties in dealing with the articulation of temporal 
behavior. For instance, in requirement R2, Task A begins executing upon 
arrival of interrupt A; but for how long does it continue executing? This 
relationship needs to be clarifi ed using some other methodology. 

 In any case, the consistency of these requirements can be proved by 
demonstrating that there is at least one set of truth values that makes all 
requirements true simultaneously . This can be verifi ed explicitly by creating 
the corresponding truth table (see Table  5.1 ). Looking at the table, rows 3, 
6, 7, and 8 in columns 6, 7, and 8, corresponding to requirements R1, R2, 
and R3, are all true, and hence this set of requirements is consistent.   

 Consistency checking, leading to a formal proof, is particularly useful when 
there is a large number of complicated requirements. If automated tools with 
a convenient user interface are available to perform the checking process, even 
large specifi cations could be consistency checked this way. However, aside 
from the diffi culties in formalizing the notation, fi nding a set of individual truth 
values that yield a composite truth value for the set of propositions is, in fact, 
a Boolean satisfi ability problem, which is an NP - complete problem (to be 
discussed in Chapter  7 ). 

  TABLE 5.1.    Truth Table Used to Verify the Consistency of the Example Set of 
Requirements (T    =    True and F    =    False) 

      1    2    3    4    5     6      7      8

p       q       r       ¬q ¬   r       P     ⇒     ¬q       p     ⇒     r      ( r     ∧ ¬q )    ∨    ( q     ∧ ¬r )    ∨    ( ¬   q     ∧     ¬     r
)

  1    T    T    T    F    F    F    T    F  
  2    T    T    F    F    T    F    F    T  
3     T    F    T    T    F     T      T      T
  4    T    F    F    T    T    T    F    T  
  5    F    T    T    F    F    T    T    F  
6     F    T    F    F    T     T      T      T
7     F    F    T    T    F     T      T      T
8     F    F    F    T    T     T      T      T
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   5.2.1    Limitations of Formal Methods 

 Formal methods have two major limitations that are of special concern to 
real - time system developers. First, although formalism is often used in pursuit 
of absolute correctness and safety, it can eventually guarantee neither. And, 
second, formal techniques do not offer effi cient or intuitive ways to reason 
about alternative architectures or designs. 

 Correctness and safety are two of the original motivating factors driving 
adoption of formal methods. Aerospace, automotive, defense, elevator, mass 
transportation, and nuclear regulations in several countries mandate (or 
strongly suggest) the use of formal methods for specifying safety - critical sub-
systems. Furthermore, some academic researchers emphasize the  “ correct-
ness ”  properties of particular mathematical approaches, without clarifying that 
mathematical correctness in one part of the development process might not 
translate into implemented correctness in the entire system. 

 Nevertheless, it is the specifi cation that must be produced and proven at this 
stage — not the software product itself. Formal software specifi cations need to 
be converted to a design, and then encoded using some programming language(s). 
The translation process is subject to the potential pitfalls of any programming 
effort. For this reason, testing is just as important when using formal require-
ments engineering methods as when using informal or semiformal ones, though 
the testing effort can be reduced with the use of formal methods. Formal veri-
fi cation is also subject to many of the same limitations as traditional testing, 
namely, that testing cannot prove the absence of errors, only their presence. 

 Notation evolution is a slow but ongoing process in the formal methods 
community. It can take many years from when a new notation is introduced 
until it is adopted universally. A major challenge in applying formal methods 
to real - time embedded systems is choosing an appropriate technique to match 
the problem at hand. Still, to make formal models truly usable for a wide 
spectrum of people, requirements documents should also use complementary 
nonmathematical notations, such as natural language, structured text, or some 
form of graphical diagrams.  

   5.2.2    Finite State Machines 

 The  fi nite state machine  ( FSM ),  fi nite state automaton  ( FSA ), or  state -
 transition diagram  ( STD ) is a formal mathematical model used in the 
specifi cation and design of real - time software (Wagner et al.,  2006 ). Of those 
three equivalent terms, we use  “ fi nite state machine ”  throughout this text. 
Intuitively, fi nite state machines rely on the fact that many systems can be 
represented by a fi xed number of unique states and certain transitions between 
them. The system may change its state depending on time (real - time clock) or 
the occurrence of specifi c events. Formally, fi nite state machines can be repre-
sented by the fi ve tuple:

    M S i T= { }, , , , ,Σ δ     (5.1)  
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where S  is a fi nite, nonempty set of states;  i  is the initial state ( i     ∈     S );  T  is the 
fi nite set of terminal states ( T     ⊆     S );  Σ  is a fi nite alphabet of symbols or events 
used to mark transitions between states; and  δ  is a transition function that 
describes the next state of the FSM given the current state and a symbol from 
the alphabet. That is,  δ : S     ×     Σ     →     S . A fi nite state machine can be expressed in 
diagrammatic, matrix, and set - theoretic representations, but we prefer the two 
fi rst ones in this text. While graphical diagrams are easy to create and understand 
by engineers, matrices are appropriate inputs for automatic code generators. 

 Example: Representations of a Practical Finite State Machine 

 To illustrate the diagrammatic and matrix representations, suppose it is 
desired to model the door - control subsystem of an elevator controller. This 
safety - critical subsystem has the following seven states:

Closed : The door is fully closed.  

Opening : The door is opening due to an initial open command or a later 
reopen command.  

Open : The door is fully open.  

Closing : The door is closing normally.  

Nudging : The door is closing at a creeping speed and with a reduced force 
after several reopenings.  

Fault C : The door could not be fully closed due to some failure.  

Fault O : The door could not be fully opened due to some failure.    

 The fi rst fi ve states (Closed, Opening, Open, Closing, and Nudging) are 
visited regularly in normal operation of the elevator, but the two last ones 
(Fault C and Fault O) represent serious fault conditions when the elevator 
must be shut down since the door cannot be either closed or opened due 
to some (typically) mechanical failure. In those abnormal terminal states, 
certain fault - recovery procedures are initiated, often leading to a service 
visit by an elevator technician. It is generally known that broken doors are 
causing most of the elevator shut - downs. 

 The door - control subsystem reacts to various events generated by the 
elevator controller itself, door contacts and safety sensors, push buttons 
inside the car, as well as different timeout timers. These events are listed below:

CC : Command from the elevator controller to close the door.  

OC : Command from the elevator controller to open the door.  

DC : Door - closed contact (the door is fully closed).  

DO : Door - open contact (the door is fully open).  

CB : Door - close button.  
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   OB : Door - open button.  

   SE : Safety edge to sense a passenger (or some obstacle) between closing 
door blades.  

   PC : Photocell(s) to sense a passenger (or some obstacle) between 
closing door blades.  

   T1 : Timeout to indicate the door could not be closed in a fairly long 
time due to several reopenings.  

   T2 :  Timeout to indicate the door could not be closed in an overly long 
time due to a likely failure.  

   T3 : Timeout to indicate the door could not be opened in a nominal (plus 
some margin) time due to a possible failure.    

 The possible transitions from state to state triggered by specifi c events are 
illustrated in Figure  5.2 . It is assumed that  “ Closed ”  is the initial state.   

 This FSM can be expressed using the fi ve tuple of Equation  5.1  as follows:   

   S = { }Closed Opening Open Closing Nudging Fault C Fault O, , , , , ,      

   i = Closed      

   T = { }Fault C Fault O,      

   Σ = { }CC OC DC DO CB OB SE PC T T T, , , , , , , , , ,1 2 3      

 The transition function,  δ , is embodied in the diagram itself, and is conve-
nient to represent with a transition matrix, as shown in Table  5.2 .   

       Figure 5.2.     A diagrammatic representation of a fi nite state machine for the elevator 
door - control subsystem.  
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 A fi nite state machine that does not depict any outputs during state transi-
tions is called a  Moore  machine, where all outputs are dependent on states 
only. Thus far, we have considered solely Moore machines in this discussion. 
However, outputs during transitions can be depicted by an extension of the 
Moore machine called a  Mealy  machine. The Mealy machine can be described 
accordingly by a six - tuple:

    M S i T= { }, , , , ,Σ Γδ     (5.2)  

where the fi rst fi ve elements are the same as for the Moore machine of 
Equation  5.1 , while the sixth element,  Γ , represents the set of possible outputs. 
However, the transition/output function,  δ , is here somewhat different from 
the pure transition function of the Moore FSM, as it describes the next state 
and the associated output given the current state and an input symbol from 
the alphabet. Hence, it can be expressed as  δ : S     ×     Σ     →     S     ×     Γ . A generic Mealy 
machine for a system with three states, three inputs, and three outputs is illus-
trated in Figure  5.3 . The corresponding transition matrix is given in Table  5.3 . 
It is commonly known that the number of states required in a Mealy FSM is 
less than or equal to the number of states in a corresponding Moore machine.     

 Finite state machines are straightforward to construct, and program code 
can be easily (or even automatically) generated using matrices to specify the 
transitions between states. FSMs are also unambiguous, since they can be 
represented with a formal mathematical description. In addition, concurrency 

       Figure 5.3.     A fully connected Mealy FSM with states S1, S2, and S3, inputs E1, E2, and 
E3, and outputs O1, O2, and O3.  
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in a real - time system can be depicted by using multiple fi nite state machines. 
When constructing a fi nite state machine, special attention should be given to 
the following concerns (Yourdon,  1989 ):

    •      Have you defi ned all necessary states?  
   •      Can all the states be reached?  
   •      Can all the states, except the terminal ones, be exited?    

 Because rigorous mathematical techniques for reducing the number of states 
exist, program code based on FSMs can be formally optimized. Such optimiza-
tion could even be automated. A rich theory surrounds fi nite state machines, 
and this can be exploited in the development of system specifi cations. On the 
other hand, a major disadvantage of FSMs is that the internal aspects of 
modules cannot be depicted. That is, there is no way to indicate how functions 
(states) can be broken down into subfunctions (substates). In addition, inter-
task communication between multiple FSMs is diffi cult to depict. Finally, 
depending on the particular system and alphabet used, the number of states 
may sometimes grow very large. Both of these problems, however, can be 
overcome through the use of statecharts to be introduced shortly. Furthermore, 
the use of fi nite state machines in the design of real - time software is discussed 
in Chapter  6 .  

   5.2.3    Statecharts 

 Statecharts — or originally Harel ’ s statecharts (Harel,  2009 ) — have their roots 
in the avionics industry, and they provide  “ diagrammatic/visual formalism ”  for 
system and software engineers. They combine fi nite state machines ’  user -
 friendliness  with data fl ow diagrams and a feature called broadcast commu-
nication, in a way that can depict both synchronous and asynchronous 
operations. Statecharts can be defi ned informally as:

   Statechart FSM Depth Orthogonality Broadcast Communication= + + + ..   

 Here, FSM is a fi nite state machine, depth represents hierarchical levels of 
detail, orthogonality represents the existence of parallel states, and broadcast 
communication is a method for allowing multiple orthogonal states to react 

  TABLE 5.3.    Transition Matrix Representation for the 
Finite State Machine in Figure  5.3  

        E1     E2     E3  

  S1    S1/O1    S2/O2    S3/O3  
  S2    S1/O1    S2/O2    S3/O3  
  S3    S1/O1    S2/O2    S3/O3  
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       Figure 5.6.     Navigation subsystem containing four orthogonal tasks.  
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to the same event. Actually, hierarchy and orthogonality are the two principal 
ideas behind statecharts, and they can be fl exibly compounded. The value of 
hierarchy and orthogonality is mainly in their  convenience  and  naturalness . In 
principle, hierarchy could always be fl attened and orthogonality could be 
removed. However,  “ convenience ”  is exactly what engineers appreciate when 
using any methodology. 

 The statechart is an extension of a fi nite state machine, where each state 
can contain its own FSM that further describes its behavior. The fundamental 
components of the statechart are introduced below (see also Figures  5.4 – 5.7 ):

       Figure 5.4.     Statechart format where A and B are states,  x  is an event that causes the 
transition marked by the arrow,  y  is an optional event triggered by  x , and  e  1 ,    . . .     e n   are 
optional conditions qualifying the primary event;  adapted from Laplante (  2003 ).  

A Bx(e ,...e )/y1 n

       Figure 5.5.     A statechart depicting insideness;  adapted from Laplante (  2003 ).  
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    •      The FSM is represented in the usual way, with capital letters or descriptive 
phrases used to label the states.    

   •      Depth or hierarchy is represented by the insideness of states.  
   •      Orthogonality is represented by dashed lines separating parallel states (or 

tasks in a multitasking system).  
   •      Broadcast communications are represented by labeled arrows, similarly 

as transitions in FSMs.  
   •      Symbols  a ,  b ,    . . .     z  represent events that trigger transitions, in the same 

way transitions are represented in FSMs.  
   •      Lowercase letters within parentheses stand for conditions that must be 

true for the associated transition to occur.    

 A noteworthy characteristic of statecharts is the explicit encouragement of 
top - down design of modules or suchlike. As an example, for any module (rep-
resented like a state in an FSM), increasing detail is depicted as substates 
internal to it. In Figure  5.5 , the system is composed of two primary states, A 
and B, drawn as rounded rectangles. Each of these, in turn, has been decom-
posed into substates Al and A2, and B1 and B2, respectively, which might 
represent individual program modules. Those internal states can also be 
decomposed, and so forth. To the programmer using some procedural lan-
guage, each nested substate within a state represents a procedure within 
another procedure. 

 Orthogonality depicts concurrency in the system for states that run in isola-
tion, called  AND  states. Orthogonality is represented by separating the orthogo-
nal components by dashed lines. For instance, if a state S consists of  AND  
components P and Q, S is called the  orthogonal product  of P and Q. If S is 
entered from the outside without any conditional information, then the states 
P and Q are entered simultaneously. Communication between the  AND  states 
can be achieved conveniently through careful use of global memory, whereas 
synchronization can be achieved through a feature of statecharts called broad-
cast communication. Figure  5.6  illustrates a statechart for the aircraft -
 navigation subsystem discussed earlier in the text containing four orthogonal 

       Figure 5.7.     A statechart depicting a chain reaction;  adapted from Laplante (  2003 ).  
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tasks and six internal states or substates. This highly condensed visual descrip-
tion of the entire subsystem gives a clear picture of the multitasking function-
ality. However, it is necessary to understand the underlying algorithms and 
constraints before it is possible to compose such a statechart. 

 Broadcast communication is depicted by the transition of orthogonal states 
based on the same event, and it is a simple way to coordinate the orthogonal 
statechart components. For example, if the inertial measurement system 
switches from  “ standby ”  to  “ ready ”  mode, an event indicated by an interrupt 
can cause a simultaneous state change in multiple tasks (or even subsystems). 
Another valuable aspect of broadcast communication is the concept of chain 
reaction ; that is, events triggering other events in a sequence. Its implementa-
tion follows from the observation that statecharts can be viewed as an exten-
sion of Mealy - type fi nite state machines, and output events can be attached to 
the triggering event. In contrast with the standard Mealy machine, however, 
the output is not seen by the outside world; instead, it affects the behavior of 
an orthogonal component only. For instance, in Figure  5.7  suppose there exists 
a transition labeled e / f , and if event  e  occurs, then event  f  is immediately acti-
vated. Furthermore, event  f  could trigger another transition, such as  f / g . The 
length of a chain reaction is the number of transitions triggered by the fi rst 
event. Such chain reactions are assumed to occur instantaneously, although in 
practical uniprocessor implementations, this is not possible to be accomplished 
precisely. In the system of Figure  5.7 , a chain reaction of length two will occur 
when the e / f  transition fi rst occurs. 

 Statecharts are excellent for representing real - time systems since they can 
depict concurrency while preserving modularity. In addition, the concept of 
broadcast communication allows for easy intertask - communication represen-
tation. As a real - world example, Figure  5.A5  found in the case study of Section 
 5.7  illustrates a statechart corresponding to the sophisticated traffi c - light 
control system. 

 In summary, the statechart combines the best of data fl ow diagrams and 
fi nite state machines. Commercial products allow a practicing engineer to 
defi ne graphically a real - time system using statecharts, perform comprehen-
sive simulation analysis, and even generate program code automatically. 
Moreover, statecharts can be used in conjunction with both structured and 
object - oriented methods. Statecharts are widely used today, because an object -
 oriented variant has become a standard part of UML (Samek,  2009 ).  

   5.2.4    Petri Nets 

 Petri nets are another class of formal methods used to specify and analyze 
concurrent operations in real - time systems (Mazzeo et al.,  1997 ). Commercially 
available Petri net tools can produce executable specifi cations and are particu-
larly suitable for modeling synchronizations among asynchronous tasks. While 
Petri nets have a rigorous mathematical basis, they can still be described 
graphically as interconnections of only two basic entities. A set of circles called 
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 “ places ”  is used to represent data stores or conditions. Rectangular boxes, on 
the other hand, represent transitions or events. Each  place  ( P ) and  transition  
( T ) is labeled with a data count and transition function, respectively, and they 
are connected by unidirectional arrows. Petri nets are sometimes called Place/
Transition nets in reference to the central role of places and transitions. In 
addition, fi nite state machines can be interpreted as a subclass of Petri nets, 
but their expressiveness is obviously weaker. 

 The initial Petri net graph is labeled with a  marking  given by  m  0 , which 
represents the initial data count in all the places. Subsequent markings,  m i  , 
 i     ∈    {1, 2, 3,    . . .    }, are results of the  fi ring  of transitions, where each fi ring is an 
atomic operation by its nature. A transition fi res if it has as many input data 
as required for producing an associated output. In Petri nets, the graph topol-
ogy does not change over time; only the marking or data count of the places 
do. The modeled real - time systems may also advance nondeterministically (i.e., 
there is more than one possible next state) as transitions fi re. To illustrate the 
notion of fi ring, consider the simple Petri net given in Figure  5.8  and the cor-
responding fi ring table provided in Table  5.4 .     

 As another example, consider the Petri net of Figure  5.9 . Moving from top 
to bottom and left to right indicates the consecutive stages of fi rings in the net. 
Table  5.5  depicts the corresponding fi ring table. When the number of outgoing 
arrows is lower than that of incoming arrows, the particular transition is called 
a  consumer ; and when a transition has more outgoing than incoming arrows, 
it is a  producer  (Bucci et al.,  1995 ).     

       Figure 5.8.     A simple Petri net before ( m  0 ) and after  ( m  1 ) fi ring; adapted from Laplante 
( 2003 ) .  

P1 P2

T1

m0

P1 P2

T1

m1

  TABLE 5.4.    Firing Table for the Petri Net Shown in 
Figure  5.8 ; Adapted from (Laplante,  2003 ) 

         P  1       P  2   

   m  0     1    0  
   m  1     0    1  
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  TABLE 5.5.    Firing Table for the Petri Net 
Shown in Figure  5.9  

         P  1       P  2       P  3       P  4       P  5       P  6       P  7   

   m  0     1    1    0    0    0    0    0  
   m  1     0    0    1    0    0    0    0  
   m  2     0    0    0    1    1    0    0  
   m  3     0    0    0    0    0    1    1  

       Figure 5.9.     Sequential behavior of a Petri net with both  “ consumer ”  and  “ producer ”  
transitions.  
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 Petri nets can be used to model (parts of) real - time systems and to search 
for possible timing confl icts, as well as race conditions. They are excellent for 
representing distributed and event - driven systems, such as communications 
protocols and discrete manufacturing systems. As Petri nets are purely math-
ematical in nature, rigorous techniques for system optimization and program 
proving can be employed. However, Petri nets can be overkill if the system to 
be modeled is very simple. Similarly, if the system is highly complex, the overall 
timing behavior can easily become obscured. 

 The Petri net is a powerful tool that is frequently used for the analysis of 
 race - conditions  and for  deadlock  identifi cation. For example, suppose a require-
ments specifi cation contains a subnet that resembles Figure  5.10 . Clearly, it is 
impossible to tell which of the two transitions (labeled with a question mark) 
will fi re, though in any case, only one of them will fi re. Moreover, Petri nets 
can be used effectively to identify such cycles that indicate a potential dead-
lock. For instance, suppose a set of requirements can be modeled as in Figure 
 5.11 , which is, in fact, a formal replica of Figure  3.13  involving two parallel 
tasks and two shared resources. Obviously, this scenario represents an inevi-
table deadlock. And while it is unlikely that such a confl ict situation would be 
created intentionally, Petri nets can also be used to identify unreachable states, 
which would be represented by a marking that can never be reached. Petri net 
analysis by appropriate simulation tools can be used to identify nonobvious 

       Figure 5.10.     Race - condition identifi cation with a Petri net.  
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       Figure 5.11.     Deadlock in Figure  3.13  illustrated using a Petri net.  
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cycles that appear as subnets in complex diagrams. This kind of situation is 
briefl y discussed in the following vignette by Ovaska.   

 Vignette: Petri Net Simulation Helps in Identifying Deadlocks 

 A communications protocol was developed for the elevator control system 
of Figure  3.17 . The protocol was implemented and tested, and everything 
seemed to work just fi ne. However, the critical communications between 
the group dispatcher and up to eight elevator controllers could enter a 
deadlocked state sporadically. This situation happened infrequently, once 
every few days. Hence, it was diffi cult to identify the reason for such a 
dramatic failure. For some time, it was assumed the deadlock was hardware 
originated and caused by electromagnetic interferences. But no evidence to 
such a hypothetical problem was found. The responsible software engineer 
was practice oriented and did not have any trust in formal methods for 
system specifi cation. Nonetheless, two computer science students were 
invited to create a detailed Petri net model of the communications protocol 
as their special assignment. They performed systematical simulations with 
the formal model and soon identifi ed a rare error condition leading to the 
hunted deadlock. The bug was corrected and the communications protocol 
worked perfectly since that. After this shaking experience, the engineer 
removed Petri nets from his subjective  “ to be avoided list. ”  

 The basic Petri net model described in this section is just one of a variety of 
available models. For example, there are timed Petri nets, which enable syn-
chronization of fi rings, colored Petri nets, which allow for labeled data to 
propagate through the net, and timed - colored Petri nets, which embody both 
features.   

   5.3    SEMIFORMAL METHODS IN SYSTEM SPECIFICATION 

 Semiformal methods are used extensively in specifying real - time systems 
because of their typical versatility — some of those methods are even consid-
ered to advance the laborious system- specifi cation process  itself. In the follow-
ing discussion, we contemplate two widespread approaches for specifying 
real - time software:  structured analysis and structured design  ( SA/SD ) methods 
and the unifi ed modeling language (UML). While the use of UML is expand-
ing rapidly with the ongoing transition from procedural programming lan-
guages to object - oriented ones in real - time applications (see Figure  4.1 ), SA/
SD still has a solid position with the users of procedural languages in embed-
ded systems. Moreover, the easy - to - learn SA/SD methods are particularly 
convenient when introducing the topic of system specifi cation to undergradu-
ate students or other newcomers in the fi eld of software engineering. 
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   5.3.1    Structured Analysis and Structured Design 

 During the past, for over three decades, methods for SA/SD have evolved 
gradually from the early defi nitions of De Marco  (1978)  to the latest exten-
sions of Yourdon  (2006) , and are used widely in diverse real - time applications 
throughout the world. One reason behind the exceptional popularity of SA/
SD is that those techniques are closely associated with the procedural pro-
gramming languages with which they co - evolved (such as the C language) and 
in which countless real - time systems are written. Another reason is obviously 
the global availability of established SA/SD engineering tools. Although struc-
tured methods appear in many forms, the de facto standard is undisputedly 
Yourdon ’ s  Modern Structured Analysis  (Yourdon,  1989 ). 

 Several extensions to the original structured analysis (SA) emerged already 
in the 1980s to account, for instance, system dynamics and the usage of SA for 
the specifi cation of embedded systems. Particularly, Ward and Mellor extended 
data fl ow diagrams by adding a way to model control fl ows (such as interrupts), 
as well as fi nite state machines (or state - transition diagrams), for defi ning 
control processes (Ward and Mellor,  1985 ). Other real - time extensions include 
Gomaa ’ s  DARTS  ( design approach for real - time systems ) (Gomaa,  1988 ), for 
example. 

 Structured analysis for  real - time systems  is still based on the fundamental 
notion of the fl ow of data between successive data transformations, and it 
provides very little support for identifying concurrency. Hence, depending 
upon the detail of the analysis phase, there is usually something arbitrary in 
identifying the appropriate set of processes. This may result in the implementa-
tion of unnecessary processes (causing extra scheduling overhead) and the 
possibility that some process needs concurrency internally (causing additional 
implementation complexity) (Bucci et al.,  1995 ). To prevent these ineffi cien-
cies, it is truly important to use the SA/SD methods  iteratively  — such a multi -
 pass approach is supported by the SA/SD engineering tools. 

 Yourdon ’ s  Modern Structured Analysis  has three complementary models 
(or viewpoints) to describe a real - time system:

M1.     Environmental model  
M2.     Behavioral model  
M3.     Implementation model    

 The elements of each model are shown in Figure  5.12 . The environmental 
model embodies the analysis  aspect of SA/SD and consists of a context diagram 
and an associated event list. The purpose of the environmental model is to 
model the system at a high level of abstraction. On the other hand, the behav-
ioral model embodies the design  aspect of SA/SD as a series of data fl ow and 
control fl ow diagrams, entity - relationship diagrams, process and control speci-
fi cations, state transition diagrams, and a data dictionary. Using suitable com-
binations of these elements, the designer models the real - time system in detail. 
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It is suggested, however, that the data fl ow and control - fl ow analysis should 
be performed separately — not concurrently. Finally, in the implementation 
model, the developer uses a selection of structure charts, pseudocode, and 
temporal logic to describe the system to a level that can be readily translated 
to some procedural programming language. In addition, all the models M1 – M3 
may also contain some natural language descriptions. The presence of natural 
language descriptions is usually an indication that diagrams are not clear 
enough to the customer or developer, and textual clarifi cations are needed to 
complement visual modeling.   

 Structured analysis is a highly potential way to overcome the problems of 
classic analysis using graphical tools and a top - down, functional decomposition 
method to defi ne system requirements. SA deals only with those aspects of 
analysis that can be structured: the  functional specifi cations  and the 
 environment / user interface . Moreover, structured analysis is used to model a 
system ’ s  context  (where inputs come from and where outputs go to),  processes  
(what functions the system performs, how the functions interact, and how 
inputs are transformed to outputs), and  content  (the data the system needs to 
perform its functions).Structured analysis seeks to overcome the heteroge-
neous challenges inherent in system analysis through:

    •      Easy maintainability of the target document.  
   •      Use of illustrative graphics.  
   •      Effective reduction of ambiguity and redundancy.  

       Figure 5.12.     Models and elements of structured analysis and structured design.  
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 •      Providing a supportive method for functional partitioning.  
 •      Building a logical model of the system before implementation.    

 The target document for SA is called the  structured specifi cation . It consists of 
a system context diagram, a hierarchical set of data fl ow diagrams showing the 
decomposition and interconnectivity of various components, and an event list 
to represent the set of external events that drive the system. 

 To illustrate the use of the structured analysis technique, consider the fol-
lowing example of the elevator control system introduced in Section  3.3.8 . 
Some liberties have been taken with the notation, but this is common, as each 
organization tends to have its own  “ house style, ”  that is, conventions that are 
dependent either on  computer - aided software engineering  ( CASE ) tools 
being used or individual preferences. 

 Example: Context Diagram of an Embedded System 

 The context diagram of Figure  5.13  defi nes the operating environment of 
the  elevator control system  ( ECS ). To make it easier to understand the 
diagram from the application viewpoint, it is necessary to give brief intro-
ductions to the purpose and operation of the six terminators (rectangular 
boxes) that are connected to the data transformation (a bubble):

   1.      Motion Control Unit  ( MCU ) .      Drives the elevator car safely, smoothly, 
and precisely from one fl oor to another; provides car position and 
operational status information.    

  2.      Door Operator  ( DO ) .      Opens and closes the door blades swiftly but 
safely (see the fi nite state machine of Figure  5.2 ); provides operational 
as well as safety sensor and open/close button status information.  

  3.      Car Operating Panel  ( COP ) .      Shows the car - position and other run -
 specifi c information to the passengers; provides operational status 
information and an interface to car - call buttons.  

  4.      Hall Operation Panel  ( HOP ) .      Shows the car - position information to 
waiting passengers; controls a  “ lantern ”  and  “ gong, ”  which indicate 
the run direction of the arriving/departing elevator; provides opera-
tional status information.  

  5.      Group Dispatcher  ( GD ) .      Assigns registered hall calls to appropriate 
elevators in the elevator bank using some optimal call - allocation 
strategy.  

  6.      Service Tool  ( ST ) .      Provides a password - protected user - interface for 
service personnel to give special commands, monitor the elevator in 
detail, and access operational statistics.    

 Here, the single data transformation of the context diagram models the 
whole elevator control system. The communication between the ECS and 
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 While the intent in the above example is not to present a complete system 
design — which means there are a few simplifi cations — a point to be made is 
that missing functionality is more easily recognized during the requirements 
elicitation process if some form of graphical aid, such as the SA context 
diagram, is available.  

   5.3.2    Object - Oriented Analysis and the Unifi ed Modeling Language 

 As a viable alternative to the structured - analysis approach to developing 
software requirements specifi cations, we next consider using an object - oriented 
approach (H ø ydalsvik and Sindre,  1993 ). In contrast to procedural program-
ming, which employs algorithmic procedures, object - oriented programming 
uses a structure of collaborating objects, in which each part performs its spe-
cialized processing by reacting to inputs from its immediate neighbors. There 
are various  “ fl avors ”  of  object - oriented analysis  ( OOA ), each using its own 
toolsets. In the dominating approach discussed below, the system specifi cation 

all terminators (external devices or subsystems) is bidirectional as indicated 
by data fl ows, and the transferred data is identifi ed by descriptive labels. It 
should be noted that the data fl ows appearing in the context diagram ought 
to have the same abstraction level as the context diagram itself has. To 
conclude, the context diagram of Figure  5.13  forms a sound starting point 
for the remaining SA/SD process. 

       Figure 5.13.     Context diagram for the elevator control system.  
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phase begins with the representation of externally accessible functionality as 
use cases  of the UML. Among practitioners, OOA is defi ned informally as  “ an 
analytical operation that uses UML diagrams ”  (Gelbard et al.,  2010 ). 

 The UML approach, as a whole, is clearly more time - consuming to learn 
and more complicated to use than the SA/SD methods, since it (UML 2.2) has 
altogether 14 types of partially redundant diagrams divided into structural and 
behavioral categories (Miles and Hamilton,  2006 ):

   1.      Structural
 •      Class diagram  
 •      Component diagram  
 •      Composite structure diagram  
 •      Deployment diagram  
 •      Object diagram  
 •      Package diagram  
 •      Profi le diagram    

  2.      Behavioral
   2.1.      General

 •      Activity diagram  
 •      State - machine diagram  
 •      Use - case diagram    

  2.2.      Interaction
 •      Communication diagram  
 •      Interaction overview diagram  
 •      Sequence diagram  
 •      Timing diagram        

 All of these diagram types will be introduced in Chapter  6 , while in the present 
discussion, we concentrate solely on those diagrams that are most relevant in 
the requirements engineering phase of a real - time software project. 

 Use cases are an essential artifact in object - oriented analysis and design 
and are described graphically using any of several techniques. The use - case 
diagram can be considered analogous to the context diagram in structured 
analysis in that it represents the interactions of the software application with 
its external environment. In the specifi cation of an embedded system, this is 
also where overall timing constraints, sampling rates, and deadlines are often 
specifi ed. Textual descriptions are used commonly to complement the use - case 
diagrams. A pragmatic discussion on creating appropriate use cases is available 
in Cockburn,  (2001) . 

 Use cases are represented graphically as ellipses, with the actors involved 
represented by stick fi gures, as can be seen in Figure  5.14 . In that illustration, 
the use cases correspond to the fi ve - level task structure proposed in Section 
 3.3.8 . Generally speaking, it is often frustrating to decide on the level of detail 
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for a use case or try to understand what a particular use case consists of 
(Agarwal and Sinha,  2003 ). The lines drawn from the actor to the use case 
represent the communication between them. Each use case is actually a docu-
ment that describes scenarios of operation of the system under consideration, 
as well as possible pre -  and post - conditions and exceptions. In an iterative 
development process, these use cases will become increasingly refi ned and 
detailed as the analysis and design workfl ows progress. Next, interaction dia-
grams are created to describe the behaviors defi ned by each use case. In the 
fi rst iteration, these diagrams depict the entire system as a black box, but once 
domain modeling has been completed, the black box is transformed into a col-
laboration of multiple objects. As an example, Figure  5.A3  in the case study in 
Section  5.7  illustrates the use - case diagram for the traffi c - light control system.   

 Furthermore, an analysis class diagram presents the static structure of the 
system, system abstractions, and their relationships. It contains classes that 
represent entities with common characteristics, including attributes, opera-
tions, and associations that represent relationships between classes. The classes 
are depicted by rectangles, and the connection paths represent associations 
between classes. Classes require a name within the rectangle, whereas associa-
tions may not have an attached name. Moreover, the diamond attachment 
represents an aggregation relationship. If the diamond is fi lled, it is a depen-
dent aggregation; otherwise it is independent, that is, the objects so aggregated 
can exist separately. Figure  5.A4  in the case study in Section  5.7  illustrates an 
analysis class diagram for the traffi c - light control system. Class diagrams are 
used widely as a  “ cornerstone ”  of OOA.   

       Figure 5.14.     Use - case diagram for the elevator control system.  
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 The use of object - oriented approaches in real - time systems modeling pro-
vides numerous desired characteristics:

 •      Distributivity and concurrency  
 •      Effective management of complexity  
 •      Enhanced reusability  
 •      Excellent traceability  
 •      Improved understandability and maintainability  
 •      Increased extensibility  
 •      Modularity of design    

 Nevertheless, there are potential disadvantages when using an object - oriented 
approach with time- critical  embedded systems, as discussed in Section  4.4.3 . 

 A critical view on OOA and a discussion on specifi c weaknesses of using 
UML in the analysis  phase are available in Gelbard et al.  (2010) . Their justifi ed 
criticism concentrates on the observation that  “ UML representations have not 
been effective in large - scale projects for context and communication. ”  They 
also argue that  “ OOA methodology lacks clarity and comprehensiveness. ”  
However, it is broadly recognized that the object - oriented approach strongly 
supports the design  and  implementation  phases of (real - time) software devel-
opment (Agarwal and Sinha,  2003 ).  

   5.3.3    Recommendations on Specifi cation Approach 

 The preceding discussions illustrate typical challenges encountered by soft-
ware engineers specifying real - time systems:

 •      Combining low - level hardware functionality and higher - level software 
and systems functionality at the same level of hierarchy.  

 •      Mixing of descriptive and operational specifi cations.  
 •      Omission of timing information.    

 It is not practical to prescribe here a single preferred technique, since it is well 
known that there is no  “ silver bullet ”  when it comes to software specifi cation 
and design of a particular system. Therefore, each approach should be consid-
ered case - by - case on its specifi c merits.  Usability  of any technique has a crucial 
role in its initial acceptance and lifetime success. However, irrespective of the 
approach selected, real - time system modeling should incorporate the follow-
ing best practices:

 •      Use uniform modeling techniques throughout the specifi cation, for 
example, top - down decomposition together with structured analysis or 
object - oriented approaches.  

 •      Separate operational specifi cation from descriptive behavior.  
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   •      Use consistent levels of abstraction within models and conformance 
between levels of refi nement across models.  

   •      Model nonfunctional requirements as a part of the specifi cation models, 
in particular, timing properties.  

   •      Omit hardware – software partitioning in the specifi cation phase (which is 
an aspect of design rather than analysis; a specifi cation describes just  what  
a real - time system must do, not how it will be done).    

 Finally, it should be noted that the borderline between analysis and design is 
usually hazy. The same applies to the other borderline between design and 
implementation, as well. And every organization can freely adjust those bor-
derlines according to its needs and preferences.   

   5.4    THE REQUIREMENTS DOCUMENT 

 There are numerous ways to organize a software requirements specifi cation 
(SRS), but the IEEE Std 830 – 1998 provides a sound template of what the SRS 
should look like (IEEE,  1998 ). The SRS can be seen as  a binding contract 
among designers ,  programmers ,  testers ,  and customers , and it encompasses 
multiple paradigms or views for system design. The recommended design 
views include a combination of decomposition, dependency, interface, and 
detail descriptions. Together with boilerplate front matter, these form a stan-
dard template for software requirements specifi cations, which is shown in 
Figure  5.15 . Sections  1  and  2  are self - evident; they provide front matter and 
introductory material for the SRS. The core of the SRS is, however, in the 
description sections, and their headings can be broken down further using, for 
example, structured analysis.   

       Figure 5.15.     Recommended table of contents for the SRS from the IEEE Std 830 – 1998 
(IEEE,  1998 ).  
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 The IEEE Std 830 provides for several alternative (or complementary) 
means to represent the requirements specifi cations, aside from a function 
perspective. In particular, the software requirements can be organized by:

    •      System mode (e.g., normal, fi reman service, and maintenance)  
   •      User class (e.g., passenger, fi refi ghter, and elevator technician)  
   •      Objects (e.g., motor drive, car position sensors, and signaling devices)  
   •      Feature (e.g., transport passengers from one fl oor to another)  
   •      Stimulus (e.g., door contacts, push buttons, and safety sensors)  
   •      Response (e.g., starting a fl oor - to - fl oor run upwards or downwards)  
   •      Functional hierarchy (by common inputs, outputs or internal data access)  
   •      Hybrid (combining two or more of the preceding)    

   5.4.1    Structuring and Composing Requirements 

 The text structure of the SRS can be depicted by the number of section identi-
fi ers at each hierarchical level. High - level requirements rarely have numbered 
sections below a depth of four (e.g., Section 3.2.1.5). Well - organized docu-
ments have typically a  pyramidal  structure to the requirements. Requirements 
with an  hourglass  structure, on the other hand, have too many administrative 
details, while  diamond  - structured requirements indicate subjects introduced 
at higher levels were addressed at different levels of detail (see Figure  5.16 ). 
Whatever approach is used in organizing the SRS, the IEEE Std 830 describes 
the characteristics of good requirements. Good requirements are:

    •      Correct .      They must correctly describe the system behavior.    
   •      Unambiguous .      The requirements must be clear, not subject to multiple 

interpretations.  

       Figure 5.16.     Triangle - , hourglass - , and diamond - shaped requirements structures.  

1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, ...

2.1.1, 2.1.2, 2.1.3 

2.1.1.1, 2.1.1.2, 2.1.1.3, ...

1, 2, 3, 4, 5, 6

1.1, 2.1
1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1.1

1.1.1.1, 1.1.1.2

1.1.1.2.1
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 •      Complete .      There must be no missing requirements.  
 •      Consistent .      No requirement may contradict another.  
 •      Ranked for importance and/or stability .      Designers will obtain guidance 

from ranked requirements when making trade - off decisions.  
 •      Verifi able .      A requirement that cannot be verifi ed is a requirement that 

cannot be checked to have been met.  
 •      Modifi able .      The requirements need to be written in such a way so as to 

be easy to change.  
 •      Traceable .      The requirements provide a starting point for the backward/

forward traceability chain.    

 To meet these criteria and to compose/edit clear requirements documentation, 
there are several best practices that the requirements engineer (or technical 
writer) can use. These include as follows:

 •      Use some standard format, and use it for all requirements.  
 •      Use language in a consistent way and make sure that possible translations 

are exact in content.  
 •      Use  “ shall ”  for essential requirements.  
 •      Use  “ should ”  for desirable requirements.  
 •      Use text highlighting to identify key parts of the requirements.  
 •      Avoid the use of technical jargon unless it is warranted.    

 To illustrate this, consider the following fi ve requirements:

   1.      “ The system should be reliable. ”   
  2.      “ The system shall be modular. ”   
  3.      “ The system should be maintainable. ”   
  4.      “ The system shall be fast. ”   
  5.      “ The system shall be accurate. ”     

 These requirements are obviously  bad  for a number of reasons. None of them 
is verifi able; for instance, how are  “ reliability ”  and  “ modularity ”  supposed to 
be measured? 

 Next, consider a set of related requirements:

   1.      “ The  mean time between failures  ( MTBF ) shall be at least 500 hours of 
continuous operation. ”   

  2.      “ The cyclomatic complexity of each program module shall be within the 
range of 10 to 40. ”   

  3.      “ The installing of any software update shall not take more than 15 
minutes. ”   
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  4.      “ Response times for all level - one operations shall be 250    ±    50   ms. ”   
  5.      “ The amplitude error in all estimated quantities shall be less than 3.5%. ”     

 These latter requirements are much better than the preceding ones. Each is 
measurable, because each makes some attempt to  quantify  the qualities that 
are desired: MTBF is a measure of reliability, cyclomatic complexity is a 
measure of modularity, updating time is a measure of maintainability, response 
time is a measure of speed, and amplitude error is a measure of accuracy.  

   5.4.2    Requirements Validation 

 Verifi cation of the fi nal software product means ensuring that the software is 
conforming to the SRS. It is akin to asking the question  “ Am I building the 
software as specifi ed? ”  in that it requires satisfaction of all requirements. 

 Requirements validation, on the other hand, is tantamount to asking the 
question  “ Am I building the right software? ”  Too often, development projects 
deliver a fully functional real - time system that conforms to the SRS, only to 
discover that it is not what the customer really wanted. How could such an 
unfortunate outcome be prevented? Well, obviously, by strictly following a 
thorough requirements validation process, which is developed continually and 
systematically. 

 Performing such a requirements validation involves checking the following:

 •      Validity .      Does the system provide functions that best (within the existing 
constraints) support the customer ’ s needs?  

 •      Consistency .      Are there any requirements confl icts?  
 •      Completeness .      Are all functions required by the customer included?  
 •      Realism .      Can the requirements be implemented given available budget, 

time, and technology?  
 •      Verifi ability .      Can the requirements be checked?    

 There are a number of ways of checking the software requirements specifi ca-
tion for conformance to the IEEE standard ’ s best practices and for ultimate 
validity. These mutually complementary approaches include (in alphabetic 
order):

 •      Automated consistency analysis  
 •      Checking the consistency of a structured requirements description  
 •      Comparing the requirements to those for a similar system  
 •      Developing tests for requirements to check testability  
 •      Prototyping  
 •      Requirements reviews  
 •      Systematic manual analysis of the requirements  
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 •      Test - case generation  
 •      Using an executable model of the system to check requirements    

 Of these approaches, automated checking is the most desirable but, unfortu-
nately, the least likely, because of the context sensitivity of natural languages, 
and the impossibility of verifying such cumbersome issues as requirements 
completeness. However, supporting tools can be developed to perform straight-
forward spelling and grammar checking (which may also indicate ambiguity 
and incompleteness), fl agging of keywords that may be vague (e.g.,  “ fast ” ), 
identifi cation of missing requirements (e.g., search for the typical phrase  “ to 
be determined ” ) and overly complex sentences (which can indicate unclear 
requirements). 

 Model checking is a formal technique that can be used to perform analysis 
of executable requirements specifi cations, even partial ones. The aim, however, 
is to fi nd errors, not to prove correctness. One such methodology uses fi nite 
state machines to test for safety and liveness. The fi rst step involves building 
a state model of the system (or one of its subsystems), for instance, using 
statecharts. Once this initial model is obtained, the state - space size is estimated 
in order to assess the potential for automated validation. Next, the state space 
is minimized by identifying possible equivalence classes and by exploiting 
symmetries and subclasses. Finally, a symbolic representation of the main 
features of the requirements is derived. This represents a behavioral, temporal 
logic structure that emulates the coarse - grain behavior of the system. For 
example, to check for fault tolerance, relevant faults are injected into the 
emulating model, and this model is exercised to identify possible problems 
(Schneider et al.,  1998 ). Model checking represents, in some way, a high - level 
prototype of the requirements. 

 Automated requirements checking is used to assess certain qualities of 
requirements specifi cations, not to assess the correctness of the SRS. One 
example of such an approach is NASA ’ s  Automated Requirements 
Measurement  ( ARM ) tool (Wyatt et al.,  2003 ). Versatile tools, like ARM, use 
several requirements indicators at both a coarse - grain and fi ne - grain scale. 
Coarse - grain indicators include:

 •      Readability  
 •      Size of requirements  
 •      Specifi cation depth  
 •      Text structure    

 Fine - grain measures, on the other hand, look at the use of certain categories 
of words in the documents. Typical indicators are as follows:

 •      Imperatives  
 •      Continuances  
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 •      Directives  
 •      Options  
 •      Weak phrases    

 Various imperatives are listed in Table  5.6 .   
 Continuances follow an imperative and introduce the specifi cation of 

requirements at a lower level. Continuances include such words/phrases as:

 •       “ As follows ”   
 •       “ Below ”   
 •       “ Following ”   
 •       “ In particular ”   
 •       “ Listed ”   
 •       “ Support ”     

 Directives are words and phrases that point to illustrative information:

 •       “ Depict ”   
 •       “ Figure ”   
 •       “ For example ”   
 •       “ Such as ”   
 •       “ Table ”     

 Options give the developer latitude in satisfying the specifi cations, and include:

 •       “ Can ”   
 •       “ Could ”   

  TABLE 5.6.    Imperatives Found in Requirements Specifi cations 
and Their Purpose (Wilson,  1997 ) 

   Imperative     Purpose  

  Shall    Dictates provision of fundamental capability  
  Must    Establishes performance requirements or constraints  
  Must not    Establishes performance requirements or constraints  
  Is required to    Used in specifi cations statements written in passive voice  
  Are applicable    Used to include, by reference, standards, or other documentation 

as an addition to the requirements being specifi ed  
  Responsible for    Used as an imperative for systems whose architectures are 

already defi ned  
  Will    Generally used to cite things that the operational or 

development environment are to provide to the capability 
being specifi ed  

  Should    Not recommended for use  
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 •       “ May ”   
 •       “ Optionally ”     

 Moreover, weak phrases, which should be avoided in the SRS, include:

 •       “ Adequate ”   
 •       “ As a minimum ”   
 •       “ As applicable ”   
 •       “ Be able to ”   
 •       “ Be capable ”   
 •       “ But not limited to ”   
 •       “ Capability of ”   
 •       “ Capability to ”   
 •       “ Effective ”   
 •       “ If practical ”   
 •       “ Normal ”   
 •       “ Provide for ”   
 •       “ Timely ”   
 •       “ To be determined ”     

 These fi ne - grained measures can, minimally, be used to measure certain size 
quantities of the SRS, such as:

 •      Imperatives  
 •      Lines of text  
 •      Paragraphs  
 •      Subjects (unique words following imperatives)    

 Useful numerical ratios can also be computed from these fi ne - grained mea-
sures, which can be used to judge the overall fi tness of the software specifi ca-
tion. Typical ratios are shown in Table  5.7 .   

  TABLE 5.7.    Numerical Ratios Derived from Software Requirements Specifi cations 
and Their Purpose 

   Ratio     Purpose  

  Imperatives to subjects    Indicates level of detail  
  Lines of text to imperatives    Indicates conciseness  
  Number of imperatives found at 

each document level  
  Counts the number of lower - level items that 

are introduced at a higher level by an 
imperative followed by a continuance  

  Specifi cation depth to total lines 
of text  

  Indicates conciseness of the SRS  
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 Readability statistics, similar to those used to measure writing level (or 
comprehension diffi culty), can be used as a quality measure for the SRS. These 
statistics include:

 •      Flesch Reading Easiness Index .      Total number of words/sentences and 
syllables/words.  

 •      Flesch – Kincaid Grade Level Index .      Flesch index converted to a grade 
level that is easier to judge (standard writing is seventh or eighth grade 
on the K – 12 scale).  

 •      Coleman – Liau Grade Level Index .      Uses word - length in characters and 
sentence - length in words to determine the grade level.  

 •      Bormuth Grade Level Index .      Same as Coleman – Liau.    

 Any of these requirements metrics can be incorporated into a metrics manage-
ment discipline, and if used consistently, constructively, and with good judg-
ment, will improve the particular real - time system in the long run (as well as 
future real - time systems to be developed).   

   5.5    SUMMARY 

 Requirements engineering is the fi rst phase of the software development 
process. And if it is not carried out properly, the software product may not 
fulfi ll the expectations and needs of customers — the resulting real - time system 
is simply  “ wrong ”  from the customers ’  point of view. In such an extreme sce-
nario, it does not matter how well the system was designed or implemented. 
A decent recovery from inadequate requirements engineering can be costly 
and lead to considerable losses of revenue; some amount of redesign and 
reimplementation must defi nitely be done, and hence the product may come 
to market with a signifi cant delay. 

 In spite of the critical role of requirements engineering, only a few under-
graduate engineering programs stress the importance of this discipline. The 
majority of practicing engineers who perform requirements engineering are 
therefore educated on - the - job. Recently, however, some software programs 
are introducing requirements engineering as mandatory in the curriculum 
(Laplante,  2009 ). This should become more common in educational institu-
tions around the world. 

 The large variety of existing specifi cation methods (which ones to choose?) 
and the high cost of established CASE tools (can we afford them?) are tricky 
problems related to requirements engineering. Furthermore, it can be a major 
investment to a development organization to train its personnel to use the 
selected methods and acquired CASE tools effectively. For understandable 
reasons, it is desirable to have integrated CASE support during the entire 
software development process, but the license fees of complete CASE envi-
ronments may be overly expensive for small and mid - size companies. A thor-
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ough cost – benefi t  analysis is therefore required when selecting suitable 
methods and associated tools for an organization or project. Another impor-
tant issue to consider is obviously whether the nontechnical customers will be 
able to comprehend the various diagrams (SA/SD or UML, for instance) in 
the requirements document. 

 As a rule of thumb, the number of specifi cation methods used should be as 
low as possible but still adequate for the project at hand. Some combination 
of semiformal and formal methods is often advantageous when specifying 
real - time systems. While semiformal methods are typically of general - purpose 
character, formal methods like Petri nets are particularly useful when specify-
ing communications protocols, for example. When tailoring a combination of 
semiformal and formal methods, the  usability  of individual methods and avail-
able CASE tools is of utmost importance. 

 Although it is a questionable stereotype, engineers are usually regarded as 
poor writers and communicators. On the other hand, the requirements docu-
ment is an extensive written composition that is targeted not only to software 
developers but also to customers. Hence, it is important to use a sound tem-
plate for organizing the software requirements specifi cation. If no established 
in - house standard is yet in use, the IEEE Std 830 – 1998 offers a good frame-
work for structuring the requirements document. In addition, it would be 
important to improve the technical writing profi ciency of future practitioners 
already during the undergraduate studies. Nevertheless, it is challenging to 
integrate more guided  writing opportunities to the usually overcrowded engi-
neering curricula. 

 Finally, the main point of this chapter is that requirements engineering 
deserves more attention and systematic consideration, since it can be 
seen as one keystone toward sustainable success of software - development 
organizations.  

 5.6   EXERCISES 

5.1.    Estimate and justify the relative percentage of person months spent in 
each phase of the requirements engineering process (see Figure  5.1 ) for 
some embedded real - time system. 

 The instructor is encouraged to collect the estimates of all students 
and summarize the results (averages/medians/standard deviations) —  this
is usually a fruitful starting point for a discussion or even a debate in class .   

5.2.    Who should compose, analyze, and validate software requirements 
specifi cations?   

5.3.    Under what circumstances should software requirements specifi cations 
be changed? Who is authorizing such changes?   

5.4.    For an embedded system with which you are familiar, fi nd three good 
requirements and three bad requirements in the software requirements 
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specifi cation. Rewrite the bad requirements so that they comply with the 
IEEE Std 830 – 1998.   

5.5.    Give a concrete example of a case where it is benefi cial to use a Mealy 
FSM instead of a Moore FSM for creating a formal part of software 
specifi cations.   

5.6.    The door - open button in Figure  5.2  is of momentary - pressure type. 
Hence, it is enough to press the button momentarily to open the door. 
However, when there is a fi re in the building and the elevator is switched 
to in - car fi reman service , the doors are not operated automatically 
anymore, but a fi refi ghter operates the doors directly with door open/
close buttons; no safety sensors or timeouts are in use. Besides, the door -
 open button is then of constant - pressure type. That is, the fi refi ghter must 
press the button constantly until the door is fully open, otherwise the 
door will reclose swiftly (what is the motivation behind this functional-
ity?). Redraw the fi nite state machine to fulfi ll the requirements of in - car 
fi reman service.   

5.7.    For some traffi c intersection in your neighborhood, draw a fi nite state 
machine that defi nes a common - sense control algorithm for the vehicle/
pedestrian traffi c lights.   

5.8.    Draw a statechart model of the control software for a simple digital 
camera. State clearly your assumptions regarding specifi c features of the 
camera.   

5.9.    Create a statechart with multiple orthogonal states (similar to that in 
Figure  5.6 ) for the elevator control system discussed in Section  3.3.8 .   

5.10.    Use Petri nets instead of a fi nite state machine to represent the door -
 control subsystem of elevators depicted in Figure  5.2 .   

5.11.    Using structured analysis, draw fi rst a context diagram for a credit - card 
system described below. Then, go ahead and depict details of the func-
tionality of the system. You are free to make assumptions as needed, but 
make sure that you have stated them clearly. 

 The credit - card system under consideration handles transactions for 
retail stores. For instance, a transaction might consist of buying a text-
book from your favorite bookstore. Your data fl ow diagram(s) should 
include functions for retrieving and checking a credit - card record for a 
customer, approving and recording each transaction, and maintaining a 
log of transactions for each retail store. The system should maintain fi les 
of credit - card holders, current transactions, and accounts payable 
(approved transactions) for each store.   

5.12.    Draw a complete use case diagram for the credit - card system described 
in Exercise 5.11.   
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5.13.    Consider a hospital ’ s patient monitoring system. Each patient is con-
nected to electronic instruments monitoring blood pressure, heart rate, 
and ECG. These monitoring instruments issue a binary signal indicating 
a STABLE ( = 0) or UNSTABLE ( = 1) condition. The results of each of 
these instruments areOR ed together to form a signal called EMERGENCY. 
The EMERGENCY signals for each of the rooms (one patient per 
room) are then OR ed together and sent to the nurse ’ s workstation. If any 
instrument on any patient indicates an UNSTABLE condition, the emer-
gency alarm is sounded and the nurse is urgently directed to the appro-
priate patient. Write a pseudo - code specifi cation for such a system 
(defi ne a simple pseudo - code syntax yourself).   

5.14.    What would be an appropriate combination of techniques to write soft-
ware specifi cations for the:

(a)     Semi - autonomous pasta sauce bottling system.  
(b)     Navigation unit for fi ghter aircraft.  
(c)     Airline reservation and booking system for local use.      

5.15.    What are the typical problems and ramifi cations of translating a formal 
requirements specifi cation from one modeling technique (e.g., Petri 
nets) to another (e.g., statecharts)?    

   5.7    APPENDIX 1 

  CASE STUDY IN SOFTWARE REQUIREMENTS SPECIFICATION 

 The following is an excerpt from the Software Requirements Specifi cation for 
a traffi c - light control system. It embodies many of the elements discussed in 
this chapter in more detail, and provides a fully developed example of an 
object - oriented approach to requirements specifi cation of a complex real - time 
system. 

   5.7.1    Introduction 

 Traffi c controllers currently in use comprise simple timers that follow a fi xed 
cycle to allow vehicle/pedestrian passage for a predetermined amount of time 
regardless of demand, actuated traffi c controllers that allow passage by means 
of vehicle/pedestrian detection, and adaptive traffi c controllers that determine 
traffi c conditions in real - time by means of vehicle/pedestrian detection and 
respond accordingly in order to maintain the highest reasonable level of effi -
ciency under varying conditions. The traffi c controller described in this speci-
fi cation is capable of operating in all three of these modes. 

5.7.1.1 Purpose   This specifi cation defi nes the software design require-
ments for an intersection control system for simple, four - way pedestrian/
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vehicular traffi c intersections. The specifi cation is intended for use by end 
users, as well as software developers.  

5.7.1.2 Scope   This software package is part of a control system for 
pedestrian/vehicular traffi c intersections that allows for (1) a fi xed cycle mode, 
(2) an actuated mode, (3) a fully adaptive automatic mode, (4) a locally con-
trolled manual mode, (5) a remotely controlled manual mode, and (6) an 
emergency preempt mode. In the fully adaptive automatic mode, a volume 
detection feature has been included so that the system is aware of changes in 
traffi c patterns. Pushbutton fi xtures are also included so the system can account 
for and respond to pedestrian traffi c. The cycle is controlled by an adaptive 
algorithm that uses data from many inputs to achieve maximum throughput 
and acceptable wait times for both pedestrians and motorists. A preempting 
feature allows emergency vehicles to pass through the intersection in a safe 
and timely manner by altering the state of the signals and the cycle time.  

5.7.1.3 Defi nitions, Acronyms, Abbreviations   The following is a list of 
terms and their defi nitions as used in this document. 

 5.7.1.3.1   10  - base  T      Physical connection formed by a twisted - pair as 
described in IEEE 802.3. Networking connection designed to transfer up to 
10 megabits per second.  

 5.7.1.3.2     ADA      Americans with Disabilities Act.  

 5.7.1.3.3     API      Application Program Interface.  

 5.7.1.3.4    Approach     Any one of the routes allowing access to an 
intersection.  

 5.7.1.3.5    Arterial Road     A major traffi c route or route used to gain access 
to a highway.  

 5.7.1.3.6    Aspect     The physical appearance of an illuminated traffi c 
standard.  

 5.7.1.3.7    Attribute     Property of a class.  

 5.7.1.3.8    Cycle Time     The time required to complete an entire rotation 
(cycle) of traffi c signals at any one intersection.  

 5.7.1.3.9    Direct Route     A route directly through the intersection that does 
not require the vehicle to turn.  

 5.7.1.3.10     DOT      Department of Transportation.  
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 5.7.1.3.11    Downstream     The normal travel direction for vehicles.  

 5.7.1.3.12    Ethernet     The most commonly used local area networking method 
as described in IEEE 802.3 . 

 5.7.1.3.13    Intersection     A system, including hardware and software, that 
regulates vehicle and pedestrian traffi c where two or more major roads tra-
verse. The class of intersection considered in this specifi cation has only two 
roads.  

 5.7.1.3.14    Manual Override     A device located at and physically connected 
to each intersection control system that allows traffi c regulatory personnel to 
control the intersection manually.  

 5.7.1.3.15    Method     Procedure within a class exhibiting an aspect of class 
behavior.  

 5.7.1.3.16    Message     An event thrown from one code unit and caught by 
another.  

 5.7.1.3.17    Occupancy Loop     A device used to detect the presence of vehi-
cles in an approach or to count the passage of vehicles using an approach.  

 5.7.1.3.18    Offset     The time difference between cycle start times at adjacent 
intersections. Applies only to coordinated intersection control, which is not 
covered by this specifi cation.  

 5.7.1.3.19    Orthogonal Route     A route through an intersection that requires 
a vehicle to turn.  

 5.7.1.3.20    Pedestrian Presence Detector     A button console located on the 
corner of an intersection which gives pedestrians who wish to cross a street 
the ability to alert the intersection control system to their presence.  

 5.7.1.3.21    Pedestrian Traffi c Standard     Signals facing in the direction of 
pedestrian cross walks which have lighted indicators marked  “ Walk ”  and 
 “ Don ’ t Walk. ”   

 5.7.1.3.22    Phase     The state of an intersection. A particular period of the 
regulatory traffi c pattern.  

 5.7.1.3.23    Remote Override     A computer host that includes a software inter-
face allowing a remote administrator to control the intersection remotely.  

 5.7.1.3.24     RTOS      Real - time operating system.  
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 5.7.1.3.25    Secondary Road     A route that does not typically support high 
traffi c volume or experiences less usage relative to another route.  

 5.7.1.3.26     SNMP  (Simple Network Management Protocol)     The de facto 
standard for inter - network management, defi ned by RFC 1157.  

 5.7.1.3.27    Split     The duty cycle for a given phase, expressed as a decimal or 
percentage.  

 5.7.1.3.28    Vehicle Traffi c Standard     A traditional traffi c signal with red, 
yellow, and green indicators.  

 5.7.1.3.29    Upstream     Direction opposite to the normal direction of vehicle 
travel.  

 5.7.1.3.30    Vehicle Presence Detector     See 5.7.1.3.17, Occupancy Loop.  

 5.7.1.3.31     WAN      Wide area network.   

5.7.1.4 Communications Standards 

 •          10 base - T Ethernet (IEEE 802.3)     
 •          SNMP (RFC 1157)        

5.7.1.5 Overview 

   5.7.2    Overall Description 

5.7.2.1 Intersection Overview     The intersection class to be controlled is 
illustrated in below Figure  5.A1 .   

 The target class of intersection has the following characteristics:

   1.     Four - way crossing.  
  2.     Roadway gradients and curvatures are small enough to be neglected.  
  3.     No right - turn or left - turn lanes or right - turn and left - turn signals (note, 

however, that the intersection is wide enough to allow vehicles passing 
directly through to pass to the right of vehicles turning left).  

  4.     Intersecting roads of different priorities (e.g., one road may be an arterial 
while the other may be a secondary road) or of equal priority.  

  5.     Two vehicle traffi c standards per approach: one suspended by overhead 
cable, the other mounted on a pedestal.  

  6.     One pedestrian crosswalk per approach.  
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  7.     Pedestrian traffi c standards, pedestal mounted, on each side of each 
crosswalk.  

  8.     Pedestrian presence detectors (pushbuttons) on each side of each crosswalk. 
  9.     Stop - line vehicle presence detectors (loop detectors) in all approaches 

(one per approach) for detecting vehicle presence and for counting 
vehicles passing through the intersection.     

5.7.2.2 Product Perspective 

 5.7.2.2.1    System Interfaces     These are described in detail in the sections 
below.  

 5.7.2.2.2    User Interfaces   

5.7.2.2.2.1    P  edestrians      Pedestrian pushes button, generating service 
request to software and receives, in time, the  “ Walk ”  signal.  

5.7.2.2.2.2     M otor  V ehicles     In ACTUATED mode, vehicle enters the inter-
section, generating service request to software and receives, in time, the  “ Okay 
to Proceed ”  signal. 

 In ADAPTIVE mode, vehicle passes over the loop detector, increasing the 
vehicle count, which, in turn, causes an adjustment in intersection timings.  

5.7.2.2.2.3     E mergency  V ehicle     Emergency vehicle operator activates the 
 “ emergency vehicle override signal, ”  generating priority service request to 
software and receives, in a preemptive time, the  “ Okay to proceed ”  signal.  

5.7.2.2.2.4    T raffi c  R egulatory  P ersonnel     Traffi c regulatory personnel 
will remove the manual override device from the control box and press buttons 
to control the intersection manually.  

5.7.2.2.2.5     R emote  O perator     Remote operator uses a software control 
panel either to control the state of the intersection directly or to observe and 
manipulate the parameters and state of a specifi c intersection control system.  

5.7.2.2.2.6     M aintainer     Maintainer accesses system through Ethernet port 
to perform maintenance.   

 5.7.2.2.3    Hardware Interfaces     The Intersection Control System hardware 
interfaces are summarized in Figure  5.A2  on the following page.   

   5.7.2.2.3.1     M ajor  H ardware  C omponents:  S ummary ( T able   5.A1   )

5.7.2.2.3.2     W ired  I nterfaces:  I nternal     Hard - wired connections between 
the intersection controller and the following hardware components within the 
intersection controller enclosure are provided:
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  TABLE 5.A1.    Major Intersection Control System Hardware Components 

   Item     Description     Quantity  

  1    Intersection controller enclosure    1  
  1.1       Input circuit breaker    1  
  1.2       Input transformer    1  
  1.3       Input power supply with UPS    1  
  1.4       Intersection controller    1  
  1.5       Lamp driver    20  
  1.6       Lamp current sensor    40  
  1.7       Green signal safety relay    1  
  1.8       Manual override console    1  
  1.9       Vehicle presence detector interface unit (not shown in 

Figure  5.A2 )  
  4  

  1.10       Pedestrian request detector interface unit (not shown 
in Figure  5.A2 )  

  8  

  1.11       RJ - 45 Ethernet connector — DOT network    1  
  1.12       RJ - 45 Ethernet connector — maintenance    1  
  1.13       Enclosure wiring    A/R  
  2    Vehicle traffi c standard — suspended    4  
  3    Vehicle traffi c standard — pole mounted    4  
  4    Pedestrian traffi c standard    8  
  5    Pedestrian request detector    8  
  6    Vehicle presence detector    4  
  7    Emergency vehicle transponder    1  
  8    Field wiring    A/R  

   1.     Traffi c standard lamp drivers (20)    
  2.     Traffi c standard lamp current sensors (40)  
  3.     Vehicle presence detector interface units (4)  
  4.     Pedestrian presence detector interface units (4)  
  5.     Green signal safety relay (1)  
  6.     Manual override console (1)  
  7.     Maintenance connector (2; 10 - base T twisted pair)     

5.7.2.2.3.3     W ired  I nterfaces:  E xternal     Hard - wired connections between 
the intersection control enclosure and the following external hardware com-
ponents are provided:

   1.     Pedestrian presence detector  
  2.     Pedestrian traffi c standard  
  3.     Vehicle presence detector  
  4.     Vehicle traffi c standard  
  5.     Emergency vehicle transponder  
  6.     DOT  wide - area network  ( WAN )     
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5.7.2.2.3.4    E mergency  V ehicle  T ransponder     The emergency vehicle tran-
sponder is a radio frequency link between the intersection control system and 
the emergency vehicle override controller.  

5.7.2.2.3.5    E thernet  C  onnection  to  DOT WAN      Interaction between the 
software system and the remote operator console is conducted over a standard 
10 base - T local area network. Each intersection control system is identifi ed 
with a unique, statically assigned IP address.   

 5.7.2.2.4    Software Interfaces   

5.7.2.2.4.1     O perating  S ystem     The intersection controller interfaces to the 
RTOS via standard OS API calls.  

5.7.2.2.4.2    R esource  M anagers     Interfaces to hardware are handled by 
resource managers not specifi ed in this SRS. Resource managers are assumed 
to have direct access to the object model defi ned here.  

5.7.2.2.4.3     S oftware  C ontrol  P anel     The intersection control system must 
be able to interact with the software control panel to allow remote user access. 
This interface provides a remote user the ability to modify system parameters, 
perform maintenance functions, or assume manual control of the intersection. 
The standard protocol for this communication will be SNMP version 1.   

 5.7.2.2.5    Communications Interfaces     The system will utilize TCP/IP ’ s 
SNMP interface for inter - system communication.  

 5.7.2.2.6    Memory Constraints   

5.7.2.2.6.1     F lash  M emory     Flash memory will be the memory media of 
choice for the system. The software will require no more than 32   M bytes of 
fl ash memory for RTOS, application program, and data.  

5.7.2.2.6.2     RAM      RAM will be used for application execution. The system 
shall not require more than 32   M bytes of RAM. Upon boot, the RTOS, appli-
cation program and static data needed for execution will be copied from fl ash 
into the RAM.   

 5.7.2.2.7    Operations   

    1.     Automatic, unattended operation (normal operation)  
  2.     Local manual operation (through override console)  
  3.     Remote manual operation (through WAN port)  
  4.     Local observed operation (through maintenance port)  
  5.     Remote observed operation (through WAN port)  
  6.     Remote coordinated operation (option; through WAN port)     
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 5.7.2.2.8    Site Adaptation Requirements     This is summarized above in Section 
5.7.2.1.   

5.7.2.3 Product Functions   The Intersection Control System provides the 
following functions:

   1.     Control of the intersection vehicle traffi c standards  
  2.     Control of the intersection pedestrian traffi c standards  
  3.     Collection and processing of traffi c history from all approaches  
  4.     Adaptive control of intersection timings in response to traffi c fl ow  
  5.     Actuated control of intersection in response to vehicle presence  
  6.     Timed control of intersection in response to a fi xed scheme  
  7.     Handling of pedestrian crossing requests  
  8.     Handling of emergency vehicle preemption  
  9.     Intersection control in response to manual override commands  

  10.     Intersection control in response to remote override commands  
  11.     Management of traffi c history and incident log databases  
  12.     Handling of maintenance access requests from the maintenance port  
  13.     Handling of maintenance access requests from the DOT WAN     

5.7.2.4 User Characteristics 

 5.7.2.4.1    Pedestrians     General population, including persons with disabilities. 

 5.7.2.4.2    Motor Vehicle     Automobiles and trucks, depending on roadway use 
limitations.  

 5.7.2.4.3    Traffi c Regulatory Personnel     Authorized DOT, police, or other 
personnel trained in use of the Manual Override console. Must have key to 
the system enclosure.  

 5.7.2.4.4    System Administrators     Authorized DOT personnel with training 
in the use of this system.   

5.7.2.5 Constraints   System Constraints include the following:

   1.     Regulatory policy (e.g., ADA)  
  2.     DOT specifi cations  
  3.     Local ordinances  
  4.     Hardware limitations  
  5.     Minimum time for pedestrian to cross  
  6.     Minimum stopping distance for vehicles  
  7.     Momentary power droops/outages  
  8.     Interfaces to other applications  
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  9.     Audit functions  
  10.     Higher - order language requirements (OO language supported by 

RTOS required)  
  11.     Network protocols (e.g., SNMP)  
  12.     Reliability requirements  
  13.     Criticality of the application  
  14.     Security considerations  
  15.     Safety considerations     

5.7.2.6 Assumptions and Dependencies 

    1.     SI units are used for all physical quantities.  
  2.     Commercially available RTOS is used.  
  3.     Hardware interfaces have resource managers (drivers) already developed 

and available for integration with the software system specifi ed here. 
  4.     DOT WAN will use SNMP to communicate with intersection control 

system.  
  5.     Watchdog circuitry forces safe default intersection state through hardware. 

   5.7.3    Specifi c Requirements 

 This section describes the basic functional elements of the intersection control 
system. In particular, the software object model is described in detail, with 
attributes and methods enumerated. External interfaces to users, hardware, 
and other software elements are described, and background on the adaptive 
algorithm to be used is provided. 

5.7.3.1 External Interface Requirements 

5.7.3.1.1   User Interfaces  (Figure   5.A3  )       

    1.     Vehicle presence detector — user: motor vehicle    
  2.     Pedestrian presence detector — user: pedestrian  
  3.     Emergency vehicle override — user: emergency vehicle  
  4.     Manual override — user: traffi c control offi cer  
  5.     Remote override — user: DOT offi cer  
  6.     Maintenance interface — user: maintainer     

 5.7.3.1.2    Hardware Interfaces   

    1.     Vehicle  
  2.     Pedestrian crossing pushbutton  
  3.     Traffi c standard  
  4.     Walk signal  
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Figure 5.A3.     Top - level use case diagram.  

  5.     Hardware watchdog  
  6.     Uninterruptible power supply     

 5.7.3.1.3    Software Interfaces   

    1.     RTOS API calls  
  2.     Hardware resource manager interfaces     

 5.7.3.1.4    Communications Interfaces   

    1.     Interface to RTOS TCP/IP stack      

5.7.3.2 Classes/Objects   Figure  5.A4  depicts the classes constituting the 
intersection control system software application.   

 The Intersection Controller is responsible for managing the following 
functions:

   1.     Initialization  
  2.     Instantiation of contained objects  
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  3.     Control of the intersection vehicle traffi c standards  
  4.     Control of the intersection pedestrian traffi c standards  
  5.     Collection and processing of traffi c history from all approaches  
  6.     Adaptive control of intersection timings in response to traffi c fl ow  
  7.     Actuated control of intersection in response to vehicle presence  
  8.     Timed control of intersection in response to a fi xed scheme  
  9.     Handling of pedestrian crossing requests  

  10.     Handling of emergency vehicle preemption  
  11.     Intersection control in response to manual override commands  
  12.     Intersection control in response to remote override commands  
  13.     Management of traffi c history and incident log databases  
  14.     Handling of maintenance access requests from the maintenance port  
  15.     Handling of maintenance access requests from the DOT WAN    

 Table  5.A2  below illustrates the attributes, methods, and events of the Inter-
section Controller class. Figure  5.A5  gives the statechart behavioral descrip-
tion for intersection control.     

 The corresponding traffi c standard aspects are shown in Figure  5.A6 .   

 5.7.3.2.1    Approach     This is the programmatic representation of an intersec-
tion approach. 

 The Approach object is responsible for managing the following functions:

   1.     Instantiation of contained objects  
  2.     Control of the traffi c standards associated with the approach  
  3.     Handling of pedestrian crossing events  
  4.     Handling of loop detector entry and exit events  
  5.     Tracking the vehicle count    

 Table  5.A3  below illustrates the attributes, methods, and events of the Approach 
class.    

 5.7.3.2.2    Pedestrian Traffi c Standard     This is the programmatic representa-
tion of a pedestrian crossing signal. 

 The Pedestrian Traffi c Standard object is responsible for managing the fol-
lowing functions:

   1.     Displaying the commanded indication aspect from the Approach  
  2.     Determining the indication actually displayed    

 Table  5.A4  below illustrates the attributes, methods, and events of the 
Pedestrian Traffi c Standard class.    
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  TABLE 5.A2.    Intersection Controller Class 

   Intersection Controller  

        Name     Description  

  Attributes    Approaches    Array of Approach objects.  
  Manual Override    Represents the Manual Override console.  
  Remote Override    Represents the Remote Software console.  
  Traffi c History    Contains the traffi c history for up to at 

least 7 days.  
  Incident Log    Contains the incident log for up to at least 

7 days.  
  Network Interface    Object that provides an interface from the 

Network resource manager (driver) to 
the Intersection Controller object.  

  Emergency Vehicle 
Interface

  Object that provides an interface between 
the Emergency Vehicle transponder and 
the Intersection Controller object.  

  Mode    Current operating mode of the 
Intersection Controller.  

  Priority    Relative priority of the approaches.  
  Cycle Time    Time to complete a full traversal of all 

intersection phases.  
  Splits    Array of numbers defi ning the fraction of 

the cycle time allocated to each phase.  
  Current Phase    Current intersection phase.  
  Phase Time Remaining    Time remaining until the intersection 

moves to the next phase in the sequence.  
  Commanded Green 

Signal Safety Relay 
State

  Based on the Current Phase, this attribute 
holds the value required for the Green 
Signal Safety Relay resource manager, 
which is responsible for driving the relay.  

  Detected Green Signal 
Safety Relay State  

  This holds the actual state of the Green 
Signal Safety Relay.  

  Methods    Initialize      
  Advance Phase    Advance the intersection phase to the next 

phase in the sequence.  
  Calculate Cycle 

Parameters
  Calculate the cycle time and splits for the 

next cycle based on traffi c data.  
  Events    Phase Time Remaining 

Value Reaches 0  
  Fires when the Phase Time Remaining 

timer reaches 0.  
  Override Activated    Fires when either the Manual Override or 

Remote override is activated.  
  Override Canceled    Fires when Overrides are deactivated.  
  Watchdog Timeout    Fires on a watchdog trip.  
  Error    Fires when an error occurs. Takes the 

Error code as a parameter.  
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       Figure 5.A6.     Traffi c standard aspects for each phase.  
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  TABLE 5.A3.    Approach Class 

   Approach  

        Name     Description  

  Attributes    Pedestrian Traffi c 
Standard

  Object representing the two pedestrian traffi c 
standards associated with the approach.  

  Vehicle Traffi c 
Standards

  Object representing the two vehicle traffi c 
standards associated with the approach.  

  Pedestrian 
Service Button  

  Object representing the two pedestrian service 
pushbuttons associated with the approach.  

  Vehicle Presence 
Detector

  Object representing the proximity detection loop, 
located at the stop line, associated with the 
approach.  

  Vehicle Count    Count of vehicles passing through the approach.  
  Indication    Array used to store the indications actually being 

displayed on all associated traffi c standards.  
  Current Aspect    Current commanded aspect corresponding to the 

Intersection Controller phase.  
  Speed Limit    Value (in km/h) of the speed limit associated 

with the approach.  
  Methods    Set Aspect    Set the displayed aspect to the Commanded 

Aspect.  
  Get Aspect    Get the actual displayed aspect based on signals 

from the current sensor hardware resource 
manager.  

  Increment Count    Increase the vehicle count by 1.  
  Reset Count    Reset the vehicle count to 0.  

  Events    Pedestrian 
Request

  Fires when a pedestrian request has been made.  

  Vehicle Entry    Fires when the loop detector detects vehicle 
entry.  

  Vehicle Exit    Fires when the loop detector detects vehicle exit.  

  TABLE 5.A4.    Pedestrian Traffi c Standard Class 

   Pedestrian Traffi c Standard  

        Name     Description  

  Attributes    Commanded Aspect    Commanded aspect from the 
Intersection Controller.  

  Methods    Set Indication    Set the displayed indication to the 
Commanded Indication.  

  Get Indication    Get the actual displayed indication 
based on signals from the current 
sensor hardware resource manager.  
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 5.7.3.2.3    Vehicle Traffi c Standard     This is the programmatic representation 
of a vehicle traffi c signal. 

 The Vehicle Traffi c Standard object is responsible for managing the follow-
ing functions:

   1.     Displaying the commanded aspect from the Intersection Controller.  
  2.     Determining the aspect actually displayed.    

 Table  5.A5  above illustrates the attributes, methods, and events of the Vehicle 
Traffi c Standard class.    

 5.7.3.2.4    Pedestrian Service Button     This is an object representing the set of 
push - button consoles located on opposite sides of the crosswalk associated 
with an approach. 

 The Pedestrian Service Button object is responsible for managing the fol-
lowing functions:

   1.     Filtering of pushbutton service requests.  
  2.     Generation of Pedestrian Service Request event.    

 Table  5.A6  below illustrates the attributes, methods, and events of the 
Pedestrian Service Button class.    

 5.7.3.2.5    Vehicle Presence Detector     This is an object representing the prox-
imity detection loop located near the stop line associated with an approach. 
The object class is based on the Pedestrian Service Button class. 

 The Vehicle Presence Detector object is responsible for managing the fol-
lowing functions:

   1.     Filtering of vehicle service requests (ACTUATED mode).  
  2.     Generation of Vehicle Service Request event (ACTUATED mode).  

  TABLE 5.A5.    Vehicle Traffi c Standard Class 

   Vehicle Traffi c Standard  

        Name     Description  

  Attributes    Commanded 
Aspect

  Commanded aspect from the Intersection 
Controller.  

  Methods    Set Indication    Set the displayed indication to the Commanded 
Indication.  

  Get Indication    Get the actual displayed indication based on 
signals from the current sensor hardware 
resource manager.  
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  TABLE 5.A6.    Pedestrian Service Button Class 

   Pedestrian Service Button  

        Name     Description  

  Attributes    Request Masked    Indicates whether pedestrian service 
pushbutton signals should be ignored or 
processed.  

  Request State    Indicates whether or not a pedestrian 
service request is active.  

  Methods    Set Request State    In response to a signal from the pushbutton 
hardware resource manager, determine 
whether or not to modify the Request 
State and raise an event.  

  Reset Request State    Clear the Request State.  
  Ignore Request 

State
  Masks subsequent pedestrian button 

operations.  
  Listen Request 

State
  Respond to subsequent pedestrian button 

operations.  
  Events    Pedestrian Service 

Request
  Indicates that a valid pedestrian service 

request is active.  

  3.     Maintenance of the vehicle count statistic (FIXED, ACTUATED and 
ADAPTIVE mode).    

 Table  5.A7  above illustrates the attributes, methods, and events of the Vehicle 
Presence Detector class.    

 5.7.3.2.6    Manual Override     This is an object representing the set of push -
 buttons on the manual override console. 

 The Manual Override object is responsible for managing the following 
functions:

  TABLE 5.A7.    Vehicle Presence Detector Class 

   Vehicle Presence Detector  

        Name     Description  

  Attributes    Request State    Indicates whether or not a vehicle service 
request is active (ACTUATED mode).  

  Methods    Set Request State    Set the Request State.  
  Reset Request State    Clear the Request State.  

  Events    Vehicle Entry    Indicates that the detector loop is occupied.  
  Vehicle Exit    Indicates that the detector loop is no longer 

occupied.  
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  TABLE 5.A8.    Manual Override Class 

   Manual Override  

        Name     Description  

  Attributes    None    None  
  Methods    None    None  
  Events    Override Activated    Fires when the override is activated.  

  Override Canceled    Fires when the override is de - activated.  
  Advance Phase    Fires in response to the ADVANCE button 

on the override console being pressed.  

   1.     Triggering the appropriate mode change.  
  2.     Generation and handling of events required to control intersection 

phase.    

 Table  5.A8  above illustrates the attributes, methods, and events of the Manual 
Override class.    

 5.7.3.2.7    Remote Override     This is an object representing the commands 
available on the Remote Software console. Additionally, the object provides 
an interface for remote access to and update of intersection traffi c data and 
cycle parameters for coordinated intersection control (option). 

 The Remote Override object is responsible for managing the following 
functions:

   1.     Triggering the appropriate mode change.  
  2.     Generation and handling of events required to control intersection phase. 

 Table  5.A9  below illustrates the attributes, methods, and events of the Remote 
Override class.    

 5.7.3.2.8    Emergency Vehicle Interface     This is an object that manages the 
wireless transponder interface to authorized emergency vehicles and accesses 
the Intersection Control object in order to display the correct traffi c signals, 
allowing the emergency vehicle priority access to the intersection. 

 The Emergency Vehicle Interface object is responsible for managing the 
following functions:

   1.     Triggering the appropriate mode change.  
  2.     Reception of emergency vehicle preemption requests.  
  3.     Decryption and validation of emergency vehicle preemption requests.  
  4.     Generation and handling of events required to control intersection 

phase.    
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  TABLE 5.A9.    Remote Override Class 

   Remote Override  

        Name     Description  

  Attributes    None    None  
  Methods    Process Command    Processes the events generated by the object, 

modifying the appropriate attribute or 
calling the appropriate method of the 
Intersection Controller object.  

  Get Status    Retrieves the all parameter and other status 
data used as inputs to the Calculate Cycle 
Parameters adaptive control algorithm.  

  Set Parameters    Sets the cycle timing parameters as calculated 
by the remote host.  

  Events    Override Activated    Fires when the override is activated.  
  Override Canceled    Fires when the override is de - activated.  
  Advance Phase    Fires in response to the ADVANCE command 

from the Remote Software console.  

  TABLE 5.A10.    Emergency Vehicle Interface Class 

   Emergency Vehicle Interface  

        Name     Description  

  Attributes    None    None  
  Methods    None    None  
  Events    Preempt Activated    Fires when preemption is activated.  

  Preempt Canceled    Fires when preemption is de - activated.  
      Preempt Timeout    Fires when the preempt cancellation timeout 

interval expires.  

 Table  5.A10  above illustrates the attributes, methods, and events of the 
Emergency Vehicle Interface class.    

 5.7.3.2.9    Network Interface     This is an object that manages communication 
via the Ethernet port. 

 The Network Interface object is responsible for managing the following 
functions:

   1.     Routing control messages to the appropriate objects.  
  2.     Transferring traffi c history and incident log data.  
  3.     Management of maintenance operations.    

 Table  5.A11  below illustrates the attributes, methods, and events of the 
Network Interface class.    
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  TABLE 5.A11.    Network Interface Class 

   Network Interface  

        Name     Description  

  Attributes    None      
  Methods    Process Message    Analyzes and routes network messages.  

  Receive Message    Receives network messages.  
      Send Message    Sends network messages.  
  Events    None      

 5.7.3.2.10    Traffi c History     This is an object that manages the stored traffi c 
history. 

 The Traffi c History object is responsible for managing the following functions:

   1.     Storage and retrieval of traffi c history database records.  
  2.     Clearing of traffi c history in response to a command from a remote host.    

 Table  5.A12  above illustrates the attributes, methods, and events of the Traffi c 
History class.    

 5.7.3.2.11    Incident Log     This is an object that manages the stored inci-
dent log. 

 The Incident Log object is responsible for managing the following functions:

  TABLE 5.A12.    Traffi c History Class 

   Traffi c History  

        Name     Description  

  Attributes    Record    An array of structures, each of which holds 
a single traffi c history record.  

  First Record    Index of the fi rst active record.  
  Last Record    Index of the record most recently added.  
  Record Pointer    Index used to sequence through the Traffi c 

History records.  
  Methods    Write Record    Writes a database record at the current 

position or at a specifi ed position.  
  Read Record    Reads a database record at the current 

position or at a specifi ed position.  
  Move Record Pointer    Moves record pointer as specifi ed.  
  Clear Database    Returns the database to an empty state.  

  Events    EOF    Fires when the last record is reached.  
  Database Full    Fires when all allocated space for the 

database is used. Since the database is a 
FIFO structure, records will begin to be 
overwritten.  
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   1.     Storage and retrieval of incident log database records.  
  2.     Clearing of incident in response to a command from a remote host.    

 Incidents are generated by the following events:

   1.     Error conditions.  
  2.     Traffi c History database full.  
  3.     System resets.  
  4.     Mode changes, including emergency vehicle preempts.  
  5.     Maintenance actions, as updated by maintenance personnel through por-

table test equipment (laptop).    

 Table  5.A13  below illustrates the attributes, methods, and events of the Incident 
Log class.     

5.7.3.3 Performance Requirements 

 5.7.3.3.1    Timing Requirements   

5.7.3.3.1.1     S ummary     Table  5.A14  below provides a summary of all timing 
requirements.   

 This is illustrated in Figures  5.A7  and  5.A8  below.   

  TABLE 5.A13.    Incident Log Class 

   Incident Log  

        Name     Description  

  Attributes    Record    An array of structures, each of which 
holds a single traffi c history record.  

  First record    Index of the fi rst active record.  
  Last record    Index of the record most recently added.  
  Record pointer    Index used to sequence through the 

Traffi c History records.  
  Methods    Write record    Writes a database record at the current 

position or at a specifi ed position.  
  Read record    Reads a database record at the current 

position or at a specifi ed position.  
  Move record pointer    Moves record pointer as specifi ed.  
  Clear database    Returns the database to an empty state.  

  Events    EOF    Fires when the last record is reached.  
  Database full    Fires when all allocated space for the 

database is used. Since the database is a 
FIFO structure, records will begin to be 
overwritten.  
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       Figure 5.A8.     Minimum gap pulse width.  
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 It is necessary to determine the speed at which the minimum gap time 
between vehicles occurs in order to determine that time. The distance a fol-
lowing vehicle must cover in order to trigger the loop detector after the 
leading vehicle has exited is given by

   D v
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 Given this, the gap time is given by

   T v
D v

v
vgap

gap( )
( )

, .= > 0   

 It can be shown that the minimum gap time occurs for  v     =    10   mph.       
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     Software design is a salient part of the entire software development process, 
which can be an individual subprocess of the high - level product development 
process. Furthermore, in embedded applications, the product development 
process may include concurrent hardware and subsystem development subpro-
cesses, too. Software designers translate the problem - domain requirements 
document discussed in the previous chapter into physical models of the solution 
that are suffi cient for straightforward implementation or programming. The 
resultant design document should be such that even an external programming 
consultant could implement the code with minimal interaction with the design 
team. Completeness of the design document is particularly important in glob-
ally distributed projects, where the requirements document might be created in 
the United States, the design document in Finland, and the implementation in 
India, for instance. Integrated CASE environments, which provide smooth 
transitions from the requirements engineering phase to the design phase and 
further to the implementation phase, should be used throughout the software 
development process. Besides, it is essential to use standardized/widespread 
modeling techniques, such as the SA/SD methods or the UML, to make the core 
documentation understandable for various collaborating teams. 

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.
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 The Institute of Electrical and Electronics Engineers (IEEE) Standard 
Dictionary of Electrical and Electronics Terms (IEEE Std 100 – 2000) describes 
the term  “ design ”  as follows: The process of defi ning the architecture, compo-
nents, interfaces, and other characteristics of a system. Hence, during the 
software design phase, numerous decisions are made concerning responsibility 
assignment and fulfi llment, system architecture and deployment, separation of 
concerns, as well as layering and modularization (Bernstein and Yuhas,  2005 ). 
Moreover, the computational algorithms and their numerical precision are 
specifi ed in the design document; such important decisions are often supported 
by simulations or prototyping. The opportunity of design reuse also should 
be carefully considered. In our experience with typical real - time applications, 
the software design phase takes roughly the same amount of resources (in 
person months) as the requirements - engineering and programming phases 
together. 

 The desired qualities of real - time software as well as advantageous software 
engineering principles will be discussed in Sections  6.1  and  6.2 , respectively. 
In addition, a mapping from these principles to qualities is sketched with a 
pragmatic discussion. As the procedural and object - oriented approaches exist 
in requirements engineering and programming phases, they both are naturally 
available in the design phase, as well. Therefore, we discuss the procedural 
design approach in Section  6.3  and the alternative object - oriented approach 
in Section  6.4 . Both of these design sections are composed on real - world 
examples. Section  6.5  gives an evaluative overview on a sample of life cycle 
models that are currently used for the development of real - time software. The 
preceding sections on software design approaches are summarized in Section 
 6.6  with some suggestions. A carefully selected collection of stimulating exer-
cises is provided in Section  6.7 . Lastly, Section 6.8 contains a comprehensive 
case study on designing real - time software (the corresponding requirements 
document of this traffi c - light control system is available in Section  5.7 ). 

 Some parts of this chapter have been adapted from Laplante  (2003) .  

   6.1    QUALITIES OF REAL - TIME SOFTWARE 

 Software systems and individual components can be characterized by a number 
of diverse qualities.  External  qualities are those that are observable by the 
user, such as performance and usability, and are of explicit interest to the end 
user.  Internal  qualities, on the other hand, are not observable by the user, but 
aid the software developers to achieve certain improvement in external quali-
ties. For example, although the requirements and design documentation might 
never be seen by a typical user, their adequate quality is essential in achieving 
satisfactory external qualities. Such an external – internal distinction is a func-
tion of the software itself and the type of user involved. 

 While it is benefi cial to know the software qualities and the motivations 
behind them, it is equally desirable to measure them objectively. Measuring 
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of these characteristics of software is necessary in enabling end users and 
designers to talk succinctly about the product, and for effective software 
process control and project management. More importantly, however, it is 
these qualities that shall be embodied in the real - time design. 

   6.1.1    Eight Qualities from Reliability to Verifi ability 

  Reliability  is a measure of whether a user can depend on the software (Teng 
and Pham,  2006 ). This quality can be informally defi ned in a number of ways. 
For instance, one defi nition might be simply  “ a system that a user can depend 
on. ”  Other common characterizations of a reliable software system include:

    •      The system  “ stands the test of time. ”   
   •      There is an absence of known errors that render the system useless.  
   •      The system recovers  “ gracefully ”  from errors.  
   •      The software is robust.    

 In particular, for real - time systems, other informal characterizations of reli-
ability might include:

    •      Downtime is below a specifi ed threshold.  
   •      The accuracy of the system remains within a certain tolerance.  
   •      Real - time performance requirements are met consistently.    

 While all of these informal characteristics are certainly desirable in real - time 
systems, they are diffi cult to measure or predict. Moreover, they are 
not true measures of reliability, but of various attributes of the software 
instead. 

 There is specialized literature on software reliability that defi nes this quality 
in terms of statistical behavior, that is, the probability that the software product 
will operate as expected over a specifi ed time interval (Pham,  2000 ). These 
characterizations generally take the following approach. Let  S  be a software 
system, and let  T  be the time instant of system failure. Then the reliability of 
 S  at time  t , denoted  r s  ( t ), or when there can be no confusion with other systems, 
 r ( t ), is the probability that  T  is greater than  t ; that is,

    r t P T t( ) = >( ).     (6.1)   

 This is the probability that a software system will operate without failure for 
a specifi ed period of time. In addition to the actual operating phase, also the 
testing phase may be included in the considered period. 

 A system with reliability function  r ( t )    =    1 would never fail. However, it is 
unrealistic to have such an expectation with any real - world system. Instead, 
some reasonable goal,  r ( t )    <    1, should be specifi ed. 
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 Example: Failure Probability Increases as a Function of Time 

 Consider the monitoring system of a nuclear power plant with the specifi ed 
failure probability of no more than 10  − 9  per hour. This represents a reli-
ability function of  r ( t )    =    (0.999999999)  t  , where  t  is in hours. Note that as 
 t     →     ∞ ,  r ( t )    →    0. To illustrate, the failure probability,  q ( t )    =    1    −     r ( t ), for 
various values of  t  is given in Table  6.1 . Moreover, after 35 years of opera-
tion (306,600 hours) — still a reasonable time for nuclear power plants — the 
failure probability is approximately 0.0003.   

 Another way to characterize software reliability is in terms of a failure 
function or model. One failure function uses an exponential distribution 
where the abscissa is time and the ordinate represents the expected failure 
intensity at that time:

    f t e tt( ) = ≥λ λ , .0     (6.2)   

 Here the failure intensity is initially high, as would be expected in new 
software, since failures are detected more frequently during the testing 
phase. However, the number of failures would be expected to decrease with 
time during the operating phase, presumably as failures are uncovered and 
repaired (see Fig.  6.1 ). The factor  λ  is a system - dependent parameter that 
must be determined empirically.   

  TABLE 6.1.    Failure probability as a Function of Operating Hours 

    t      10 0      10 1      10 2      10 3      10 4      10 5      10 6   

   q ( t )    10  − 9      ≈    10  − 8      ≈    10  − 7      ≈    10  − 6      ≈    10  − 5      ≈    10  − 4      ≈    10  − 3   

       Figure 6.1.     A model of failure represented by the exponential failure function 
(Laplante,  2003 ).  
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 Another common failure model is given by the  “ bathtub curve ”  shown in 
Figure  6.2 . Brooks notes that while this curve is widely used to describe the 
failure function of hardware and mechanical components, it might also be 
useful in describing the number of errors found in a software product (Brooks, 
 1995 ). This is particularly valid with embedded systems that have a long life-
time (even 10 – 30 years), and the software is updated (repaired/enhanced) 
numerous times during the lengthy period.   

 The interpretation of this failure function is apparent for hardware and 
mechanics: a certain number of product units will fail early due to manufactur-
ing defects. Later, the failure intensity will increase again as the hardware/
mechanics ages and wears out. But software does not wear out. Therefore, if 
software systems really seem to fail according to the bathtub curve, then there 
has to be some plausible explanation. 

 It is understandable that the largest number of errors will be found early 
in a software product ’ s life cycle, just as the exponential failure model indi-
cates. But why would the failure intensity increase much later? There are at 
least three possible explanations:

   1.     The failures are due to the effects of patching the software (making quick 
corrections to the code without designing them properly) for various 
reasons.  

  2.     Late software failures are actually due to wearing of the underlying 
hardware or possible sensors/actuators.  

  3.     As users master the basic software functions and begin to expose and 
strain advanced features, it is possible that certain inadequately tested 
functionality is eventually beginning to be used.    

       Figure 6.2.     A software failure function represented by the bathtub curve (Laplante, 
 2003 ).  
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 Empirical failure models are used commonly to make rough predictions of 
software failures during the entire operating phase. As the operating environ-
ments for the software may vary drastically in embedded applications, the 
randomness of a practical environment will affect the failure rate in an unpre-
dictable way (Teng and Pham,  2006 ). Hence, the  λ  factor of Equation  6.2  
should be a random variable. 

 Often, the traditional quality measures of  mean time to fi rst failure  ( MTFF ) 
or  mean time between failure s ( MTBF ) are used to stipulate reliability in the 
software requirements specifi cation. This approach to failure defi nition places 
great importance on the effective elicitation and specifi cation of functional 
requirements, because the requirements also defi ne the possible software 
failures. 

 Furthermore, real - time software execution is very sensitive to initial condi-
tions and the external data driving it. What appear to be random failures are 
actually repeatable. The problem in fi nding and fi xing these problems before 
a design is released, or even if the problem emerges once the embedded soft-
ware is in use, is the diffi culty of doing the detective work needed to discover 
fi rst the particular conditions and second the data sequences that triggered the 
fault to become a failure. The longer a software system runs, the more likely 
it becomes that such a fault will be executed. 

Correctness  of software (Mills,  1992 ) is closely related to software reliability, 
and the terms may sometimes be used interchangeably. The fundamental dif-
ference is that even a minor deviation from the requirements is strictly con-
sidered a failure and hence means the software is incorrect. However, a system 
may still be deemed reliable if only minor deviations from the requirements 
are experienced. As widely known, such minor deviations are rather common 
in many software products, because typical software can only be tested par-
tially, and often just a small proportion of the actual input space is explored 
statistically. In real - time systems, correctness incorporates both correctness of 
outputs, as well as deadline satisfaction, as discussed in Chapter  1 . 

Performance  of software (Caprihan,  2006 ) is an explicit measure of some 
required behavior. A general methodology for measuring algorithmic perfor-
mance is based on computational complexity theory (Goldreich,  2008 ). 
Alternatively, a simulation model of the real - time system might be built with 
the actual purpose of estimating performance. The most accurate approach, 
though, involves directly timing the behavior of the completed system with a 
logic analyzer or specifi c performance analysis tools. 

Usability , which is often referred to as ease of use or user friendliness, is a 
measure of how easy and comfortable the software is for humans to use 
(Nielsen,  1993 ). This software quality is an elusive one. Properties that make 
an application user friendly to novice users are often very different from those 
desired by expert users or the software designers themselves. Demonstrative 
prototyping can increase the usability of a software system because, for 
instance, user interfaces can be evaluated and fi ne - tuned by a group of end 
users of the fi nal product. 
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 Usability is often diffi cult to quantify, although it may be easy to argue that 
some system is not usable. However, qualitative feedback from users and 
individual problem reports can be used in most cases for evaluating usability. 
Such general issues as user training time and readability of user documenta-
tion are possible measures of usability (Bernstein and Yuhas,  2005 ). 

Interoperability  refers to the ability of the software to coexist and cooperate 
with other relevant software. It is especially important in component - based 
software development, software reuse, and network - based software systems 
(Wileden and Kaplan,  1999 ). For example, in real - time applications, the soft-
ware must be able to communicate with various devices using standard bus 
structures and protocols. Interoperability is usually straightforward to achieve 
if the decision to communicate is made before the software is designed — it is 
much more laborious to attain afterwards. 

 A concept related to interoperability is that of an open system (Dargan, 
 2005 ). An open system is an extensible collection of independently written 
applications that cooperate to function as an integrated system. Open systems 
differ from open source code, which is source code that is made available to 
the global user community for evolutionary improvement, extension, and cor-
rection, provided that the terms of the associated license are honored. An open 
system allows the addition of new functionality by independent parties through 
the use of standard interfaces whose detailed characteristics are published. Any 
applications developer can then take advantage of these interfaces, and thereby 
create software that can communicate using the interface. Open systems let 
different applications written by different organizations interoperate. For 
example, there are open standards for automotive (AUTOSAR, Automotive 
Open System Architecture),  building automation  ( BAS , Building Automation 
System), and railway vehicle (IEEE Std 1473 - L) systems. Interoperability can 
be measured in terms of compliance with relevant open system standards. 

Maintainability  is related to the anticipation of change that should guide 
the software engineer throughout the development project. A software system 
in which changes are relatively easy to make has a high level of maintainability; 
this is connected directly to the readability and understandability of the 
program code and associated documentation (Aggarwal et al.,  2002 ). In the 
long run, design for change will signifi cantly lower software life cycle costs and 
lead to an enhanced reputation for the software engineer, the software product, 
and the corresponding organization. Some embedded software products are 
maintained even for a few decades, and, therefore, the issue of maintainability 
is of particular importance in such cases. 

 Maintainability can be broken down into two contributing properties: 
evolvability and repairability. Evolvability is a measure of how easily the 
system can be changed to accommodate new features or modifi cation of exist-
ing features. Furthermore, software is repairable if it allows for the fi xing of 
all defects with a reasonable effort. 

 Measuring these qualities of software is not always easy or even possible, 
and often is based on anecdotal observation only. This means that changes and 
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the cost of making them should be tracked over time. Collecting such history 
data has a twofold purpose. First, the costs of maintenance can be compared 
with other similar systems for benchmarking and project management pur-
poses. Second, the information can provide experiential learning that will help 
to improve the overall software development process, as well as the skills of 
software engineers. 

Portability  of software is a measure how easily the software can be made 
to run in different environments. Here, the term  “ environment ”  refers to the 
hardware platform on which the software runs, the real - time operating system 
used, or other system/application software with which the particular software 
is expected to interact. Because of the I/O - intensive hardware with which the 
software closely interacts, special care must be taken in making embedded 
software portable. 

 Hardware portability is achieved through a deliberate design strategy in 
which hardware - dependent code is confi ned to the fewest code units as pos-
sible (such as device drivers). This strategy can be achieved using either pro-
cedural or object - oriented programming languages and through structured 
or object - oriented design approaches. Both of these are discussed throughout 
the text. 

 On the other hand, portability of real - time operating systems or other 
system programs means usually the adoption of some standard  application 
program interface  ( API ) (Shinjo and Pu,  2005 ). This is commonly associated 
with potential overhead caused by the standards - prescribed interface. In this 
sense, portability may degrade the achievable real - time performance. 

 Also, portability is diffi cult to measure, other than through anecdotal obser-
vation. Person - months required to move the software to a new environment 
is a usual measure of this property. But this cannot be known before the actual 
moving effort. 

Verifi ability  of software qualities refers to the degree to which various quali-
ties, including all of those previously introduced, can be verifi ed. In real - time 
systems, verifi ability of deadline satisfaction (a form of performance) is of the 
utmost importance. This topic is discussed further in Chapter  7 . 

 One common technique for increasing verifi ability is through the insertion 
of special program code that is intended to monitor certain qualities, such as 
performance or correctness. Rigorous software engineering practices and the 
effective use of an appropriate programming language can also contribute to 
verifi ability. 

 Measurement or prediction of software qualities is essential throughout 
the whole software life cycle. Therefore, this activity should be integrated 
seamlessly into the software development process. A summary of the 
software qualities just discussed and possible ways to measure them is given 
in Table  6.2 .   

 Today, in the  “ embedded systems era, ”  the emphasis on desirable software 
qualities has shifted gradually from correctness  to  reliability  and  maintainabil-
ity  (Aggarwal et al.,  2002 ). A further emphasis is on the need to increase the 
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productivity  of software developers, due to the growing complexity of software 
products and need for shorter time - to - market. The object - oriented design 
approach, to be discussed in Section  6.4 , may help address this productivity 
challenge (Siok and Tian,  2008 ).   

   6.2    SOFTWARE ENGINEERING PRINCIPLES 

 Software engineering has been criticized for not having the same kind of theo-
retical foundation as older engineering disciplines, such as electrical, mechani-
cal, or civil engineering. While it is true that only a few formulaic principles 
exist, there are several fundamental rules that form the basis of sound software 
engineering practice. The following subsection describes the most general and 
prevalent principles that are particularly applicable in the design and imple-
mentation phases of real - time software. 

   6.2.1    Seven Principles from Rigor and Formality to Traceability 

 Because software development is a creative human activity related to problem 
solving, there is an inherent tendency toward using informal  ad hoc  techniques 
in software specifi cation, design, and coding. Nevertheless, a purely informal 
approach is contrary to  “ best software engineering practices. ”  It should be 
pointed out, however, that the best practices are actually dependent on the 
application size as well as application type (Jones,  2010 ), and also on the size 
of the development organization (Jantunen,  2010 ). 

Rigor  in software engineering requires the use of mathematical techniques. 
Formality , on the other hand, is a higher form of rigor in which precise and 
unambiguous engineering approaches are used. In the case of real - time 
systems, strict formality would further require that there be an underlying 
algorithmic approach to the specifi cation, design, coding, and documentation 
of the software. Due to insuperable diffi culties in creating a pure algorithmic 
approach, semiformal and informal approaches are needed to complement 

  TABLE 6.2.    Software Qualities and Possible Means for Measuring Them 

   Software Quality     Possible Measurement Approach  

  Reliability    Probabilistic measures, MTFF, MTBF, heuristic measures  
  Correctness    Probabilistic measures, MTFF, MTBF  
  Performance    Algorithmic complexity analysis, simulation, direct measurement  
  Usability    User feedback from surveys and problem reports  
  Interoperability    Compliance with relevant open standards  
  Maintainability    Anecdotal observation of resources spent  
  Portability    Anecdotal observation of resources spent  
  Verifi ability    Insertion of special monitoring code  
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individual formal approaches. For instance, certain parts of the design docu-
ment can be formal while most others are semiformal. 

  Separation of concerns  is an effective divide - and - conquer strategy practiced 
by software engineers to manage miscellaneous problems related to complex-
ity. There are various ways in which separation of concerns can be achieved. 
In terms of software design and coding, it is used in object - oriented design and 
in modularization of procedural code. Moreover, there may be separation in 
time, for example, developing an appropriate schedule for a collection of peri-
odic computing tasks with different execution periods. 

 Yet another way of separating concerns is in dealing with individual soft-
ware qualities. For instance, it may be helpful to address the fault tolerance of 
a system only while ignoring other qualities for some time. However, it must 
be remembered that many of the software qualities are actually interrelated, 
and it is often impossible to improve one without deteriorating another. Hence, 
a project - specifi c compromise is typically needed. 

  Modularity  is commonly achieved by grouping together logically related 
elements, such as statements, procedures, variable declarations, and object 
attributes, in an increasingly fi ne - grained level of detail (see Fig.  6.3 ). Modular 
design involves the decomposition of software behavior in encapsulated soft-
ware units, and can be achieved with both procedural and object - oriented 

       Figure 6.3.     Modular decomposition of code units. The arrows represent inputs and 
outputs in the procedural paradigm. In the object - oriented paradigm, they represent 
associations. The boxes represent encapsulated data and procedures in the procedural 
paradigm. In the object - oriented paradigm, they represent classes (Laplante,  2003 ).  

Level 1

Level 2

Level 3

Level 4
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programming languages. The main goal of modularity is high cohesion and low 
coupling of the software structure. With respect to the code units, cohesion 
represents intramodule connectivity and coupling represents intermodule con-
nectivity. Cohesion and coupling can be illustrated as in Figure  6.4 , which 
depicts software structures with high cohesion and low coupling (left), as well 
as low cohesion and high coupling (right). Cohesion relates to the relationship 
of the elements within a module. High cohesion implies that each module 
represents a single part of the problem solution. Therefore, if the system ever 
needs modifi cation, then the part that needs to be modifi ed exists in a single 
place, being easier and less error prone to change.   

 Constantine and Yourdon identifi ed seven levels of cohesion in the order 
of increasing strength (Pressman,  2009 ):

   1.     Coincidental .      Parts of a module are not related at all, but simply bundled 
into a single module.  

  2.     Logical .      Parts that perform similar tasks are put together in a joint 
module.  

  3.     Temporal .      Tasks that execute within the same time span are brought 
together.  

  4.     Procedural .      The elements of a module make up a single control sequence.  
  5.     Communicational .      All elements of a module act on the same area of a 

data structure.  
  6.     Sequential .      The output of one part in a module serves as input for 

another part.  
  7.     Functional .      Each part of a module is necessary for the execution of a 

single function.    

       Figure 6.4.     Software structures with (a) high cohesion and low coupling, and (b) low 
cohesion and high coupling. The inside squares represent statements or data; connect-
ing lines indicate functional dependency.  

(a) (b)
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 This above list could be used when designing the contents of specifi c software 
modules; it brings valuable insight to the heuristic module - creation process. 
Modules should not be created solely by  “ grouping together logically related 
elements ”  — as is usually done. But there are multiple reasons to group indi-
vidual elements together. 

 Coupling relates to the relationships between the modules themselves. 
There is a great benefi t in reducing coupling so that changes made to one code 
unit do not propagate to others; they are said to be hidden. This principle of 
 “ information hiding, ”  also known as Parnas partitioning, is the cornerstone of 
all software design and will be discussed in Section  6.3.1  (Parnas,  1979 ). Low 
coupling limits the effects of errors in a specifi c module (lower  “ ripple effect ” ) 
and reduces the likelihood of data - integrity problems. In some cases, however, 
high coupling due to time - critical control structures may be necessary. For 
example, in most graphical user interfaces, control coupling is unavoidable, 
and indeed desirable. 

 Coupling has been characterized by six levels in the order of increasing 
strength:

   1.     None .     All modules are completely unrelated.  
  2.     Data.     Every argument is either a simple argument or data structure in 

which all elements are used by the called module.  
  3.   Stamp.      When a data structure is passed from one module to another but 

that module operates on only some of the data elements of the whole 
structure.  

  4.     Control.     One module explicitly controls the logic of the other by passing 
an element of control to it.  

  5.   Common.      If two modules both have access to the same global data.  
  6.     Content.     One module directly references the contents of another.    

 To further illustrate both coupling and cohesion, consider the class structure 
diagram (object - oriented design approach) shown in Figure  6.5 ; the fi gure 
illustrates two interesting points. The fi rst is the clear difference between the 
same system embodying low coupling and high cohesion versus high coupling 
and low cohesion. The second point is that the proper use of visual design 
techniques can positively infl uence the eventual design outcome.   

Anticipation of change  is another important principle in software design. 
As has been mentioned, software products are subject to frequent change 
either to support new hardware or software requirements or to repair defects. 
A high maintainability level of the software product is one of the hallmarks 
of outstanding commercial software. 

 Developers of embedded software know that their systems are subject to 
changes in hardware, algorithms, and even application. Therefore, these systems 
must be designed in such a way as to facilitate changes without degrading 
considerably the other desirable properties of the software. Anticipation of 
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change can be achieved in the software design through the adoption of an 
appropriate software life cycle model and corresponding design methodolo-
gies, as well as through appropriate project - management practices and associ-
ated training efforts. 

 In solving a problem, the principle of  generality  can be stated as the intent 
to look for a more general problem that may be hidden behind it. As an 
obvious example, designing an elevator control system for a low - end apart-
ment building is less general than designing it to be adaptable to various hotels, 
offi ces, shopping centers, and apartment buildings. 

 Generality can be achieved through a diverse number of approaches associ-
ated with procedural and object - oriented paradigms. For example, Parnas ’  
information hiding can be used with procedural languages. Extensive param-
eterization is another commonly used approach for providing generality to 
software. In object - oriented software, generalization is achieved by applying 
certain design principles and through the use of architectural and design pat-
terns. Although generalized solutions may be more costly in terms of the 
problem at hand, in the long run, the extra costs of a generalized solution may 
be worthwhile. Nonetheless, these extra costs might affect real - time perfor-
mance, which is always a diffi cult issue to handle. Moreover, a manager of a 

       Figure 6.5.     Coupling and cohesion. The right way: low coupling and high cohesion. The 
wrong way: high coupling and low cohesion.  

Wrong Way

Right Way

www.it-ebooks.info

http://www.it-ebooks.info/


280 SOFTWARE DESIGN APPROACHES

specifi c development project might ask a relevant question:  “ Why should  this
project pay some costs of possible future projects in advance? ”  This is, indeed, 
a good question and should be addressed by the steering group of that particu-
lar project; there may be a confl ict between short - term and long - term goals. 

Incrementality  involves a software - engineering approach in which progres-
sively larger increments of the desired product are developed. Each increment 
provides additional functionality, which brings the unfi nished product closer 
to the fi nal one. Each increment also offers an opportunity for demonstration 
of the product to the customer for the purposes of gathering supplementary 
requirements and refi ning the look and feel of the product or its user interface, 
for example. In reality, however, some advanced sets of increments have even 
been delivered to the customer as  “ the product ”  due to sizeable delays in the 
development project. This usually leads to serious problems and shall be 
strictly avoided. 

Traceability  is concerned with the relationships between requirements, their 
sources, and the system design. Regardless of the life cycle model used, docu-
mentation and code traceability are truly important. A high level of traceabil-
ity ensures that the software requirements fl ow down through the design and 
program code, and then can be traced back up at every stage of the develop-
ment process. This would ensure, for instance, that a coding decision can be 
traced back to a design decision to satisfy a corresponding requirement. 

 Traceability is particularly important in embedded systems, because specifi c 
design and coding decisions are often made to satisfy rather unique hardware 
constraints that may not be directly associated with any higher - level require-
ment. Failure to provide a traceable path from such decisions through the 
requirements can lead to substantial diffi culties in extending and maintaining 
the system. 

 Generally, traceability can be obtained by providing consistent links 
between all documentation and the software code. In particular, there should 
be links:

 •      From requirements to stakeholders who proposed these requirements.  
 •      Between dependent requirements.  
 •      From the requirements to the design.  
 •      From the design to associated code segments.  
 •      From requirements to the test plan.  
 •      From the test plan to individual test cases.    

 One way to create these links is through the use of an appropriate numbering 
system throughout the documentation. For instance, a requirement numbered 
3.1.1.2 would be linked to a design element with a similar number (the numbers 
do not have to be the same as long as the annotation in the document guar-
antees traceability). In practice, a traceability matrix is constructed to help 
cross reference the documentation and associated code elements (Table  6.3 ). 
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The matrix is constructed by listing the relevant software documents and the 
code units as columns, and then each software requirement in the rows. 
Traceability to the stakeholders related to certain requirements or to relevant 
standards and regulations could also be added as columns in Table  6.3 .   

 Constructing the traceability matrix in a spreadsheet software package 
allows for providing multiple matrices sorted and cross - referenced by each 
column as needed. For example, a matrix sorted by test case numbers would 
be an appropriate appendix to the test plan. The traceability matrices are 
updated at each step in the software life cycle. For instance, the column for 
the code unit names (e.g., procedure names or object classes) would not be 
added until after the code is developed. A way to foster traceability between 
code units is through the use of data dictionaries, which are described later. 

 Finally, a mapping ( positive effect ) from the individual software - engineering 
principles, just discussed, to the desired software qualities of Table  6.2  is 
sketched in Table  6.4 . Some of these mappings are explicit, while others are 
more implicit. Interestingly, the software quality of maintainability appears to 
be improvable by all the seven principles. Of the software engineering prin-
ciples, modularity seems to be a particularly strong one, since it can improve 
all the software qualities except  “ usability ”  and  “ verifi ability. ”     

   6.2.2    The Design Activity 

 The design activity is involved in identifying the components of the software 
design and their interfaces from the software requirements specifi cation. The 
principal artifact of this activity is the  Software Design Description  ( SDD ). In 
the same way as the IEEE Std 830 – 1998 (discussed in Section  5.1.2 ) provides 
a sound framework for requirements engineering documents, a recently 
revised standard, IEEE Std 1016 – 2009, specifi es requirements on the informa-
tion content and organization for software design descriptions (IEEE,  2009 ). 
According to the standard,  “ SDD is a representation of a software design that 
is to be used for recording design information, addressing various design con-
cerns, and communicating that information to the design ’ s stakeholders. ”  

  TABLE 6.3.    A Traceability Matrix Sorted by Requirement Number 

   Requirement 
Number

   Design Document 
Reference
Number(s)

   Test Plan 
Reference
Number(s)

   Code Unit 
Name(s)

   Test Case 
Number(s)

  3.1.1.1    3.1.1    3.1.1.1    Task_A    3.1.1.A  
      3.2.4    3.2.4.1        3.1.1.B  
          3.2.4.3        3.1.1.C  
  3.1.1.2    3.1.1    3.1.1.2    Task_B    3.1.1.A  
                  3.1.1.D  
  3.1.1.3    3.1.1.3    3.1.1.3    Task_C    3.1.1.B  
                  3.1.1.E  
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 During the design phase, a team of real - time systems engineers creates a 
detailed software design and acquires a formal acceptance for it. That involves 
the following tasks from the initial Architecture Design (Taylor et al.,  2010 ) 
to the Final Design Review (Hadar and Hadar,  2007 ):

   1.      Architecture Design
 •      Performing hardware/software trade - off analysis leading to hardware –

 software partitioning.  
 •      Making the determination between centralized or distributed pro-

cessing schemes.  
 •      Designing interfaces to external components.  
 •      Designing interfaces between internal components.    

  2.      Control Design
 •      Determining concurrency of execution.  
 •      Designing principal control strategies.    

  3.      Data Design
 •      Determining storage, maintenance, and allocation strategy for data.  
 •      Designing database structures and handling routines.    

  4.      Functional Design
 •      Designing the start - up and shutdown processing.  
 •      Designing algorithms and functional processing.  
 •      Designing error processing and error - message handling.  
 •      Conducting performance analyses of critical functions.    

  5.      Physical Design
 •      Determining physical locations of software components and data.    

  6.      Test Design
 •      Designing any test software identifi ed in test planning.    

  7.      Documentation Design
 •      Creating possible support documentation, such as the Operator ’ s 

Manual, User ’ s Manual, Programmer ’ s Manual, and Application Notes. 
  8.      Intermediate Design Reviews  ( →  internal acceptances) 

 •      Conducting internal design reviews.    
  9.      Detailed Design

 •      Developing the detailed design for all software components.  
 •      Developing the test cases and procedures to be used in the formal 

acceptance testing.    
  10.      Final Design Review  ( →  organizational acceptance) 

 •      Documenting the software design in the form of the SDD.  
 •      Presenting the SDD at a formal design review for examination and 

criticism.      
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 This is an intimidating set of substantial tasks that is further complicated by 
the fact that many of them must occur in parallel or be iterated several times. 
There is obviously no algorithm, per se, for conducting these tasks. Instead, it 
takes many years of practicing, learning from the experience of others, and 
good judgment to guide the software engineer heuristically through this maze 
of individual design tasks. In such effort, collective knowledge of a matured 
development organization would be of signifi cant aid. 

 Two alternative methodologies, procedural and object - oriented design, 
which are related to structured analysis and object - oriented analysis, respec-
tively, can be used to perform the design activities based on the software 
requirements specifi cation. Both methodologies seek to arrive at a physical 
software model containing small, detailed components.   

   6.3    PROCEDURAL DESIGN APPROACH 

 Procedural design methodologies, like structured design, involve top - down 
and bottom - up approaches centered on procedural programming languages, 
such as the popular C language. The most common of these approaches utilize 
effective design decomposition via Parnas partitioning (Parnas,  1979 ). 

   6.3.1    Parnas Partitioning 

 Software partitioning into multiple software units with low external coupling 
and high internal cohesion can be achieved through the principle of informa-
tion hiding . In this technique, a list of diffi cult design decisions or things that 
are likely to change is fi rst prepared. Individual modules are then designated 
to hide the eventual implementation of each design decision or a specifi c 
feature from the rest of the system. Thus, only the functionality of each module 
is visible to other modules, not the method of implementation. Changes in 
these modules are therefore not likely to affect the rest of the system. 

 This form of functional decomposition is based on the notion that some 
aspects of a system are fundamental and remain constant, whereas others are 
somewhat arbitrary and likely to change. Moreover, it is those arbitrary aspects 
that often contain the most valuable design information. Arbitrary facts are 
hard to remember and usually require lengthy descriptions; hence, they are 
typical sources of documentation complexity. 

 The following fi ve steps can be used to implement a good design that 
embodies information hiding:

   1.     Begin by characterizing the likely changes (consider different time hori-
zons of the life cycle) and their effects.  

  2.     Estimate the probabilities of each type of change.  
  3.     Organize the software to confi ne likely and signifi cant changes to a 

minimum amount of code.  
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  4.     Provide an  “ abstract interface ”  that abstracts from the potential 
differences.  

  5.     Implement  “ objects, ”  that is, abstract data types and modules that hide 
changeable data and other structures.    

 These steps reduce intermodule coupling and increase intramodule cohesion. 
Parnas also indicated that although module design is easy to describe in text-
books, it is diffi cult to achieve in practice. He suggested that extensive real -
 world examples are needed to illustrate the point correctly (Parnas,  1979 ). 

 As an example, consider a portion of the display function of a graphics 
subsystem associated with an elevator monitoring system and depicted in 
hierarchical form in Figure  6.6 . Such monitoring systems are used in supervi-
sion centers and can also be available in large lobbies for displaying the eleva-
tor traffi c. It consists of color graphics that must be displayed (e.g., a 
representation of multiple elevator shafts, animated elevator cars, and regis-
tered calls) and are essentially composed from bars, rectangles, and circles. 
Different objects can naturally reside in different display windows. The actual 
implementation of bars, rectangles, and circles is based on the composition of 
line - drawing calls. Thus, line drawing is the most basic (hardware - dependent) 
function in this application. Whether the actual graphics controller is based on 
pixel, vector, or even semi - graphics does not matter; only the line - drawing 
routine with standard software interfaces needs to be changed. Hence, the 
hardware dependencies have been isolated to a single code unit.   

 Parnas partitioning hides the implementation details of software features, 
design decisions, low - level hardware drivers, and so forth, in order to limit the 

       Figure 6.6.     Parnas partitioning of graphics rendering software.  
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scope of impact of future changes or corrections. Such a technique is especially 
applicable and useful in embedded systems; since they are so directly tied to 
hardware, it is important to partition and localize each implementation detail 
with a particular hardware interface. This approach allows easier modifi cations 
due to possible hardware interface changes, and minimizes the amount of code 
affected. 

 If in designing the software modules, increasing levels of detail are deferred 
until later (subordinate code units), then the software design approach is 
called top - down . If, on the other hand, the design detail is dealt with fi rst and 
then increasing levels of abstraction are used to encapsulate those details, the 
approach is obviously bottom - up . 

 In Figure  6.6 , it would be possible to design the software by fi rst describing 
the characteristics of various components of the system and the functions 
that are to be performed on them, such as opening, sizing, and closing windows. 
Then the window functionality could be broken down into its constituent 
parts, such as rectangles and text. These could be subdivided even further, 
that is, all rectangles consist of lines, and so on. The top - down refi nement 
continues until the lowest level of detail needed for code development has 
been reached. 

 Alternatively, it is possible to begin by encapsulating the details of the 
most volatile part of the system, the hardware implementation of a line or 
pixel, into a single code unit. Then working upward, increasing levels of 
abstraction are created until the system requirements are satisfi ed. This is a 
bottom - up approach to software design. In many real - world applications, 
however, the software design process contains both top - down and bottom - up 
sections.  

   6.3.2    Structured Design 

  Structured design  ( SD ) is the companion methodology to structured analysis. 
It is a systematic approach concerned with the specifi cation of the software 
architecture and involves a number of strategies, techniques, and tools. SD 
supports a comprehensive but easy - to - learn design process that is intended 
to provide high - quality software and minimized life cycle expenses, as well 
as to improve reliability, maintainability, portability, and overall performance 
of software products.  Structured analysis  ( SA ) is related to SD in the 
same way as a requirements representation is related to the software archi-
tecture, that is, the former is functional and fl at, but the latter is modular and 
hierarchical. 

 The transition mechanisms from SA to SD are purely manual and involve 
substantial problem - solving effort in the analysis and trade - offs of alternative 
approaches. Normally, SD proceeds from SA in the following manner. Once 
the  context diagram  ( CD ) is fi rst created, a hierarchical set of  data fl ow dia-
gram s ( DFD s) is developed. DFDs are used to partition system functions and 
document that partitioning inside the specifi cation. The fi rst DFD, the level 0 
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diagram, illustrates the highest level of system abstraction. Subdividing pro-
cesses to lower and lower levels until they are ready for detailed design 
renders further DFDs with successive levels of increasing detail. This heuristic 
decomposition process is called downward leveling, and it corresponds to the 
top - down design approach. Nevertheless, the bottom - up approach is also used 
commonly when developing DFDs. In that case, the composition process is 
called upward leveling. A problem - driven mixture of downward and upward 
leveling is preferred by most software designers (Yourdon,  1989 ). 

 In the CD (see Fig.  5.13 ), rectangles represent terminators that model the 
environment boundary. They are labeled with a noun phrase that describes the 
agent, device, or system from which data enters or to which it exits. Each 
process (or data transformation) depicted by a circle in CD/DFDs is labeled 
as a verb phrase describing the operation to be performed on the data, although 
it may be labeled with the name of a system or specifi c operation that manipu-
lates the data as well. Solid arrow lines are used to connect terminators to 
processes and between processes to indicate the fl ow of data through the 
system. Each arrow line is labeled with a noun phrase that describes the data 
it carries. Moreover, parallel lines indicate data stores, which are labeled by a 
noun phrase naming the database, fi le, or repository where the system stores 
data (either simple data elements or a more complex data structure). A data 
store is passed to lower levels of hierarchy by connecting it with the corre-
sponding process. 

 Each DFD should preferably have between fi ve and nine processes 
(Yourdon,  1989 ). The descriptions for the lowest level processes are called 
process specifi cations, or P - SPECs, and are expressed in either decision tables 
or trees, pseudocode, or structured English, and are used to describe the 
detailed algorithms and operational logic of the actual program code. Yourdon 
stated that the purpose of structured English is  “ to strike a reasonable balance 
between the precision of a formal programming language and the casual 
informality and readability of the English language ”  (Yourdon,  1989 ). Figure 
 6.7  illustrates a typical evolution path from the context diagram through data 
fl ow diagrams to process specifi cations.   

 Example: Highest - Level  DFD  of the Elevator Control System 

 Consider again the elevator control system discussed in Section  3.3.8  and 
refer to its context diagram given in Figure  5.13 . The associated level 0 DFD 
is shown in Figure  6.8 . It contains fi ve individual processes and three shared 
data stores ( “ global memory ” ). To create such a DFD, a thorough view/
understanding of the elevator control system to be designed is developed 
gradually; hence, the resulting DFD is a refi ned outcome of a longish itera-
tive process consisting of both top - down and bottom - up stages.   

 It should be noted that this DFD includes also a few control fl ows 
(dashed arrow lines), which are used to activate individual processes. These 
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       Figure 6.7.     Evolution path from the context diagram to level 0 DFD to level 1 DFD, 
and fi nally to a P - SPEC.  
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activations are related to hardware interrupts and certain internal events, 
as outlined below:

   1.     Communications .      Activated when the group dispatcher sends a 
request to communicate.  

  2.     Update Destination .      Periodic activation (75 - ms timer interrupt).  
  3.     Perform Runs .      Activated primarily by Process 2 (also by the door 

and door zone interrupts) when there is a need to start a fl oor - to - fl oor 
run or to stop at the next possible fl oor (or perform some critical door 
control actions).  

  4.     Supervise Operation .      Periodic activation (500 - ms timer interrupt).  
  5.     Connect to Service Tool .      Activated when an elevator technician 

presses some key of the service tool.    

 Notice that here the hardware interrupts were not included in the context 
diagram, but appear, for the fi rst time, in this level 0 DFD. 

 To complement the DFDs,  entity relationship diagram s ( ERD s) are often used 
to defi ne explicit relationships between stored data objects in the system. 
Hence, the entities of the ERD are modeling information concepts of the 
software application. 
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       Figure 6.8.     Level 0 DFD for the elevator control system.  *    This incoming data fl ow is 
connected to two processes.  
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 Furthermore, a  data dictionary  ( DD ) is an essential component of the 
structured design, and includes entries for data fl ows, control fl ows, data stores, 
and buffers appearing in DFDs and control fl ow diagrams (to be discussed 
shortly). In addition, also the entries of ERDs should be included in the DD. 
Each entry is identifi ed typically by its name, entry type, range, resolution, unit, 
location, and so forth. The data dictionary is organized alphabetically for ease 
of use. Other than that, there is no standard format, but every design element 
must have a descriptive entry in it. Most SA/SD CASE tools support the data -
 dictionary feature in addition to the diagrams mentioned above. 
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 Additional  “ Location ”  information will be added as the program code is 
developed. In this way, data dictionaries help to provide traceability between 
design/code elements. 

 There are, however, apparent problems in using the standard structured 
analysis and structured design (SA/SD) to model real - time  systems, including 
diffi culty in modeling time dependencies and events. Consequently, concur-
rency is not adequately depictable using this form of SA/SD. 

 Another problem may arise already when creating the context diagram. 
Control fl ows are not easily translatable into code because they are hardware 
or operating - system dependent. In addition, such a control fl ow does not 
really make sense since there is no connectivity between portions of it, a con-
dition known as  “ fl oating. ”  As a representative example, the DFD of Figure 
 6.8  has altogether six fl oating control fl ows associated with hardware 
interrupts. 

 Details of the underlying hardware need to be known for further modeling 
of certain processes. For example, what happens if the communications hard-
ware (interacts with Process 1) is changed? Or if another service tool with a 
different kind of keypad or display panel is taken in use (interacts with Process 
5)? In such cases, the hardware - originated changes would need to propagate 
into the level 1 DFD for the corresponding process, any subsequent levels, and, 
ultimately, into the program code. 

 Making and tracking changes in structured design is fraught with danger, 
and hence requires special attention. Besides, a single change could mean that 
signifi cant amounts of code would need to be rewritten, recompiled, and prop-
erly linked with the unchanged code to make the system work. 

 As expressed above, the standard SA/SD methodology is not well equipped 
for dealing with time, obviously, because it is a data - oriented and not a control -
 oriented approach. In order to address this shortcoming, the SA/SD method 
was extended by allowing for the addition of control fl ow analysis . This exten-
sion of SA/SD is called real - time SA/SD (SA/SD/RT). To accomplish this, the 

 Example: A Sample Data - Dictionary Entry 

 For the elevator control system, one DD entry might appear as follows:

Name:      Car call table  

Alias:      Car_calls  

Entry type:     Data store  

Description:      An integer vector containing the car call status for each 
possible destination fl oor  

Values:      “ 1 ”  corresponds to  “ car call registered ”  and  “ 0 ”  represents 
 “ no car call, ”  whereas other values are illegal  

Location:      Level 2.1 DFD    
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following artifacts were added to the standard approach: dashed arrow lines 
to indicate the fl ow of control messages and dashed parallel lines indicating 
message buffers. More specifi cally, dashed arrow lines can be either triggering 
events, such as hardware interrupts, or specifi c control fl ows between pro-
cesses. A control fl ow can carry a single message (such as  “ activate ”  or  “ deac-
tivate ” ), or it can form a structure of multiple messages. A message buffer, on 
the other hand, is a data store that contains explicit control characteristics, 
since it can behave autonomously as a stack or queue. Furthermore, a dashed 
circle represents a control transformation in Ward - Mellor SA/SD/RT (Ward 
and Mellor,  1985 ), and it can be used conveniently to sequence data fl ow 
diagrams. For that purpose, Mealy - type fi nite state machines are commonly 
used to defi ne the encapsulated state sequence and corresponding process 
activations. 

 The addition of the control artifacts allows, in principle, for the creation of 
a diagram containing solely control artifacts called a  control fl ow diagram  
( CFD ). These CFDs can be further decomposed into C - SPECs (control speci-
fi cations), which can then be described by fi nite state machines. However, the 
control and data fl ow diagrams are usually combined as shown in Figure  6.8 . 
The important relationship between the control and process models is depicted 
in Figure  6.9 .    

       Figure 6.9.     The relationship between control and process models (Laplante,  2003 ).  
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   6.3.3    Design in Procedural Form Using Finite State Machines 

 One of the advantages of using fi nite state machines in the software require-
ments specifi cation and later in the software design is that they can be easily 
(or even automatically) converted to code and test cases. For instance, consider 
the control of the elevator door. The tabular representation of the state transi-
tion function (see Table  5.2 ), which describes the system ’ s high - level behavior 
rigorously, can be easily transformed into a design using the generic pseudo-
code shown in Figure  6.10 . Each procedure associated with the possible door 
states (Open, Closing, Closed, Opening, Nudging, Fault C, and Fault O) will 
be structured code that can be viewed as executing in one of any number of 
possible states at every instant in time. This functionality can be described 
conveniently by the pseudocode shown in Figure  6.11 .   

       Figure 6.10.     A generic pseudocode that can implement the behavior of fi nite state 
machines (Laplante,  2003 ).  

typedef states:    (state 1,...,state n); {n is # of states}
        alphabet:  (input 1,...,input n);
        table_row: array [1..n] of states;

procedure move_forward; {advances FSM one state}

var
        state: states;
        input: alphabet;
        table: array [1..m] of table_row; {m is alphabet’s size}

begin
        repeat
           get(input); {read one token from input stream}
           state := table[ord(input)] [state]; {next state}
           execute_process (state);
           until input = EOF;
end;

       Figure 6.11.     Finite - state - machine code for executing a single operational process; each 
process can exist in multiple states, allowing partitioning of the program code into 
appropriate modules (Laplante,  2003 ).  

procedure execute_process (state: states);

begin

    case state of
    state 1: process 1; {execute process 1}
    state 2: process 2; {execute process 2}
    ...
    state n: process n; {execute process n}

end;
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 Moreover, the pseudocodes given in Figures  6.10  and  6.11  can be easily 
translated to any procedural language or even to an object - oriented one. 
Alternatively, the system behavior can be described with a  case  statement or 
nested if–then  statements such that, given the current state and receipt of 
a signal, a new state is assigned. The advantage of fi nite - state machine design 
over the case  statement alternative is, of course, that the former is more fl ex-
ible and compact.     

   6.4    OBJECT - ORIENTED DESIGN APPROACH 

 As discussed in Chapter  4 , object - oriented programming languages are those 
characterized by data abstraction, inheritance, polymorphism, and messaging. 
Data abstraction through a variety of objects provides facilities for effective 
information hiding, or encapsulation and protected variation. Inheritance 
allows the software engineer to defi ne new objects in terms of previously 
defi ned ones so that the new objects inherit properties. Function polymor-
phism allows the programmer to defi ne operations that behave differently, 
depending on the type of object involved. Moreover, messaging allows objects 
to communicate and invoke the methods that they support. 

 Object - oriented languages provide a natural environment for information 
hiding through encapsulation. The state, data, and behavior of objects are 
encapsulated and accessed only via a published interface or certain private 
methods. For example, in the inertial measurement system (see Fig.  5.6 ), it 
would be appropriate to design a class called  “ accelerometer ”  with attributes 
describing its physical implementation and methods describing its output, 
compensation algorithm, and so forth. 

 Object - oriented design is a modern approach to systems design that views 
the system components as objects, as well as data processes, control processes, 
and data stores that are encapsulated within objects. Early forays into object -
 oriented design were led by aims to reuse some of the better features of 
structured methodologies, such as the data fl ow and entity relationship dia-
grams, by reinterpreting them in the context of object - oriented languages. This 
can be observed also in the popular  unifi ed modeling language  ( UML ), which 
became standardized in the late nineties; the latest revision of the standard is 
UML 2.3 that was released in May 2010. 

   6.4.1    Advantages of Object Orientation 

 Over the last decade, the object - oriented framework has gained signifi cant 
acceptance within the embedded - software community. The main advantages 
of applying object - oriented paradigms in real - time systems are the future 
extensibility and reuse that can be attained, and the relative ease of future 
changes. Also, the productivity of programmers is potentially improved through 
the use of object - oriented techniques. Most software systems are subject to 
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near - continuous change: requirements change, merge, emerge, and mutate; 
target languages, platforms, and architectures change; and the way the software 
is employed in practice changes, too. Larman pointed out that after the initial 
release of a typical software product, at least half of the effort and cost is spent 
in modifi cation (Larman,  2002a ). This calls for fl exibility and places a consider-
able burden on the software design: How can systems that must support 
such widespread change be built without compromising quality measures? 
There are four basic principles of object - oriented software engineering that 
address this question, and they have been recognized collectively as  supporting
reuse . 

 First recorded by Meyer, the   open - closed principle   ( OCP ) states that classes 
should be open to extension, but closed to modifi cation (Meyer,  2000 ). That 
is, it should be possible to extend the behavior of a class in response to new 
or changing requirements, but modifi cation to the source code is not allowed. 
While these expectations may seem at odds (particularly to those whose back-
ground is primarily in procedural languages), the obvious key is abstraction. 
In object - oriented systems, a superclass can be created that is fi xed, but can 
represent unbounded variation by subclassing. This aspect is clearly superior 
to structured approaches in making changes, for instance, in accelerometer 
compensation algorithms, which would require new function parameter lists 
and wholesale recompilation of all modules calling that code in the structured 
design. 

 While not a new idea, Beck gave a name to the principle that any aspect of 
a software system — be it an algorithm, a set of constants, documentation, or 
logic — should exist in one and only one place (Beck,  1999 ). This so - called 
once - and - only - once principle   ( OAOOP ) isolates future changes, makes the 
system easier to comprehend and maintain, and through the low coupling and 
high cohesion that the principle instills, the reuse potential increases signifi -
cantly (Beck,  1999 ). The encapsulation of state and behavior in objects, and 
the ability to inherit properties between classes, allows for the rigorous appli-
cation of these ideas in an object - oriented system, but is diffi cult to implement 
in structured approaches. More importantly, in structured approaches, OAOOP 
needs to be breeched frequently for reasons of performance, reliability, avail-
ability, and, often, for security as well. 

 Furthermore, the   dependency inversion principle   ( DIP ) states that high -
 level modules should not depend upon low - level modules; both should depend 
upon abstractions. This can be reformulated: Abstractions should not depend 
upon details — details should depend upon abstractions. Martin introduced 
this idea as an extension to the OCP with reference to the proliferation of 
dependencies that exist between high -  and low - level modules (Martin,  1996 ). 
For example, in a structured decomposition approach, the high - level proce-
dures reference the lower - level procedures, but changes often occur at the 
lowest levels. This infers that high - level modules or procedures that should be 
unaffected by such detailed modifi cations may be affected due to these depen-
dencies. Again, consider the case where the accelerometer characteristics 
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change and even though perhaps only one routine needs to be rewritten, 
the calling module(s) may need to be modifi ed and recompiled, too. A prefer-
able situation would be to reverse these dependencies, as is evident in the 
 Liskov substitution principle  ( LSP ). The intent here is to allow dynamic 
changes in the preprocessing scheme, which is achieved by ensuring that all 
the accelerometer objects conform to the same interface, and are therefore 
interchangeable. 

 Defi nition: Liskov Substitution Principle 

 Liskov expressed the principle of the substitutivity of subclasses for their 
base classes as: If for each object  o1  of type  S , there is an object  o2  of type 
T  such that for all programs  P  defi ned in terms of  T , the behavior of  P  is 
unchanged when o1  is substituted for  o2 , then  S  is a subtype of  T  (Liskov, 
 1988 ). 

 Defi nition: Pattern 

 A pattern is a named problem – solution pair that can be applied in different 
contexts, with explicit advice on how to apply it in new situations. 

 This useful principle has led to the concept of type inheritance and is the basis 
of polymorphism in object - oriented systems, where instances of derived classes 
can be substituted for each other, provided they fulfi ll the obligations of a 
common superclass.  

   6.4.2    Design Patterns 

 Developing embedded software is hard, and developing truly reusable soft-
ware is even harder. Competitive software designs should be specifi c to the 
current problem, but general enough to address potential future problems and 
requirements. Hence, there may arise a cost - related confl ict between short -
 term and long - term goals. Experienced designers know not to solve every 
problem from fi rst principles, but to reuse solutions encountered previously, 
that is, they fi nd recurring patterns and use them as a basis for new designs. 
This is simply an embodiment of the principle of generality. 

 While object - oriented systems can be designed to be as rigid and resistant 
to extension and modifi cation as in any other paradigm, object - orientation has 
the ability to include distinct design elements that can cater to future changes 
and extensions. These  “ design patterns ”  were fi rst introduced to the main-
stream of software engineering practice by Gamma, Helm, Johnson, and 
Vlissides, and are commonly referred to as the  “ Gang of Four ”  (GoF) patterns 
(Gamma et al.,  1994 ). 

 The formal defi nition of a pattern varies throughout the literature. We will 
use the following informal defi nition throughout this text. 
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 Our presentation is concerned with three pattern types:  architectural patterns , 
design patterns , and  idioms . An architectural pattern occurs across subsystems; 
a design pattern occurs within a subsystem, but is independent of the program-
ming language; and an idiom is a low - level pattern that is language specifi c 
(Horstmann,  2006 ). 

 In general, every pattern consists of four essential elements:

   1.     A name (such as  “ fa ç ade ” )  
  2.     The problem to be solved (such as  “ provide a unifi ed interface to a set 

of interfaces in a subsystem ” )  
  3.     The solution to the problem  
  4.     The consequences of the solution    

 More accurately, the problem describes when to apply the pattern in terms of 
specifi c design problems, such as how to represent algorithms as objects. The 
problem may describe class structures that are symptomatic of an infl exible 
design. Finally, the problem section might include conditions that must be met 
before it makes sense to apply the pattern. 

 The solution, on the other hand, describes the elements that make up the 
design, though it does not describe any concrete design or implementation. 
Rather, the solution provides how a general arrangement of objects and classes 
solves the problem. Consider, for instance, the previously mentioned GoF 
patterns. They describe 23 design patterns, each being either  creational ,  behav-
ioral , or  structural  in its intent (see Table  6.5 ). This table is provided for illus-
tration only, and it is not our intention to describe any of these patterns in 
detail, since they are well documented elsewhere (Gamma et al.,  1994 ). Some 
patterns have evolved specifi cally for real - time systems, and they provide 
various approaches to addressing the fundamental real - time scheduling, com-

  TABLE 6.5.    The Original Set of Design Patterns Popularized 
by the  “ Gang of Four ”  (Gamma et al.,  1994 ) 

   Creational     Behavioral     Structural  

  Abstract factory    Chain of responsibility    Adapter  
  Builder    Command    Bridge  
  Factory method    Interpreter    Composite  
  Prototype    Iterator    Decorator  
  Singleton    Mediator    Fa ç ade  
      Memento    Flyweight  
      Observer    Proxy  
      State      
      Strategy      
      Template method      
      Visitor      
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munications, and synchronization problems, for example, Douglass  (2003)  and 
Schmidt et al.  (2000) .   

 Let us consider Douglass ’  real - time pattern set. Douglass groups his 48 
patterns into six classes (Douglass,  2003 ):

   1.     Subsystem and component architecture  
  2.     Concurrency  
  3.     Memory  
  4.     Resource  
  5.     Distribution  
  6.     Safety and reliability    

 As it turns out, we have discussed many of these patterns in Chapter  3  (but 
without mentioning the term  “ pattern ” ). The architecture patterns include the 
layered architecture that is so common to real - time operating systems (see Fig. 
 3.2 ), and the virtual machine which is the underlying architecture for Java. Of 
the concurrency patterns, many are based on solutions that we have already 
discussed, for instance,  “ round - robin, ”   “ static priority, ”   “ dynamic priority, ”  and 
 “ cyclic executive. ”  Various solutions for memory allocation, buffering, and 
garbage collection, are included in the memory patterns. The resource patterns, 
on the other hand, describe solutions to the critical - section problem through 
the use of semaphores, and the priority inheritance and priority ceiling proto-
cols, among others. The distribution patterns deal with the problem of a syn-
chronous control over a set of independent processes, and incorporates 
solutions found in other sets, such as the GoF ’ s observer and proxy patterns. 
Finally, the safety and reliability patterns give solutions to improve fault toler-
ance and reliability through various types of redundancy, watchdog timers, and 
the like, many of which we will discuss in Chapter  8 . Moreover, Douglass ’  
pattern set includes many other solutions to real - time problems in a format 
that is quite accessible to the developer. 

 A comprehensive study on available pattern collections is provided by 
Henninger and Corr ê a  (2007) . They pointed out:  “ As the number of patterns 
and diversity of pattern types continue to proliferate, pattern users and devel-
opers are faced with diffi culties of understanding what patterns already exist 
and when, where, and how to use or reference them properly. ”  This relevant 
concern is based on a careful survey, where altogether 170 software 
development - related pattern entities with more than 2200 patterns were iden-
tifi ed and classifi ed. A majority of those patterns is of architectural or design 
type. To avoid overlooking opportunities to utilize design patterns effectively, 
Briand et al. proposed a methodology for semiautomating the detection of 
areas within UML designs that are suitable candidates for the use of design 
patterns (Briand et al.,  2006 ). Such methodologies, if just available in CASE 
environments with high usability, could advance the use of design patterns 
among practitioners.  
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   6.4.3    Design Using the Unifi ed Modeling Language 

 Today, the UML is widely accepted as the de facto standard for the specifi ca-
tion and design of software - intensive systems using the object - oriented 
approach. By bringing together the  “ best - of - breed ”  in diverse specifi cation 
techniques, the UML has become a sophisticated family of individual lan-
guages or diagram types, and users can choose which members of the family 
are suitable for their particular domain. Furthermore, complete UML models 
consist of a collection of diagrams, as well as accompanying textual and other 
documentation. 

 The UML is a graphical language based upon the premise that any system 
can be composed of communities of interacting entities. Various aspects of 
those entities and their interaction can be described using the original set 
of nine diagrams: activity, class, communication, component, deployment, 
sequence, state machine, object, and use case. Of these UML diagrams, fi ve 
depict behavioral or dynamic views (activity, communication, sequence, state -
 machine, and use - case), while the remaining four are concerned with structural 
or static aspects. With respect to real - time systems, it is the behavioral diagrams 
that are of particular interest, since they defi ne what must happen in the 
system under consideration. Many of those original diagrams are illustrated 
in the extensive design case study at the end of this chapter. The principal 
artifacts generated when using the UML as well as their relationships are 
depicted in Figure  6.12 .   

       Figure 6.12.     The role of UML in specifi cation and design;  adapted from Larman 
  (2002b) .  
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 In addition to the nine diagrams mentioned above, the UML 2.2 (released 
in 2009) has fi ve other diagrams (OMG Unifi ed Modeling Language ™  [OMG 
UML],  2009 ). Nonetheless, some of the numerous diagrams are partially 
redundant and used infrequently. All the 14 UML diagrams are introduced 
below in alphabetical order. For each of the diagrams, a suggested   Learning
Priority   (  LP  ) is given according to Ambler  (2004) ; Ambler ’ s  LP  has three 
possible levels: high, medium, and low. Although these suggestions are refer-
ring to the needs of  “ a business application developer, ”  they give helpful 
guidelines also for real - time software developers.

Activity Diagram   (Behavioral/General;   LP     =     High)  :      Activity diagrams 
are closely related to the classical fl owchart and are used for the same 
purpose, that is, to specify the fl ow of control. However, unlike fl owcharts, 
they can model concurrent computational steps and the fl ow of objects 
as they move from state to state at different points in the fl ow of control. 
In fact, in UML 2.0 and later, the activity diagram was refashioned to be 
more similar to the Petri net, which is widely used in digital hardware 
design to conduct synchronization analysis and to identify deadlocks, 
race conditions, and dead states. Thus, activity diagrams are useful in 
modeling dynamic aspects of a real - time system.  

Class Diagram   (Structural;  LP     =     High)  :      During system design, the class 
diagram defi nes the actual class attributes and methods implemented in 
an object - oriented programming language. Design pattern architectures 
are explored and physical requirements assessed during design. Design 
patterns provide guidance on how the defi ned class attributes, methods, 
and responsibilities should be assigned to objects. Physical requirements 
require the programmer to revisit the analysis class diagram, where new 
classes for the system requirements are defi ned. Figure  6.A10  in Appendix 
 1  at the end of this chapter is a design class diagram for the traffi c - light 
control system.  

Communication Diagram   (Behavioral/Interaction;   LP     =     Low)  :      Communi-
cation diagrams show the messages passed between objects through the 
basic associations between classes. In essence, they depict the dynamic 
behavior on static class diagrams. Communication diagrams are the most 
emphasized of UML interaction diagrams because of their clarity and 
expression of more information. The communication diagram contains 
classes, associations, and message fl ows between classes. Figures  6.A4 –
 6.A9  in Appendix  1  at the end of the chapter are communication dia-
grams for the traffi c - light control system.  

Component Diagram   (Structural;   LP     =     Medium)  :      These diagrams are 
made up of components, interfaces, and relationships. Components rep-
resent preexisting entities. Interfaces represent the functionality of com-
ponents that are directly available to the user, and relationships represent 
conceptual relationships between components (Holt,  2001 ).  
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Composite Structure Diagram   (Structural; LP     =     Low)  :      Composite struc-
ture diagrams defi ne the internal structure of a class and also the imme-
diate collaborations that are enabled by this structure.  

Deployment Diagram   (Structural; LP     =     Medium)  :      Deployment diagrams 
consist of nodes representing real - world aspects (such as the hardware 
platform and execution environment) of a system, and links that show 
relationships between individual nodes.  

Interaction Overview Diagram   (Behavioral/Interaction; LP     =     Low)  :      These 
diagrams provide an interaction overview, where nodes represent indi-
vidual interaction diagrams (a subset of behavioral diagrams).  

Object Diagram   (Structural; LP     =   Low)  :      Object diagrams realize part of 
the static model of a system and are closely related to class diagrams. 
They show the insides of things in the class diagrams, as well as their 
relationships. Moreover, they represent a model or  “ snapshot ”  of the 
partial or complete run - time system at a given point in time.  

Package Diagram   (Structural; LP     =     Low)  :      These diagrams show how the 
software system is partitioned into logical packages by depicting the 
interdependencies among these packages.  

Profi le Diagram   (Structural;   LP     =     low, Though Not Included in Ambler ’ s 
Suggestions for UML 2.0)  :      A special kind of diagram that operates at 
the metamodel level (the metamodeling architecture is beyond the scope 
of this introduction).  

Sequence Diagram   (Behavioral/Interaction;   LP     =     high)  :      sequence dia-
grams are composed of three basic elements: objects, links, and messages, 
which are exactly the same as for the communication diagram. However, 
the objects shown in a sequence diagram have a lifeline associated 
with them, which represents a logical timeline. The timeline is present 
whenever the object is active, and is illustrated graphically as a 
vertical line with logical time traveling down the line. The objects for 
the sequence diagram are shown going horizontally across the page and 
are shown staggered down the diagram depending on when they are 
created (Holt,  2001 ). Figure  6.A13  in Appendix  1  at the end of the 
chapter illustrates the sequence diagram for the traffi c - light control 
system.  

State Machine Diagram   (Behavioral/General; LP     =     Medium)  :      These dia-
grams are versatile statecharts, which defi ne the possible states and the 
allowed state transitions of the system.  

Timing Diagram   (Behavioral/Interaction;   LP     =     Low)  :      Timing diagrams 
describe the critical timing constraints of the system.  

Use-Case Diagram   (Behavioral/General; LP     =     Medium)  :      Use - case dia-
grams represent the specifi c interactions of the software application with 
its external environment, as well as possible dependencies between indi-
vidual use cases.    
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 The UML, even in its current form, does not provide complete facilities for 
the specifi cation and analysis needs of real - time systems. However, since the 
UML is an evolving family of languages, there is no compelling reason for not 
adding to the family if a suitable language is found. Unfortunately, the majority 
of appropriate candidates are formal methods — specifi cation languages with 
a sound mathematical background — and these are traditionally shunned by 
practitioners. 

 As stated earlier, the domain model (see Fig.  6.12 ) is created based upon the 
use cases, and, through further exploration of system behavior via the interac-
tion diagrams, the domain model evolves systematically into the design class 
diagram. The construction of the domain model is, therefore, analogous to the 
analysis stage in SA/SD described earlier. In domain modeling, the central 
objective is to represent the real - world entities involved in the domain as con-
cepts in the domain model. This is a key aspect of object - oriented systems and 
is seen as a signifi cant advantage of the paradigm, since the resultant model is 
closer to reality than in alternative modeling approaches, including the SA/SD. 

 While most development in object - oriented design was initially done with 
little or no provision for real - time requirements, the UML 2.0 (released in 
2005) with signifi cant extensions for real - time applications improved the situ-
ation greatly (Miles and Hamilton,  2006 ).  

   6.4.4    Object - Oriented versus Procedural Approaches 

 The preceding observations beg the question of whether object - oriented 
design is more suitable than structured design for embedded real - time systems. 
Structured design and object - oriented design are often compared and con-
trasted, and, indeed, they are similar in certain ways. This is no surprise, since 
both have their roots in the pioneering work of Parnas and his predecessors 
(Parnas,  1972, 1979 ). Table  6.6  provides a qualitative comparison of these 
methodologies.   

  TABLE 6.6.    A Side - by - Side Comparison of  SA / SD  and  OOAD  ( UML ) Approaches 

   System Components     SA/SD Functions     OOAD Objects  

  Data processes 
 Control processes  

  Separated through internal 
decomposition

  All encapsulated within 
objects

  Data stores          
  Characteristics    Hierarchy of composition    Inheritance of properties  

  Classifi cation of functions    Classifi cation of objects  
  Encapsulation of knowledge 

within functions 
  Encapsulation of 

knowledge within objects 
  User ’ s viewpoint    Rather easy to learn and use    Much more diffi cult to 

learn and use  
  CASE tools    Widely available    Widely available  
  Volume of usage    Shrinking    Growing  
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 Both structured and  object - oriented analysis and design  ( OOAD ) are full 
life cycle methodologies and use some similar tools and techniques. However, 
there are major differences as well. SA/SD describes the system from a func-
tional perspective and separates data fl ows from the functions that transform 
them, while OOAD describes the system from the perspective of encapsulated 
entities that possess both function and form. 

 Additionally, object - oriented models include inheritance, while structured 
ones do not have such a useful characteristic. Although SA/SD has a defi nite 
hierarchical structure, this is a hierarchy of decomposition rather than hered-
ity. Such a shortcoming leads to diffi culties in maintaining and extending both 
the specifi cation and design. 

 From the user ’ s viewpoint, UML is more diffi cult to learn and use than SA/
SD methods, although they both are supported by matured CASE tools. On 
the other hand, we see the use of UML growing steadily, while the use of SA/
SD is shrinking correspondingly in new products. Notably, these trends are 
slower in real - time applications than with other kind of software. 

 An experimental rule - based framework for transforming SA/SD artifacts to 
UML was proposed by Fries  (2006) . It is targeted for evolving legacy software 
that was initially designed using the structured approach. The original data fl ow 
and entity relationship diagrams of SA/SD are converted semiautomatically to 
a use case diagram, sequence diagrams, and a class diagram of UML. 

 Consider three distinct viewpoints of a system: data, events, and actions. 
Events represent stimuli, such as various measurements in control systems, as 
in the case study at the end of this chapter. Actions are precise rules that are 
followed in computational algorithms, such as  “ compensate ”  and  “ calibrate ”  
in the case of the inertial measurement system. The majority of early computer 
systems were focused on one, or at most two, of these complementary view-
points. For instance, nonreal - time image processing systems were certainly 
data and action intensive, but did not encounter much in the way of events. 

 Real - time systems are usually data intensive, and hence would seem well 
suited to structured analysis. Nevertheless, real - time systems also include 
control information, which is not particularly well suited to structured design. 
It is likely that a real - time system is as much event or action based as it is data 
based, which makes it quite suitable for object - oriented techniques, too. 

 The purpose of this discussion is not to dismiss SA/SD, or even to conclude 
that it is better than OOAD in all cases. An overriding indicator of suitability 
of OOAD versus SA/SD to real - time systems is the nature of the application. 
A similar conclusion was made — not surprisingly — when procedural and 
object - oriented programming languages were compared in Chapter  4 .   

   6.5    LIFE CYCLE MODELS 

 A systematic engineering approach to the specifi cation, design, programming, 
testing, and maintenance of software is essential for maximizing the reliability 
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and maintainability of real - time systems, as well as for minimizing life cycle 
expenses. Therefore, software life cycle models form an integral part of any 
serious development and maintenance process for real - time systems; such 
models describe explicitly what must be done  throughout the life cycle. The 
life cycle is considered to begin when the requirements engineering activities 
are commissioned and end when the particular software is no longer main-
tained by the responsible organization. This time period may vary from one 
year or so up to a few decades; and there are several life cycle models, which 
are practiced when developing and maintaining real - time software. These 
models include the classical waterfall model, the V - model, the spiral model, as 
well as a more recent collection of agile methodologies (Ruparelia,  2010 ). 
Nonetheless, most practiced life cycle models are actually hybrids; tailoring is 
commonly needed to create an appropriate compromise between strictly 
sequential  and extensively  iterative  modeling approaches for a particular 
product and development organization. 

 Software life cycle models are intended to provide a solid and supportive 
framework leading to competitive software products within the available 
budget, personnel, and time frame. The word  “ competitive ”  refers here to 
an application -  and environment - specifi c mixture of the desired software 
qualities discussed in Section  6.1 . By using a well - defi ned life cycle model 
with thorough quality assurance procedures, it is possible to prevent the 
increasing and expensive late - failures period of the bathtub failure function 
(see Fig.  6.2 ) even in evolving embedded systems with a lengthy life span. In 
the following subsections, we will introduce a representative sample of sequen-
tial and iterative life cycle models and comment their strengths and weak-
nesses. All those models include at least a subset of the following fundamental 
activities:

 •      Requirements engineering  
 •      Design  
 •      Programming  
 •      Testing  
 •      Transfer to production  
 •      Maintenance    

   6.5.1    Waterfall Model 

 The purely sequential waterfall (or cascade) model is the oldest software life 
cycle model, having its origins in the construction and manufacturing indus-
tries. It is based on the idealized assumptions that the requirements can be 
fi xed on before starting the design phase, that the design can be fi xed on before 
starting the programming phase, and so forth (see Fig.  6.13 ). Furthermore, 
there is typically a formal review between each phase, and one is allowed to 
advance to the following phase only when the preceding phase is fi nalized and 
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approved. No feedback paths are provided for possible iteration in such an 
idealized scheme. In principle, it would be desirable to follow a feedforward 
model through the whole development process, but as there are multiple 
potential reasons why the requirements, design, or program code may need to 
be modifi ed during a development project, the basic waterfall model has been 
enhanced to contain optional feedback paths (dashed lines in Fig.  6.13 ). These 
relaxing feedbacks make it possible to revisit preceding phases, for instance, 
to correct programming errors that were detected during tests. Although the 
enhanced waterfall model provides direct mechanisms for iteration, all the 
iterations are considered just as exceptions in the  “ waterfall philosophy. ”  
Moreover, quality assurance may be built seamlessly into the waterfall model; 
each phase can contain both the  “  do  part ”  and the corresponding  “  validate  
part ”  (Ruparelia,  2010 ). 

 Since the introduction of the waterfall principles over fi ve decades ago, 
various iterative models have appeared — and that seems to be the future 
trend, too. In iterative models, the development of all entities can continue 
throughout the life cycle. Nevertheless, according to a recent survey, a consid-
erable majority (84%) of software projects were still developed according to 
the waterfall model (or one of its enhancements) and not using any of the 
modern iterative approaches (Gelbard et al.,  2010 ). 

 As an important benefi t, the cascade fl ow of the waterfall model makes 
it straightforward to even outsource individual development phases, since the 
fi rm documents, such as the approved Software Requirements Specifi cation 
and the Software Design Description, are not expected to change later on. 
On the other hand, waterfall - type life cycle models do not support effectively 

       Figure 6.13.     Sequential waterfall model with optional feedback enhancements.  

Requirements

Engineering

Design

Programming

Testing

Transfer to 

Production

Maintenance

Review

Review

Review

Review

Review

www.it-ebooks.info

http://www.it-ebooks.info/


LIFE CYCLE MODELS 305

such projects that have evolving or changing requirements specifi cations. 
This is an increasingly critical issue, for example, when developing a clear but 
versatile user interface to navigate through evolving smartphone features and 
functions.  

   6.5.2    V - Model 

 The waterfall model has been enhanced not only by introducing simple feed-
backs between consecutive phases but in other ways, too. One widely used 
enhancement is the V - model, where  “ V ”  describes both the graphical shape 
of the development fl ow and the central objectives related to  “ validation. ”  
Figure  6.14  depicts the V - model for software development; the left fork con-
tains the requirements engineering and design phases in the same way as they 
are included in the enhanced waterfall model of Figure  6.13 ; the programming 
effort with module testing is at the bottom; and the right fork is devoted to 
quality assurance actions. These quality assurance actions form the heart of 
V - model, and they are based on close interaction between the symmetrical left 
and right forks. This means, for instance, that strategies and plans for system 
validation and integration tests are created already during the requirements 
engineering and design phases, respectively. Hence, it is ensured that every 
requirement as well as the design itself are strictly verifi able (Ruparelia,  2010 ). 
The foremost aim of the V - model is to tackle two obvious risks appearing in 
any software development project:

   1.     Does the integrated software correspond  exactly  to the design?    
  2.     Is the overall system fulfi lling  all  the requirements?    

 In the traditional waterfall model, the testing phase contains similar activities 
as the right fork of the V - model, but the V - model emphasizes their role 

       Figure 6.14.     V - model with quality assurance activities.  
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throughout the development life cycle. It is a common practice to fi ne tune 
the presented model structure to correspond to the specifi c needs of a particu-
lar project; the fi ve - phase structure of Figure  6.14  is just one example. The 
more complex a software system to be developed is, the longer the two forks 
become and hence contain more phases. In principle, the use of V - model is not 
dependent on the size of the software project. Furthermore, it can be used for 
hardware and mechanics development, as well.  

   6.5.3    Spiral Model 

 A particularly useful modifi cation of the waterfall model, the spiral model 
(Boehm,  1986 ), has its orientation in risk analysis and intermediate prototyp-
ing. These are taking place cyclically until the phase of detailed design, which 
is then followed by a typical waterfall sequence (see Fig.  6.15 ). Each spiral 
cycle passes four quadrants, Q1 – Q4, and ends up to a prototype that is vali-
dated, possibly with the stakeholders. The number of completed spiral cycles 

       Figure 6.15.     Spiral model with early prototyping efforts;  adapted from Boehm   (1986) .  
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determines the cumulative cost of the development project. While the water-
fall model is entirely specifi cation driven, the spiral model is clearly a risk -
 driven approach.   

 Possible risks in a software development project are commonly related to 
the adequacy of available features, usability and user interface, real - time per-
formance, externally furnished components (such as reused requirements 
specifi cations or partial designs), as well as various development issues (Boehm, 
 1991 ). Some of these risks may grow bigger if the software product is intended 
for a global market with signifi cant cultural dynamics. Therefore, the impor-
tance of careful risk analysis is going to increase in the future. It should be 
noted, however, that the risk protection benefi t of extensive prototyping can 
be costly. Besides, it is not always easy to identify critical risks, and hence 
development teams would benefi t of risk identifi cation and analysis training. 

 Also in the case of the spiral model, it is possible to adapt the model details 
to correspond to the needs of a particular project. Moreover, the use of the 
spiral model requires considerable effort by the project management. The 
philosophy of the spiral model can be stated as  “ start small, think big ”  
(Ruparelia,  2010 ).  

   6.5.4    Agile Methodologies 

 Agile methodologies belong to a dynamic family of iterative and incremental 
software development strategies. While in the enhanced waterfall model of 
Figure  6.13 , any iteration is considered as an undesired exception, agile meth-
odologies are based on intentional iterations leading to incremental comple-
tion of the software under development. Hence, the underlying principle is far 
from that of the waterfall model, V - model, or spiral model, and it cannot be 
depicted with a static workfl ow diagram containing interconnected develop-
ment activities. Figure  6.16  illustrates a fl ow of an imaginary software develop-
ment project using an iterative agile strategy. At any iteration step, there are 
multiple merging development activities with varying effort volumes. Besides, 
a set of consecutive iterations can form a  “ mini project ”  that could provide a 
partial software release to the customer. Although agile methodologies are 
often deployed with a lack of rigid process, they can be, when correctly imple-
mented, rigorous and thus suitable for embedded applications (Laplante, 
 2009 ).   

 There are several widely used agile methodologies, such as Crystal, 
Dynamic Systems Development Method,  eXtreme Programming  ( XP ), 
Feature - Driven Development, and Scrum, as well as a large number of  ad
hoc  methodologies that claim to be agile (Laplante,  2009 ). Because they are 
relatively new, are light on documentation and formal process, and involve 
a high degree of experimentation early in the systems development process 
(when prototype hardware may be unavailable), agile methodologies are not 
frequently used in real - time and embedded systems development. Nevertheless, 
in many cases, where the true philosophy of agile development is embraced 
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and where the culture and application domain are appropriate, agile develop-
ment can be the right development approach for real - time and embedded 
systems, as well. 

 It is beyond the scope of this book to describe any one agile methodology 
or to undertake a detailed analysis of when and how to use these approaches 
in real - time and embedded systems development. It is important, however, to 
understand and appreciate the philosophy of agile methodologies in order 
to see why they might be suitable for certain real - time applications. And to 
understand these approaches, it is essential to look at the Agile Manifesto and 
the explicit principles behind it. The following manifesto was introduced by a 
group of agility proponents in 2001 (Larman,  2004 ): 

   

       Figure 6.16.     A sample fl ow of a software development project using iterative agile 
methodologies;  adapted from Larman   (2004) .  
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 Defi nition: Agile Manifesto 

 We are uncovering better ways of developing software by doing it and 
helping others do it. Through this work, we have come to value:

    •       Individuals and interactions  over processes and tools  
   •       Working software  over comprehensive documentation  
   •       Customer collaboration  over contract negotiation  
   •       Responding to change  over following a plan    

 That is, while there is value on the items on the right, we value items on the 
left more. 
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 From the noble manifesto, a set of 12 principles were derived (Larman,  2004 ): 

 Defi nition: Agile Principles 

P1.   Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.  

  P2.     Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer ’ s competitive advantage.  

  P3.     Deliver working software frequently, from a couple of weeks to a 
couple of months, with a preference to the shorter time scale.  

P4.   Business people and developers must work together daily throughout 
the project.  

P5.    Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done .  

P6.     The most effi cient and effective method of conveying information to 
and within a development team is face - to - face conversation.  

  P7.     Working software is the primary measure of progress.  
P8.   Agile processes promote sustainable development. The sponsors, devel-

opers, and users should be able to maintain a constant pace indefi nitely. 
P9.   Continuous attention to technical excellence and good design enhances 

agility.  
P10.     Simplicity — the art of maximizing the amount of work done — is 

essential.  
P11.   The best architectures, requirements, and designs emerge from self -

 organizing teams.  
P12.   At regular intervals, the team refl ects on how to become more effec-

tive, then tunes and adjusts its behavior accordingly.    

 These principles, if practiced consistently, end up to a fl exible what - to - do plan 
for the project, instead of a fi rm one. Moreover, the agile approach is human 
oriented as opposed to task orientation. The principle P5 is particularly inter-
esting, because it enables the team members to utilize their  “ free will ”  (a 
powerful characteristic, which distinguishes human intelligence from advanced 
machine intelligence [Martinez,  2006 ]) instead of being controlled merely by 
policies, procedures, superiors, and so on. 

 Could agile methodologies even offer  “ the most suitable strategy ”  for all soft-
ware development? We will answer this tempting question by referring synergisti-
cally to the  “  no free lunch  ”  ( NFL ) theorems that Wolpert and Macready discussed
in the context of optimization algorithms (Wolpert and Macready,  1997 ). They 
proved that improved performance for any optimization algorithm indicates 
a match between the structure of the algorithm and the structure of the problem 
at hand. Therefore, a general - purpose algorithm is never the most suitable one 
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for a specifi c problem, and the most suitable algorithm for a specifi c problem 
is not a general - purpose one. Intuitively reasoning, it could be possible to 
develop similar NFL theorems for software development strategies, as well; 
such an effort is, however, beyond the scope of this text. Nevertheless, if we 
apply our intuition freely, we can say that any general - purpose strategy is never 
the best one for all software development. For this reason, case - dependent 
tuning is advantageous when creating an appropriate life cycle model for a 
particular application and development environment. For instance, applying 
agile methodologies strictly to large software projects is diffi cult, since they 
stress the face - to - face communication and self - organizing teams that may not 
be possible to achieve due to large development groups and multiple geo-
graphical locations where the work is carried out (Ruparelia,  2010 ). Nonetheless, 
agile methodologies are undoubtedly usable in smaller - scale applications with 
changing or evolving requirements specifi cations. 

 Vignette: Are We Witnessing a Second Agile Development Period? 

 When examining the Agile Manifesto and the associated principles, we 
noticed that they contain numerous similarities to those informal software 
development strategies, which were used in the beginning of the embedded 
systems era — some three decades ago. At that time, industry was still incon-
sistent in the use of microprocessors; requirements specifi cations changed 
frequently; the entire software was not more than a few tens of kilobytes; 
development teams consisted typically of 2 – 3 highly motivated software 
engineers; and nobody in the team was a  “ guru, ”  but all members were fairly 
inexperienced. Such initial conditions formed a fruitful basis for agile - type 
behavior to emerge by itself. 

 Based on the authors ’  subjective observations in a few development 
organizations — rather than any real survey — it can be argued that the  most
successful  teams practiced up to 10 of the 12 agile principles: P1, P2, P4 – P7, 
and P9 – P12. Furthermore, all items of the manifesto were, more or less, 
common practices. 

 Is this just a coincidence, or is there truly something similar in the 
advanced products of tomorrow and the early embedded systems? No, it is 
probably not a coincidence, but the  frequently changing requirements and 
new technological opportunities  form common points of contact, which are 
as concrete with the future smartphone user interfaces as they were with 
the pioneering forest harvesters, for example. However, most of the agile 
principles were put aside for a couple of decades; since embedded software 
was growing rapidly in size, development teams became bigger and geo-
graphically distributed, and it was impossible to fi nd an adequate number 
of well motivated and self - organizing individuals to support the embedded 
systems boom. These and other changes in the operating environment 
pushed the development organizations toward rigid life cycle models and 
strict project management practices. 
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 Lastly, it should be pointed out that there are also other iterative software 
development approaches than the popular agile methodologies outlined 
above. A comprehensive discussion on agile and iterative development, from 
the manager ’ s viewpoint, is available in Larman  (2004) .   

   6.6    SUMMARY 

 The purpose of software design is to create a sound mapping from the require-
ments document to an implementable design document. In general, there exist 
an infi nite number of possible mappings. But which one of those is the desired 
one? To achieve a desirable mapping, we fi rst need to defi ne the term  “ desir-
able, ”  which is related directly to a set of weighted software quality measures. 
These specifi c qualities (such as performance and maintainability) and usual 
ways to achieve them (such as modularity and generality) were discussed in 
the beginning of this chapter. In addition to software qualities, the term  “ desir-
able ”  is related necessarily to the development organization and environment, 
as well as the type and market of the software product. Thus, every design 
process includes actually a multi - objective optimization problem with consid-
erable uncertainties; for instance, how should the different software qualities 
be weighted with respect to each other? The ultimate success of the software 
is largely dependent on the experience and skills of the design team to solve 
such problems. 

 There are two principal approaches to generate and document software 
designs: the procedural design approach and the object - oriented approach. It 
is useless to debate which approach is better and should hence be preferred 
generally. Instead, the selected approach must be justifi ed by the concrete 
application needs and future visions of the development organization. Currently, 
many industrial companies with a long history of embedded systems develop-
ment either have just switched to object - oriented techniques or are in the 
process of such a major transition. In large procedural - oriented organizations, 
this transition can be a laborious educational effort, since, for example, the fl uent 
use of UML is more demanding than the use of SA/SD methods. The situation 
is apparently very different in young and small development organizations. 

 Software development and maintenance life cycle models have a central 
role in every serious development process. The purpose of strict  “ life cycle 
thinking ”  is to minimize the total expenses during the entire life cycle — not 
just the development expenses, as is traditionally done in the fi rst place. 
However, while the life cycle thinking makes a lot of sense from the corpora-
tion or company point of view, it may be challenging to put into practice in 
large organizations, where the development expenses are often paid from  “ a 
different pocket ”  than the maintenance expenses. The situation is even more 
diffi cult when the lifespan of the software product is lengthy. Thus, the adop-
tion of a life cycle model to cover both the development and maintenance 
phases is actually an executive - level decision. 
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 The classical waterfall model or one of its enhancements have an estab-
lished position in most development organizations. Nevertheless, as there is 
no single kind of software or development environment, there is a need to 
tune and evolve the existing life cycle models, or even create new life cycle 
philosophies. In the past decade, agile methodologies have gained interest and 
acceptance in applications where the requirements are changing frequently 
during the design and implementation phases. Agile methodologies provide 
an iterative and incremental alternative to the primarily sequential and rigid 
development life cycles. While these methodologies are shown to be effective 
in certain situations, they are no  “ silver bullet ”  for all. On the other hand, their 
position is clearly emerging in smaller - scale real - time systems (or subsystems) 
involved with novel technological opportunities. 

 In the future, such productivity issues as design reuse and (semi - )automatic 
design from requirements will continue to be important but challenging areas 
of research and development. 

 We want to close this chapter by Norman Maclean ’ s captivating words: 
 “ Eventually, all things merge into one, and a river runs through it ”  (Maclean, 
 2001 ). These words have an obvious analogy to the design of embedded 
software.  

 6.7   EXERCISES 

6.1.    For whom should you, as a designer, prepare the software design 
description?   

6.2.    What are the primary reasons behind the current (and seemingly con-
tinuing) situation that there is no single, universally accepted approach 
for software design?   

6.3.    Why is it that the actual program code, even though it is an exact model 
of system behavior, is insuffi cient in serving as either a software require-
ments document or a software design document? In any case, pseudo-
code is used widely for such purposes.   

6.4.    How would you, as a software project manager, handle the confusing 
situation in which the software requirements specifi cation contains 
numerous design - level details as well?   

6.5.    Why is it of utmost importance that the program code be traceable to 
the software design specifi cation, and, in turn, to the software require-
ments specifi cation? What are the possible consequences if it is not 
traceable?   

6.6.    A mapping from advantageous software engineering principles to 
desired software qualities is sketched in Table  6.4 . Give specifi c explana-
tions why  “ Modularity ”  is mapping to  “ Reliability, ”   “ Correctness, ”  
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 “ Performance, ”   “ Interoperability, ”   “ Maintainability, ”  and  “ Portability. ”  
Or, do you disagree on some of those suggested mappings?   

6.7.    What are the principal differences between procedural design approaches 
and object - oriented ones?   

6.8.    Why are procedural design approaches still practiced with many embed-
ded systems — even with completely new products? What could be hin-
dering the adoption of object - oriented approaches in those cases?   

6.9.    Using a data fl ow diagram, capture the data and functional requirements 
for monitoring the entry, exit, and traversal of aircraft in a busy airspace. 
Aircraft entering the space are sensed by the Radar  input; the  Comm
input identifi es aircraft that leave the space. The current contents of the 
space are maintained in the data area AirspaceStatus . A detailed log or 
history of the space usage is kept in the AirspaceLog  storage. Air - traffi c 
control personnel can request the display of the status of a particular 
aircraft through the Controller  input.   

6.10.    Take the procedural design approach and create fi rst the context diagram, 
and then the highest - level data fl ow and control - fl ow diagrams for an 
electronic lock in the laboratory door having the following requirements 
specifi cations:

 •      The lock has an integrated RFID card reader, and every registered 
user has a unique identifi cation code.  

 •      An accepted card is acknowledged by a green LED and a rejected one 
by a red LED.  

 •      The lock will open when an adequate current is fl owing through its 
control solenoid; otherwise, it remains locked.  

 •      Information about registered users and their permitted entrance times 
is stored on a database of a remote workstation that manages all locks 
within the whole college building.  

 •      Every successful and unsuccessful opening attempt is recorded on the 
database with the corresponding identifi cation code, date, and time.  

 •      Embedded controllers of individual locks in the building communicate 
with the common workstation through a wireless communications 
network.    

 You may defi ne additional requirements yourself, if needed.   

6.11.    Perform a web search and fi nd the reasons why the Unifi ed Modeling 
Language (UML) was originally developed. What were the primary 
reasons why UML 2.0 appeared?   

6.12.    UML ’ s use - case diagrams (see Fig.  5.14 ) are usually complemented by 
textual descriptions; what kind of information do they contain?   
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   6.8    APPENDIX 1 

  CASE STUDY IN DESIGNING REAL - TIME SOFTWARE 

 To further illustrate the concepts of design, the Software Requirements 
Specifi cation given in the case study of Section  5.7  is used to provide a cor-
responding object - oriented design for the traffi c light control system. Some of 
the following fi gures have been referred to in the previous sections. This 
appendix serves to further explicate the object - oriented design process, many 
of its artifacts, and provides an instructive example of an object - oriented 
design document. 

   6.8.1    Introduction 

 Traffi c controllers currently in use comprise simple timers that follow a fi xed 
cycle to allow vehicle/pedestrian passage for a predetermined amount of time 
regardless of demand, actuated traffi c controllers that allow passage by means 
of vehicle/pedestrian detection, and adaptive traffi c controllers that determine 
traffi c conditions in real time by means of vehicle/pedestrian detection and 
respond accordingly in order to maintain the highest reasonable level of 
effi ciency under varying conditions. The traffi c controller described in this
design document is capable of operating in all three of these modes. 

6.8.1.1 Purpose   The purpose of this document is to provide a comprehen-
sive set of software design guidelines to be used in the development phase of 
the application. This specifi cation is intended for use by software developers.  

6.13.    Redraw the use - case diagram of the elevator control system in Figure 
 5.14  for a maximally simplifi ed single elevator, which is not a part of a 
multi - elevator bank.   

6.14.    Consider the following real - time systems:

(a)     Elevator control system for simple home elevators.  
(b)     Core monitoring system of a nuclear power plant.  
(c)     Distributed airline reservations system for global use.    

 What design approach would you favor with each of them and why?   

6.15.  Consider the following embedded systems:

(a)     Anti - lock braking system for buses.  
(b)     User interface of an evolving smartphone.  
(c)     Elevator monitoring system for domestic market.    

 What life cycle model would you prefer with each of them and why?       
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6.8.1.2 Scope   This software package is part of a control system for 
pedestrian/vehicular traffi c intersections that allows for (1) a fi xed cycle mode, 
(2) an actuated mode, (3) a fully adaptive automatic mode, (4) a locally con-
trolled manual mode, (5) a remotely controlled manual mode, and (6) an 
emergency preempt mode. In the fully adaptive automatic mode, a volume 
detection feature has been included so that the system is aware of changes 
in traffi c patterns. Pushbutton fi xtures are also included so the system can 
account for and respond to pedestrian traffi c. The cycle is controlled by an 
adaptive algorithm that uses data from many inputs to achieve maximum 
throughput and acceptable wait - times for both pedestrians and motorists. A 
preempting feature allows emergency vehicles to pass through the intersection 
in a safe and timely manner by altering the state of the signals and the cycle 
time. 

 This document follows the structure provided in the object - oriented SRS 
template found in IEEE Std 830 – 1998 and adopted in Section 5.7 rather than 
that defi ned in IEEE Std 1016 – 1998 due to the fact that, as acknowledged in 
the IEEE standard itself, IEEE Std 1016 is not suitable as a basis for repre-
senting object - oriented designs.  

6.8.1.3 Defi nitions and Acronyms   In addition to those given in Section 5.7, 
the following terms are defi ned here. 

 6.8.1.3.1    Accessor     A method used to access a private attribute of an 
object.  

 6.8.1.3.2    Active Object     An object that owns a thread and can initiate control 
activity. An instance of active class.  

 6.8.1.3.3    Collaboration     A group of objects and messages between them 
that interact to perform a specifi c function.  

 6.8.1.3.4    Mutator     A method used to modify a private attribute of an object.  

6.8.1.4 Documentation Standards 

 •      IEEE Std 830 – 1998  
 •      IEEE Std 1016 – 1998      

   6.8.2    Overall Description 

6.8.2.1 Intersection Overview   The intersection class to be controlled is 
illustrated in Figure  6.A1 . This fi gure has been repeated from Section 5.7.   

 The target class of intersection is described in detail in Section 5.7.  
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   6.8.2.2    Intersection Software Architecture     The intersection controller 
software architecture consists of the major components shown in Figure  6.A2 .     

 6.8.2.2.1    Real - Time Operating System ( RTOS )     The RTOS selected for the 
intersection controller is QNX Neutrino 6.2 for the iX86 family of processors.    

 6.8.2.2.2    Application Software     Application software is written in C +  +  and 
is compiled using QNX Photon tools and the GNU GCC 2.95 compiler.      

 6.8.2.2.3    Resource Managers     Resource managers are written in C +  +  using 
the QNX Driver Development Kit. Note that these have been developed by 
another team and so have not been covered in detail in this document.     

6.8.3    Design Decomposition 

 This section provides a detailed object - oriented decomposition of the intersec-
tion controller software design. The decomposition is based on the use cases 
and preliminary class model described in Section 5.7. 

 The decomposition makes use of the unifi ed modeling language (UML), 
supplemented by text descriptions, to defi ne the details of the design. This 
representation provides the design views described in IEEE Std 1016 within 
the framework of object - oriented design, as shown in Table  6.A1 .   

       Figure 6.A1.     Intersection topography.  
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Figure 6.A2.     Intersection controller software architecture.  

  TABLE 6.A1.     IEEE  Std 1016 Design Views 

   Design View     Represented By     SDD Reference  

  Decomposition view    Classes in class diagram    Figure  6.A10   
  Interrelationship view    Associations in class diagram    Figure  6.A10   
  Interface view    Collaboration diagrams    Figure  6.A4 through 

Figure 6.A9   
  Detailed view    Attribute and method details; 

behavioral diagrams  
  For each class  

6.8.3.1 Major Software Functions (Collaborations)   Based on the use case 
diagram provided in Section 5.7, the major functions of the intersection con-
troller have been grouped into UML collaborations as shown in Figure  6.A3 . 
Collaboration details are described in the following paragraphs.   

 6.8.3.1.1    Collaboration Messages     The tables below provide a listing of the 
messages (method calls and events) passed between objects in each collabora-
tion defi ned above. Messages with an  “ on    .   .   .  ”  prefi x correspond to events. 
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       Figure 6.A3.     Intersection controller collaborations.  
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6.8.3.1.1.1     t raffi c  s ignal  c ontrol ( T able  6.A2 )   

6.8.3.1.1.2     e mergency  p reempt ( Table  6.A3 )   

6.8.3.1.1.3     m anual  o verride ( T able  6.A4 )  

6.8.3.1.1.4     r emote  o verride ( T able  6.A5 ) 

6.8.3.1.1.5     c oordinated  c ontrol ( T able  6.A6 )         

6.8.3.1.1.6     m aintenance ( T able  6.A7 )  

 6.8.3.1.2    Collaboration Diagrams     The collaborations described above are 
depicted in Figures  6.A4 – 6.A9 .     

6.8.3.2 Class Model   Figure  6.A10  depicts the classes constituting the inter-
section control system software application. The diagram refl ects the prelimi-
nary class structure defi ned in Section 5.7, but with additional detail, and, in 
some cases, addition of classes and reallocation of responsibilities.   

 Classes corresponding to active objects (i.e., objects with their own thread 
of control) are shown in Figure  6.A10  with  bold  outlines. The active object 
instances are summarized in Table  6.A8 .    

6.8.3.3 Class Details 

 6.8.3.3.1    IntersectionController     The IntersectionController class is respon-
sible for managing the following functions:

   1.     Initialization.  
  2.     Instantiation of contained objects.  
  3.     Overall control of the intersection vehicle traffi c standards.  
  4.     Overall control of the intersection pedestrian traffi c standards.  
  5.     Collection and processing of traffi c history from all approaches.  
  6.     Adaptive control of intersection timings in response to traffi c fl ow.  
  7.     Actuated control of intersection in response to vehicle presence.  
  8.     Timed control of intersection in response to a fi xed scheme.  
  9.     Overall handling of pedestrian crossing requests.  

  10.     Handling of emergency vehicle pre - emption.  
  11.     Intersection control in response to manual override commands.  
  12.     Intersection control in response to remote override commands.  
  13.     Management of traffi c history and incident log databases.  
  14.     Handling of maintenance access requests from the maintenance port.  
  15.     Handling of maintenance access requests from the DOT WAN.    
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  TABLE 6.A3.    Intersection Controller — Emergency 
Preempt Collaboration Messages 

   ID     Message     From Object     To Object  

  1    onActivate()    Emergency Vehicle 
Transponder  

  m_EmergencyPreempt  

  1.1    onDeactivate()    Emergency Vehicle 
Transponder  

  m_EmergencyPreempt  

  2    onPreemptRequest()    m_EmergencyPreempt    m_Intersection 
Controller

  2.1    onPreemptCleared()    m_EmergencyPreempt    m_Intersection 
Controller

  TABLE 6.A4.    Intersection Controller — Manual Override Collaboration Messages 

   ID     Message     From Object     To Object  

  1    onActivate(OT)    Manual Control Panel    m_ManualOverride  
  1.1    onDeactivate()    Manual Control Panel    m_ManualOverride  
  2    onSetPhase()    Manual Control Panel    m_ManualOverride  
  3    onOverrideActivated(OT)    m_ManualOverride    m_Intersection 

Controller
  3.1    onOverrideDeactivated(OT)    m_ManualOverride    m_Intersection 

Controller
  4    setPhase()    m_ManualOverride    m_Intersection 

Controller

   OT: OverrideType   

  TABLE 6.A5.    Intersection Controller — Remote Override Collaboration Messages 

   ID     Message     From Object     To Object  

  1    onActivate(OT)    m_Network    m_RemoteOverride  
  1.1    onDeactivate(OT)    m_Network    m_RemoteOverride  
  2    onSetPhase()    m_Network    m_RemoteOverride  
  3    onOverrideActivated(OT)    m_RemoteOverride    m_Intersection Controller  
  3.1    onOverrideDeactivated(OT)    m_RemoteOverride    m_Intersection Controller  
  4    setPhase()    m_RemoteOverride    m_Intersection Controller  
  5    sendPacket(void * )    m_RemoteOverride    m_Network  

   OT: OverrideType   
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  TABLE 6.A6.    Intersection Controller — Coordinated 
Control Collaboration Messages 

   ID     Message     From Object     To Object  

  1    setMode(Mode)    m_RemoteOverride    m_Intersection Controller  
  2    setParameters()    m_RemoteOverride    m_Intersection Controller  
  3    getStatus()    m_RemoteOverride    m_Intersection Controller  
  4    onSetParameters

(Parameters* )
  m_Network    m_RemoteOverride  

  5    onGetStatus()    m_Network    m_RemoteOverride  
  6    sendPacket(void * )    m_RemoteOverride    m_Network  

  TABLE 6.A7.    Intersection Controller — Maintenance Collaboration Messages 

   ID     Message     From Object     To Object  

  1    getStatus()    m_Maintenance    m_Intersection Controller  
  2    goFirst()    m_Maintenance    m_IncidentLog  
  2.1    read()    m_Maintenance    m_IncidentLog  
  2.2    goNext()    m_Maintenance    m_IncidentLog  
  2.3    isEOF()    m_Maintenance    m_IncidentLog  
  3    fl ush()    m_Maintenance    m_IncidentLog  
  4    getStatus()    m_Network    m_Maintenance  
  5    readDatabase(int)    m_Network    m_Maintenance  
  6    sendPacket(void * )    m_Maintenance    m_Network  

 Figure  6.A11  illustrates the attributes, methods, and events of the 
IntersectionController class.   

6.8.3.3.1.1     i ntersection c ontroller  r elationships   

 •      Association link from class  Status
 •      Association link to class  PreEmpt
 •      Association link to class  Network
 •      Association link from class  PreEmpt
 •      Association link to class  Database
 •      Association link from class  Override
 •      Association link to class  Mode
 •      Association link from class  Maintenance
 •      Association link to class  Database
 •      Association link to class  Parameters
 •      Association link to class  RemoteOverride
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  TABLE 6.A8.    Active Objects 

   Level     Object Name  

  1.    m_IntersectionController  
  1.1.    m_IntersectionController::m_Approach[0]  
  1.1.1.    m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[0]  
  1.1.2.    m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[1]  
  1.1.3.    m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[0]  
  1.1.4.    m_IntersectionController::m_Approach[0]::m_PedestrianTraffi cStandard[1]  
  1.1.5.    m_IntersectionController::m_Approach[0]::m_PedestrianDetector[0]  
  1.1.6.    m_IntersectionController::m_Approach[0]::m_PedestrianDetector[1]  
  1.1.7.    m_IntersectionController::m_Approach[0]::m_VehicleDetector  
  1.2.    m_IntersectionController::m_Approach[1]  
  1.2.1.    m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[0]  
  1.2.2.    m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[1]  
  1.2.3.    m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[0]  
  1.2.4.    m_IntersectionController::m_Approach[1]::m_PedestrianTraffi cStandard[1]  
  1.2.5.    m_IntersectionController::m_Approach[1]::m_PedestrianDetector[0]  
  1.2.6.    m_IntersectionController::m_Approach[1]::m_PedestrianDetector[1]  
  1.2.7.    m_IntersectionController::m_Approach[1]::m_VehicleDetector  
  1.3.    m_IntersectionController::m_Approach[2]  
  1.3.1.    m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[0]  
  1.3.2.    m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[1]  
  1.3.3.    m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[0]  
  1.3.4.    m_IntersectionController::m_Approach[2]::m_PedestrianTraffi cStandard[1]  
  1.3.5.    m_IntersectionController::m_Approach[2]::m_PedestrianDetector[0]  
  1.3.6.    m_IntersectionController::m_Approach[2]::m_PedestrianDetector[1]  
  1.3.7.    m_IntersectionController::m_Approach[2]::m_VehicleDetector  
  1.4.    m_IntersectionController::m_Approach[3]  
  1.4.1.    m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[0]  
  1.4.2.    m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[1]  
  1.4.3.    m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[0]  
  1.4.4.    m_IntersectionController::m_Approach[3]::m_PedestrianTraffi cStandard[1]  
  1.4.5.    m_IntersectionController::m_Approach[3]::m_PedestrianDetector[0]  
  1.4.6.    m_IntersectionController::m_Approach[3]::m_PedestrianDetector[1]  
  1.4.7.    m_IntersectionController::m_Approach[3]::m_VehicleDetector  
  2.    m_IntersectionController::m_Network  
  3.    m_IntersectionController::m_EmergencyPreempt  
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       Figure 6.A11.     Intersection controller class.  

«singleton»

IntersectionController

- NUMAPPROACHES:  int = 4

- m_Priority:  int

- m_Mode:  Mode

- m_CurrentPhase:  Phase*

- m_ErrorHandler:  ErrorHandler*

- m_Approach:  Approach* [4 ordered]

- m_Network:  Network*

- m_EmergencyPreempt:  PreEmpt*

- m_Parameters:  Parameters*

- m_RemoteOverride:  RemoteOverride*

- m_ManualOverride:  Override*

- m_LocalTimeZone:  float

- m_IncidentLog:  Database*

- m_TrafficHistory:  Database*

-      m_Aspect:  Aspect*

- m_Count:  int*

- m_IntersectionStatus:  Status*

+     IntersectionController()

-* ~IntersectionController()

- init() : void

+ run() : void

+ setPhase() : int

+ setPhase(Phase) : int

+ getPhase() : Phase

+ checkPhase(Phase) : boolean

+ setCycle(float) : int

+ getCycle() : float

+ setSplits(Split*) : int

+ getSplits() : Split*

+ setMode(Mode) : int

+ getMode() : Mode

+ checkMode(Mode) : boolean

+ loadTimer(float) : int

+ onPreemptRequest() : int

+ onPreemptCleared() : int

+ onOverrideActivated(OverrideType) : int

+ onOverrideDeactivated(OverrideType) : int

+ toggleGreenSafetyRelay() : int

+ checkGreenSafetyRelay() : boolean

+ calculateParameters() : int

+ calculateTime(float, Split*) : float

+ setParameters() : int

+ getParameters() : Parameters*

+ getStatus() : Status*

+ onPedestrianRequest() : void

+ onVehicleEntry(int) : void
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 •      Association link to class  Phase
 •      Association link to class  ErrorHandler
 •      Association link to class  Approach

6.8.3.3.1.2     i ntersection c ontroller  a ttributes ( T able  6.A9 )   

6.8.3.3.1.3     i ntersection c ontroller  m ethods ( T able  6.A10 )   

6.8.3.3.1.4     i ntersection c ontroller  b ehavioral  d etails ( F igs.  6.A12 – 6.A15 )

 6.8.3.3.2    Approach     This is the programmatic representation of an individ-
ual entrance into the intersection.   

 The Approach class is responsible for managing the following functions:

   1.     Instantiation of contained objects.  
  2.     Control of the traffi c standards associated with the approach.  
  3.     Handling of pedestrian crossing events.  
  4.     Handling of loop detector entry and exit events.  
  5.     Tracking the vehicle count.    

 Figure  6.A16  illustrates the attributes, methods, and events of the Approach 
class.   

6.8.3.3.2.1     a spect  r elationships   

 •      Association link to class  IntersectionStandard
 •      Association link to class  Aspect
 •      Association link to class  IntersectionStandard
 •      Association link to class  VehicleDetector
 •      Association link to class  OnOffSensor
 •      Association link from class  IntersectionController

6.8.3.3.2.2     a pproach  a ttributes ( T able  6.A11 )   

6.8.3.3.2.3     a pproach  m ethods ( T able  6.A12 )   

 6.8.3.3.3    IntersectionStandard Class (Pedestrian Traffi c and Vehicle Traffi c 
Standard)     This is the programmatic representation of a traffi c control signal. 

 The IntersectionStandard class is responsible for managing the following 
functions:

   1.     Displaying the commanded aspect from the Intersection Controller.  
  2.     Determining the aspect actually displayed.  
  3.     Checking for discrepancies between commanded and displayed aspects.  
  4.     Raising an error event if there is an aspect discrepancy.    
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  TABLE 6.A9.    IntersectionController Class — Attributes 

   Attribute     Type     Notes  

  NUMAPPROACHES    private:  int   Constant defi ning the number of 
approaches in the intersection.  

  m_Priority    private:  int   Indicates the relative priority of the 
approaches. Values are as follows:  
     1.     E - W/W - E approach pair has 

priority    =    1.    
  2.     N - S/S - N approach pair has 

priority    =    2.  
  3.     Both approach pairs have equal 

priority    =    3.     
  This attribute is used to determine 

which of the three default states 
should be set when the intersection 
initializes or is set to operate in 
Default mode either by an override 
command or by an error condition.  

  m_Mode    private:  Mode   The object m_Mode, an instance of the 
Mode enumeration class, indicates 
the method currently being used to 
control the intersection. Valid 
values for this attribute are shown 
in the class diagram.  

  The setPhase( ) method checks for 
changes in this value at the 
beginning of each cycle and 
changes the control scheme if 
required. Changes to Preempt, 
Manual, or Remote modes are 
handled by specifi c events; these 
events cause the control scheme to 
change immediately rather than at 
the beginning of the next cycle.  

  m_CurrentPhase    private:  Phase   This is an enumeration of class Phase 
that also serves as an index into 
the m_Split array (since C ++
automatically casts enumerated 
types as arrays where required) 
denoting which portion of the cycle 
is currently active.  

  The Default phase is used during 
initialization and in response to 
override commands and critical 
system faults. Phases GG_GG_
RR_RR (1) to RR_RR_RR_RR_8 
(8) are used in normal operation.  

(Continued)
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   Attribute     Type     Notes  

  m_ErrorHandler    private: 
ErrorHandler

  Pointer to the m_ErrorHandler 
object.  

  m_Approach    private:  Approach   This is an array of type 
Approach and a length of 
NUMAPPROACHES. This array 
represents each of the four 
entrances to an intersection. See 
the Approach class for more 
details.  

  The m_Approach array is declared as 
follows:  

  Approach m_Approach 
[NUMAPPROACHES]  

  Where NUMAPPROACHES is a 
compile - time constant.  

  m_Network    private:  Network   This object is the instance of the 
Network class that provides an 
abstraction layer between the 
network resource manager and the 
m_IntersectionController object.  

  m_EmergencyPreempt   private:  PreEmpt   This is a pointer to the instance of 
the PreEmpt class that provides an 
abstraction layer between the 
emergency vehicle transponder 
resource manager and the m_
IntersectionController object.  

  m_Parameters    private: 
Parameters

  Structure holding the intersection 
parameters, which are the cycle 
time and the splits array.  

  m_RemoteOverride    private: 
RemoteOverride

  This is the instance of the 
RemoteOverride class representing 
the Remote Software console. This 
object abstracts requests made 
from the off - site software control 
panel from the main application.  

  m_ManualOverride    private:  Override   This is the instance of the Override 
class representing the Manual 
Override console. The object serves 
as a broker, abstracting the main 
application from any requests 
made from the Manual Override 
console, which is located at the site 
of the traffi c control system.  

TABLE 6.A9. (Continued)
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   Attribute     Type     Notes  

  m_LocalTimeZone    private:  fl oat   Given as an offset in hours to UTC 
(GMT).  

  m_Traffi cHistory    private:  Database   This is the instance of the Database 
class that is used to log statistical 
data regarding traffi c levels at the 
intersection being controlled. The 
data is stored in the system ’ s fl ash 
memory store. See Section  5.7  for 
more information about the fl ash 
memory included in the system.  

  m_IncidentLog    private:  Database   This object, which is another instance 
of the Database class, logs 
abnormal events observed by the 
system on the site of the 
intersection. Data recorded by this 
object will be stored in the 
system ’ s fl ash memory store. See 
Section  5.7  for more information 
about the fl ash memory included in 
the system.  

  m_Aspect    private:  Aspect   Detected Aspect from each 
m_Approach object; Aspect [4].  

  m_Count    private:  int   Vehicle count from each 
m_Approach object; int [4].  

  m_IntersectionStatus    private:  Status

TABLE 6.A9. (Continued)

 Figure  6.A17  illustrates the attributes, methods, and events of the 
IntersectionStandard class.   

6.8.3.3.3.1     i ntersection s tandard  r elationships   

 •      Association link from class  Approach
 •      Association link to class  Indication
 •      Association link from class  Approach

6.8.3.3.3.2     i ntersection s tandard  a ttributes ( T able  6.A13 )   

6.8.3.3.3.3     i ntersection s tandard  m ethods ( T able  6.A14 )   

6.8.3.3.3.4     c orrespondence between  i ndications and  a ctual  d isplayed 
 s ignals     Since this class is used for both the Vehicle and Pedestrian Traffi c 
Standard objects, it is necessary to defi ne the relationship between the attri-
bute values and the actual displayed signal; this is shown in Table  6.A15 .     
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  TABLE 6.A10.    Intersection Controller Class — Methods 

   Method     Type     Notes  

  IntersectionController ()    public:    Constructor.  
∼ IntersectionController ()   private 

abstract:  
  Destructor.  

  init ()    private static: 
void

  This is the fi rst code unit executed when 
the equipment becomes active. This 
function performs the following basic 
tasks:  

  Tests memory and hardware.  
  Gathers all environmental information 

(initial mode, priority, approach 
parameters).  

  Sets all the components of the intersection 
to their default states.  

  Starts the fi rst cycle in normal mode.  
  run ()    public static: 

void
  setPhase ()    public:  int   Moves the intersection to the next phase in 

the cycle.  
  This method is invoked in response to the 

following events:  
  Phase timer reaches 0 (in Actuated, Fixed, 

and Adaptive modes).  
  Remote Override  onSetPhase(void)  event 

fi red (in Remote mode).  
  Manual Override  onSetPhase(void)  event 

fi red (in Manual mode).  
  The following tasks are performed by this 

method:  
  Changes the  m_CurrentPhase  attribute 

according to the assignment operation 
m_CurrentPhase     =     (m_CurrentPhase++ ) 
mod 9 .  

  Changes the state of the Green Signal 
Safety Relay as required by the new 
value of m_CurrentPhase .  

  Checks the state of the Green Signal 
Safety Relay and raises an error if there 
is a discrepancy.  

  Manipulates the attributes of the 
m_Approach  objects as required by the 
new Current Phase.  

  Calculates the phase time as 
calculateTime(m_Cycle, m_Splits
[m_CurrentPhase]) .  
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TABLE 6.A10. (Continued)

   Method     Type     Notes  

  Loads the Phase Time Remaining timer 
with the calculated phase time by 
invoking loadTimer(calculateTime
(m_Cycle, m_Splits[m_CurrentPhase])) .  

  Checks that the phase setting is displayed 
properly by the approaches and raises 
an error if there is a discrepancy.  

  setPhase ( Phase )    public:  int   param: phase [Phase  -  in]  
  Moves the intersection to the specifi ed 

phase.  
  getPhase ()    public:  Phase   Determines the displayed intersection 

phase by querying all Aspect objects and 
determining their aspects. Used by the 
checkPhase  method  

  checkPhase ( Phase )    public: 
boolean

  param: phase [Phase  -  in]  
  Returns True if the displayed phase agrees 

with the commanded phase (passed as a 
parameter), False otherwise.  

  setCycle ( fl oat )    public:  int   param: time [fl oat  -  in]  
  Mutator for the cycle time attribute.  

  getCycle ()    public:  fl oat   Accessor for the cycle time attribute.  
  setSplits ( Split *  )    public:  int   param: splits [Split *   -  inout]  

  Mutator for the splits attribute.  
  getSplits ()    public:  Split *   Accessor for the splits attribute.  
  setMode ( Mode )    public:  int   param: mode [Mode  -  in]  

  Mutator for the attribute m_Mode.  
  getMode ()    public:  Mode   Accessor for the attribute m_Mode.  
  checkMode ( Mode )    public: 

boolean
  param: mode [Mode  -  in]  

  loadTimer ( fl oat )    public:  int   param: time [fl oat  -  in]  
  Loads the phase timer (utilizing OS timer 

services) with the phase time, specifi ed 
as a parameter.  

  onPreemptRequest ()    public:  int   Emergency preempt request event from 
the m_EmergencyPreempt object. This 
method performs the following tasks:  
 1.     Saves the current value of  m_Mode .    
 2.     Sets the mode to Preempt. 
 3.     Sets the intersection phase to allow 

the emergency vehicle to pass safely 
under traffi c signal control. 

(Continued)
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   Method     Type     Notes  

  onPreemptCleared ()    public:  int   Event that terminates preempted 
operation and returns the intersection to 
normal operating mode. This method 
performs the following tasks:  
    1.     Restores the previous mode.    
    2.     Sets the intersection to the default state.    
    3.     Returns the intersection to normal 

operation.    
  onOverrideActivated 

(OverrideType )  
  public:  int   param: type [OverrideType  -  in]  

  Overrides activation event from either the 
m_ManualOverride  or  m_
RemoteOverride  object. The parameter 
type indicates which override is involved. 
This method performs the following tasks: 
    1.     Saves the current value of  m_Mode .    
    2.     Sets the mode to Manual or Remote, 

depending on the value of parameter 
type. 

    3.     Sets the intersection to the Default 
phase.    

  onOverrideDeactivated 
(OverrideType )  

  public:  int   param: type [OverrideType  -  in]  
  Override cancellation event from either 

the m_ManualOverride  or  m_
RemoteOverride  object. The parameter 
type indicates which override is involved. 
This method performs the following tasks: 
     1.     Restore the previous value of 

m_Mode .  
  2.     Set the intersection to the Default 

phase.  
  3.     Returns the intersection to normal 

operation.     
  toggleGreenSafetyRelay ()   public:  int   Toggles the state of the Green Safety 

Relay.  
  checkGreenSafetyRelay ()    public: 

boolean
  Checks that the Green Safety Relay is in 

the proper state for the active 
intersection phase.  

  calculateParameters ()    public:  int   Adaptive algorithm for determining 
intersection timing parameters for the 
next cycle.  

  calculateTime ( fl oat, Split *  )    public:  fl oat   param: cycle [fl oat  -  in]  
  param: split [Split *   -  in]  
  Used to calculate the actual phase time 

from the values of m_Parameters.
cycleTime  and  m_Parameters.splits .  

TABLE 6.A10. (Continued)
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Figure 6.A12.     Black box representation of adaptive algorithm.  

   Method     Type     Notes  

  setParameters ()    public:  int   Mutator for the intersection timing 
parameters.  

  getParameters ()    public: 
Parameters * 

  Accessor for the intersection timing 
parameters.  

  getStatus ()    public:  Status *   Method used to access the overall status of 
the intersection.  

  onPedestrianRequest ()    public:  void   Event triggered by a valid pedestrian 
crossing request.  

  onVehicleEntry ( int )    public:  void   param: approach [int  -  in]  
  Event triggered by a vehicle entering the 

vehicle detection loop.  

TABLE 6.A10. (Continued)

 6.8.3.3.4    On O ffSensor     This class represents the pedestrian crossing request 
pushbuttons located on opposite sides of the crosswalk associated with an 
approach. 

 Objects of the OnOffSensor class are responsible for managing the follow-
ing functions:

   1.     Filtering of pushbutton service requests.  
  2.     Generation of Pedestrian Service Request event.    

 Figure  6.A18  below illustrates the attributes, methods, and events of the 
OnOffSensor class.   

6.8.3.3.4.1     o n o ff s ensor  r elationships   

 •      Association link from class  Approach
 •      Generalization link from class  VehicleDetector

6.8.3.3.4.2     o n o ff s ensor  a ttributes ( T able  6.A16 )   

6.8.3.3.4.3     o n o ff s ensor  m ethods ( T able  6.A17 )   

6.8.3.3.4.4     o n o ff s ensor  b ehavioral  d etails ( F igs.  6.A19  and  6.A20 )   
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       Figure 6.A13.     Traffi c signal control sequence diagram.  

{While Running}

«singleton»

m_IntersectionController 

:IntersectionController

m_Approach[i] 

:Approach

m_PedestrianTrafficStandard[j] 

:IntersectionStandard

m_VehicleTrafficStandard[k] 

:IntersectionStandard

Name:IntersectionController- Traffic Signal Control

Author:Team 2

Version:1.0

Created:08-Dec-2002 14:25:38

Updated:09-Dec-2002 13:54:53

{t0 = 0}

init()

Approach()

IntersectionStandard()

IntersectionStandard()

m_Status:= setPhase(phase)

init complete

{t0 <= 5 s}
run()

{t1 = 0}
m_Status:= setPhase()

setAspect(aspect)

setIndication(indication)

{t1 <= 100 ms}

*m_CurrentIndication = indication

setIndication(indication)

{t1 <= 100 ms}

m_CurrentIndication = indication

{t1 <= 50 ms}m_Status:= return value

loadTimer(time)

{t1 <= 100 ms}

[m_CurrentPhase == 4 || m_CurrentPhase == 8]:toggleGreenSafetyRelay()

checkPhase(phase)

{t1 <= 120 ms}
getAspect()

m_Indication:= getIndication()

m_Indication:= getIndication()

{t1 <= 220 ms}

m_Aspect:= return value

{t1 <= 230 ms}
m_Status:= return value

{t1 <= 240 ms}

m_Status:= checkGreenSafetyRelay()

{t1 <= 300 ms}

[m_CurrentPhase == 8]:calculateParameters()

*[While Phase Timer > 0]:idle

(Keep-Alive Pseudo-Message)

(Keep-Alive Pseudo-Message)

(Keep-Alive Pseudo-Message)
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       Figure 6.A16.     Approach class.  

Approach

{4}

- m_CurrentAspect:  Aspect

- m_PedestrianDetector:  OnOffSensor* [2 ordered]

- m_VehicleDetector:  VehicleDetector*

- m_VehicleTrafficStandard:  IntersectionStandard* [2 ordered]

- m_PedestrianTrafficStandard:  IntersectionStandard* [2 ordered]

- m_Indication:  Indication* [4 ordered]

- m_Count:  int

- m_SpeedLimit:  int

+ Approach()

-* ~Approach()

+ setAspect(Aspect) : void

+ getAspect() : Aspect*

+ getCount() : int*

+ bumpCount(void) : void

+ clearCount(void) : void

+ onPedestrianRequest() : void

+ onEntryStateSet(void) : void

+ onEntryStateCleared(void) : void

   6.8.3.3.5    VehicleDetector     This class represents the proximity detection loop 
located near the stop line associated with an approach. The class is based on 
the OnOffSensor class.   

 The Vehicle Presence Detector object is responsible for managing the fol-
lowing functions:

   1.     Filtering of vehicle service requests (ACTUATED mode).  
  2.     Generation of Vehicle Service Request event (ACTUATED mode).  
  3.     Maintenance of the vehicle count statistic (FIXED, ACTUATED and 

ADAPTIVE mode).    

 Figure  6.A21  illustrates the attributes, methods, and events of the 
VehicleDetector class.   

   6.8.3.3.5.1     v ehicle  d etector  r elationships    

     •      Association link from class  Approach   
   •      Generalization link to class  OnOffSensor      

   6.8.3.3.5.2     v ehicle d etector  a ttributes     Inherited from superclass.  

   6.8.3.3.5.3     v ehicle d etector  m ethods     Inherited from superclass. Overridden 
methods are described in Table  6.A18 .    
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  TABLE 6.A12.    Approach Class — Methods 

   Method     Type     Notes  

  Approach ()    public:    Constructor.  
   ∼ Approach ()    private abstract:    Destructor.  
  setAspect ( Aspect )    public:  void     param: aspect [Aspect  -  in]  

  Mutator for attribute  m_
CurrentAspect .  

  getAspect ()    public:  Aspect *      Accessor used to fetch the aspect 
actually being displayed by the 
set of approach traffi c standards.  

  getCount ()    public:  int *      Accessor for the  m_Count  attribute.  
  bumpCount ( void )    public:  void     Method called to increment the 

attribute  m_Count  by 1.  
  clearCount ( void )    public:  void     Method called to set the attribute 

 m_Count  to 0.  
  onPedestrianRequest ()    public:  void     Event triggered by a valid 

pedestrian crossing request from 
one of the pedestrian request 
pushbuttons associated with the 
approach.  

  onEntryStateSet ( void )    public:  void     Event triggered when the vehicle 
detector attribute  m_State  is set.  

  onEntryStateCleared ( void )    public:  void     Event triggered when the vehicle 
detector attribute  m_State  is 
cleared.  

       Figure 6.A17.     IntersectionStandard class.  

IntersectionStandard

- m_Stop:  boolean

- m_Caution:  boolean

- m_Go:  boolean

- m_CurrentIndication:  Indication*

+ IntersectionStandard()

-* ~IntersectionStandard()

+ setIndication(Indication) : void

+ getIndication() : Indication
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  TABLE 6.A13.    Intersection Standard Class — Attributes 

   Attribute     Type     Notes  

  m_Stop    private:  boolean   A Boolean value indicating that the 
signal is commanded to show a 
Stop signal (corresponding to an 
Indication value of R).  

  m_Caution    private:  boolean   A Boolean value indicating that the 
signal is commanded to show a 
Caution signal (corresponding to 
an Indication value of Y).  

  m_Go    private:  boolean   A Boolean value indicating that the 
signal is commanded to show a Go 
signal (corresponding to an 
Indication value of G).  

  m_CurrentIndication    private:  Indication   An instance of the Indication 
enumerated class indicating the 
current traffi c signal to be 
displayed.  

  TABLE 6.A14.    Intersection Standard Class — Methods 

   Method     Type     Notes  

  IntersectionStandard ()    public:    Constructor.  
∼ IntersectionStandard ()    private abstract:    Destructor.  
  setIndication ( Indication )    public:  void   param: indication [Indication  -  in]  

  Mutator for the m_CurrentIndication 
attribute. The method performs the 
following:  
     1.     Check whether the commanded 

aspect is valid. If not, raise an 
error.  

  2.     If the commanded aspect is 
valid, display it.     

  getIndication ()    public: 
Indication

  Accessor for determining the value of 
the indication actually being 
displayed.  

  TABLE 6.A15.    Attribute and Signal Correspondence 

   m_CurrerntIndication     m_Stop     m_Caution     m_Go     Vehicle 
Standard

   Pedestrian 
Standard

  R    True    False    False    Red    DON ’ T WALK  
  Y    False    True    False    Amber    Flashing DON ’ T 

WALK  
  G    False    False    True    Green    WALK  
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       Figure 6.A18.     OnOffSensor class.  

OnOffSensor

- m_State:  boolean

- m_IgnoreState:  boolean

+ OnOffSensor()

+* ~OnOffSensor()

+ setState() : void

+ resetState() : void

+ ignoreState() : void

+ watchState() : void

  TABLE 6.A16.    On O ff Sensor Class — Attributes 

   Attribute     Type     Notes  

  m_State    private:  boolean     Indicates whether or not a valid pedestrian 
service request has been made since the last 
time the value was reset.  

  m_IgnoreState    private:  boolean     A value that indicates whether subsequent 
pedestrian service requests should raise an 
event or simply be ignored.  

  TABLE 6.A17.    On O ff Sensor Class — Methods 

   Method     Type     Notes  

  OnOffSensor ()    public:    Constructor.  
   ∼ OnOffSensor ()    public abstract:    Destructor.  
  setState ()    public:  void     Sets the object ’ s m_State attribute to True 

indicating that a pedestrian service 
request is pending.  

  resetState ()    public:  void     Sets the object ’ s state attribute to False to 
indicate that any previous pedestrian 
service requests have been completed.  

  ignoreState ()    public:  void     Sets the object ’ s m_IgnoreState attribute to 
True indicating that subsequent 
pedestrian requests are to be ignored.  

  watchState ()    public:  void     Sets the object ’ s m_IgnoreState attribute to 
False indicating that subsequent 
pedestrian requests are to be processed.  
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       Figure 6.A20.     OnOffSensor statechart.  

Pedestrian Detector- Operation

Processing Request

Waiting for Pedestrian Request

Waiting for 

Positive-Going 

Transition

Waiting for 

Negative-Going 

Transition

Receiving Request

Setting Ignore State

+ Do Action / m_IgnoreState = True

Setting Request State

+ Do Action / m_State = True

Clearing Request State

+ Do Action / m_State = False

m_Approach[i] 

:Approach

Clearing Ignore State

+ Do Action / m_IgnoreState = False

No Transition No Transition

/watchState()

[m_IgnoreState == False] /setState()

/ignoreState()

/onPedestrianRequest()

/resetState()

Positive-Going Transition

Negative-Going Transition

[m_IgnoreState == True]
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       Figure 6.A21.     VehicleDetector class.  

OnOffSensor

- m_State:  boolean

- m_IgnoreState:  boolean

+ OnOffSensor()

+*~OnOffSensor() 

+ setState() : void

+ resetState() : void

+ ignoreState() : void

+ watchState() : void

VehicleDetector

+  VehicleDetector()

-*~VehicleDetector() 

  TABLE 6.A18.    Vehicle D etector Class — Attributes 

   Method     Type     Notes  

  VehicleDetector ()    public:    Constructor.  
   ∼ VehicleDetector ()    private abstract:    Destructor.  
  setState ()    public:  void     Sets the  m_State  attribute and 

triggers the  onVehicleEntry  event.  
  resetState ()    public:  void     Clears the  m_State  attribute and 

triggers the  onVehicleExit  event.  

   6.8.3.3.5.4     v ehicle d etector  b ehavioral  d etails ( F igs.  6.A22  and  6.A23 )        

   6.8.3.3.6    Override     This class represents the set of pushbuttons on the 
manual override console (Fig.  6.A24 ).   

   6.8.3.3.6.1     o verride  r elationships    

     •      Dependency link to class  OverrideType   
   •      Association link to class  IntersectionController   
   •      Generalization link from class  RemoteOverride      
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       Figure 6.A23.     VehicleDetector class statechart.  

Intersection Controller- Operating

m_VehicleDetector[i]

Blocked

Vehicle Over Loop

+ Do Action / setState(void)

+ Do Action / m_Approach[i].onEntryStateSet(void)

Vehicle Has Passed Loop

+ Do Action / resetState(void)

+ Do Action / m_Approach[i].onEntryStateCleared(void)

m_Approach[i]

Updating Count

+ Do Action / m_Count++

Blocked

Triggering Approach

+ Do Action / m_IntersectionController.onVehicleEntry(int)

Clearing Count

+ Do Action / m_Count = 0

Name:IntersectionController- Vehicle Detector

Author:Team 2

Version:1.0

Created:06-Dec-2002 15:21:47

Updated:07-Dec-2002 21:46:52

Vehicle Entry

Vehicle Exit

onEntryStateCleared

onEntryStateSet

clearCount()

   6.8.3.3.6.2     o verride  a ttributes ( T able  6.A19 )         

   6.8.3.3.6.3     o verride  m ethods ( T able  6.A20 )         

   6.8.3.3.6.4     o verride  b ehavioral  d etails ( F ig.  6.A25 )        

   6.8.3.3.7    RemoteOverride     This class represents the commands available on 
the Remote Software console. Additionally, the class provides an interface for 
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       Figure 6.A24.     Override class.  

Override

- m_IntersectionController:  IntersectionController*

+ Override()

-*~Override() 

+ onActivate(OverrideType) : int

+ onDeactivate(OverrideType) : int

+ onSetPhase() : int

  TABLE 6.A19.    Override Class — Attributes 

   Attribute     Type     Notes  

  m_
IntersectionController  

  private: 
 IntersectionController   

  Pointer to the 
m_IntersectionContoller 
object.  

  TABLE 6.A20.    Override Class — Methods 

   Method     Type     Notes  

  Override ()    public:    Constructor.  
   ∼ Override ()    private abstract:    Destructor.  
  onActivate ( OverrideType )    public:  int     param: type [OverrideType  -  in]  

  Event triggered by receipt of an 
activation command from the 
local override console.  

  onDeactivate ( OverrideType )    public:  int     param: type [OverrideType  -  in]  
  Event triggered by receipt of a 

deactivation command from 
the local override console.  

  onSetPhase ()    public:  int     Event triggered by receipt of an 
advance phase command from 
the local override console.  

remote access to and update of intersection traffi c data and cycle parameters 
for coordinated intersection control (option).   

 The RemoteOverride class is responsible for managing the following 
functions:

   1.     Triggering the appropriate mode change.  
  2.     Generation and handling of events required to control intersection 

phase.  
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       Figure 6.A25.     Override class sequence diagram.  

m_ManualOverride 

:Override

«singleton»

m_IntersectionController 

:IntersectionController

«resource»

:Manual 

Control Panel

Name:IntersectionController- Manual Override

Author:Team 2

Version:1.0

Created:04-Dec-2002 08:30:25

Updated:05-Dec-2002 18:52:22

{t0 = 0}
dispatchCommand(command = Activate Manual Override)

{t0 <= 10 ms}
onActivate(type)

{t0 <= 20 ms}
onOverrideActivated(type)

m_PreviousMode = m_Mode

m_Mode =

Manual

setPhase(phase = Default)

checkPhase(phase)

{t0 <= 220 ms}
m_Status:= 0 (OK)

{t0 <= 250 ms}

m_Status:= 0 (OK)

{t1 = 0}
*[While Override Active]:dispatchCommand(command = Advance Phase)

{t1 <= 10 ms} *[While Override Active]:onSetPhase()

{t1 <= 20 ms}
*[While Override Active]:setPhase()

setPhase()

checkPhase(phase)

{t1 <= 220 ms}
*[While Override Active]: m_Status:= 0 (OK)

{t1 <= 250 ms}
*[While Override Active]: m_Status:= 0 (OK)

{t2 = 0} dispatchCommand(command = Deactivate Manual Override)

{t2 <= 10 ms}
onDeactivate(type)

{t2 <= 20 ms}
onOverrideDeactivated(type)

m_Mode = m_PreviousMode

setPhase(phase)

checkPhase(phase)

{t2 <= 220 ms}
m_Status:= 0 (OK)

{t2 <= 250 ms}m_Status:= 0 (OK)
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  3.     Acting as a substitute for the Calculate Cycle Parameters method of the 
Intersection Control object (in coordinated mode, not covered by this 
specifi cation).    

 Figure  6.A26  illustrates the attributes, methods, and events of the Remote 
Override class.   

   6.8.3.3.7.1     r emote  o verride  r elationships    

     •      Dependency link to class  Status   
   •      Generalization link to class  Override   
   •      Association link from class  IntersectionController   
   •      Association link to class  Network      

   6.8.3.3.7.2     r emote o verride  a ttributes     In addition to those inherited from 
the superclass Override, RemoteOverride attributes are as follows  (T able  
6.A21 ):    

       Figure 6.A26.     Remote override class.  

Override

- m_IntersectionController:  IntersectionController*

+ Override()

-* ~Override()

+ onActivate(OverrideType) : int

+ onDeactivate(OverrideType) : int

+ onSetPhase() : int

RemoteOverride

- m_Network:  Network*

+ RemoteOverride()

-* ~RemoteOverride()

+ onSetParameters(Parameters*) : int

+ onGetStatus() : Status*
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  TABLE 6.A21.    Remote O verride Class — Attributes 

   Attribute     Type     Notes  

  m_Network    private:  Network   Pointer to the m_Network object.  

  TABLE 6.A22.    Remote O verride Class — Methods 

   Method     Type     Notes  

  RemoteOverride ()    public:    Constructor.  
∼ RemoteOverride ()    private abstract:    Destructor.  
  onSetParameters ( Parameters *  )    public:  int   param: parameters [Parameters *  

 -  in]  
  Event triggered under 

coordinated control; used to 
set the intersection timing 
parameters under remote control.  

  Completes within 100   ms.  
  onGetStatus ()    public:  Status *   Event triggered under 

coordinated control; used to 
get the intersection timing 
parameters under remote control.  

  Completes within 100   ms.  

6.8.3.3.7.3     r emote o verride  m ethods     In addition to those inherited from 
the superclass Override, RemoteOverride methods are as follows  (T able  
6.A22 ):    

6.8.3.3.7.4     r emote o verride  b ehavioral  d etails     Behavior of the 
RemoteOverride class is identical to that of the Override class for methods 
inherited from the superclass.   

 6.8.3.3.8    PreEmpt     This class manages the wireless transponder interface to 
authorized emergency vehicles and accesses the m_IntersectionControl object 
in order to display the correct traffi c signals, allowing the emergency vehicle 
priority access to the intersection. 

 The PreEmpt class is responsible for managing the following functions:

   1.     Triggering the appropriate mode change.  
  2.     Reception of emergency vehicle preemption requests.  
  3.     Decryption and validation of emergency vehicle preemption requests.  
  4.     Generation and handling of events required to control intersection 

phase.    

 Figure  6.A27  illustrates the attributes, methods, and events of the PreEmpt 
class.   
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       Figure 6.A27.     PreEmpt class.  

«singleton»

PreEmpt

- m_IntersectionController:  IntersectionController*

+ PreEmpt()

-* ~PreEmpt()

+ onActivate() : int

+ onDeactivate() : int

+ onTimeout() : void

  TABLE 6.A23.    Pre E mpt Class — Attributes 

   Attribute     Type     Notes  

  m_IntersectionController    private: 
 IntersectionController   

  Pointer to the m_Intersection 
controller object.  

  TABLE 6.A24.    Pre E mpt Class — Methods 

   Method     Type     Notes  

  PreEmpt ()    public:    Constructor.  
   ∼ PreEmpt ()    private abstract:    Destructor.  
  onActivate ()    public:  int     Event triggered by receipt of an activate 

signal from the emergency vehicle 
transponder.  

  onDeactivate ()    public:  int     Event triggered by receipt of a deactivate 
signal from the emergency vehicle 
transponder.  

  onTimeout ()    public:  void     Event triggered if a deactivate signal is 
not received after the timeout interval 
has elapsed.  

   6.8.3.3.8.1     p re e mpt  r elationships    

     •      Association link from class  IntersectionController   
   •      Association link to class  IntersectionController      

   6.8.3.3.8.2     p re e mpt  a ttributes ( T able  6.A23 )         

   6.8.3.3.8.3     p re e mpt  m ethods ( T able  6.A24 )         

   6.8.3.3.8.4     p re e mpt  b ehavioral  details  ( F ig.  6.A28 )        

   6.8.3.3.9    Network     This class manages communication via the Ethernet port.   
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       Figure 6.A28.     PreEmpt sequence diagram.  

m_PreEmpt 

:PreEmpt

«singleton»

m_IntersectionController 

:IntersectionController

Name:IntersectionController- Emergency Preempt

Author:Team 2

Version:1.0

Created:09-Dec-2002 13:39:37

Updated:09-Dec-2002 13:45:09

{t1 = 0}
onPreemptRequest()

m_PreviousMode = m_Mode

m_Mode = Preempt

{t1 <= 100 ms}
m_Status:= 0

{t2 = 0}
onPreemptCleared()

m_Mode = m_PreviousMode

setPhase(phase = Default)

{t2 <= 100 ms}
m_Status:= 0

       Figure 6.A29.     Network class.  

«singleton»

Network

+ Network()

-* ~Network()

+ receivePacket() : void

+ sendPacket(void*) : int

+ dispatchCommand(int) : void

 Figure  6.A29  illustrates the attributes, methods, and events of the Network 
Interface class.   

   6.8.3.3.9.1     n etwork  r elationships    

     •      Association link from class  IntersectionController   
   •      Association link from class  Maintenance   
   •      Association link from class  RemoteOverride      

   6.8.3.3.9.2     n etwork  m ethods ( T able  6.A25 )          
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  TABLE 6.A25.    Network Class — Methods 

   Method     Type     Notes  

  Network ()    public:    Constructor.  
   ∼ Network ()    private abstract:    Destructor.  
  receivePacket ()    public:  void     Method responsible for receiving 

network SNMP packets.  
  sendPacket ( void *  )    public:  int     param: packet [void *   -  in]  

  Method responsible for sending 
network SNMP packets.  

  dispatchCommand ( int )    public:  void     param: command [int  -  in]  
  Interprets the received SNMP 

packet and invokes the 
appropriate method in response.  

       Figure 6.A30.     Maintenance class.  

«singleton»

Maintenance

- m_Network:  Network*

- m_IntersectionController:  IntersectionController*

+ Maintenance()

-* ~Maintenance()

+ readDatabase(int) : void

+ getStatus() : Phase

   6.8.3.3.10    Maintenance     This class provides a maintenance interface to the 
intersection controller, accessible either from the local maintenance Ethernet 
port or the DOT WAN. 

 The Maintenance class is responsible for managing the following 
functions:

   1.     Retrieval of database information.  
  2.     Retrieval of current intersection controller status. (Fig.  6.A30 )      

   6.8.3.3.10.1     m aintenance  r elationships    

     •      Association link to class  IntersectionController   
   •      Association link to class  Network      

   6.8.3.3.10.2     m aintenance  a ttributes ( T able  6.A26 )         

   6.8.3.3.10.3     m aintenance  m ethods ( T able  6.A27 )          
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  TABLE 6.A26.    Maintenance Class — Attributes 

   Attribute     Type     Notes  

  m_Network    private:  Network     Pointer to the  m_Network
object.  

  m_IntersectionController    private: 
IntersectionController

  Pointer to the 
m_IntersectionController
object.  

  TABLE 6.A27.    Maintenance Class — Methods 

   Method     Type     Notes  

  Maintenance ()    public:    Constructor.  
∼ Maintenance ()    private abstract:    Destructor.  
  readDatabase ( int )    public:  void   param: database [int  -  in]  

  Method to read the contents of the database 
specifi ed by the parameter  database .  

  getStatus ()    public:  Phase   Method to get the intersection status.  

 6.8.3.3.11    Database (Traffi c History; Incident Log)     Instances of this class 
are used to store the Traffi c History and the Incident Log for the intersection 
being controlled. 

 The Traffi c History object is responsible for managing the following 
functions:

   1.     Storage and retrieval of traffi c history database records.  
  2.     Clearing of traffi c history in response to a command from a remote host.    

 Figure  6.A31  illustrates the attributes, methods, and events of the Traffi c 
History class.   

6.8.3.3.11.1     d atabase  r elationships   

 •      Association link to class  Record
 •      Association link from class  IntersectionController
 •      Association link from class  IntersectionController

6.8.3.3.11.2     d atabase  a ttributes ( T able  6.A28 )   

6.8.3.3.11.3     d atabase  m ethods ( T able  6.A29 )   

 6.8.3.3.12    Record     This class defi nes the attributes and methods used by 
records contained in object instances of the Database class (Fig.  6.A32 ).   
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       Figure 6.A31.     Database class.  

Database

{2}

- MAXRECORDS:  int

- m_Record:  Record* [0..* ordered]

- m_CurrentRecord:  int

- m_First:  int

- m_Last:  int

- m_Full:  boolean

+ Database()

-* ~Database()

+ goFirst() : int

+ goLast() : int

+ goNext() : int

+ go(int) : int

+ isFull() : boolean

+ isEOF() : boolean

+ read() : Record

+ read(int) : Record

+ write(Record*) : int

+ write(int, Record*) : int

+ flush() : int

  TABLE 6.A28.    Database Class — Attributes 

   Attribute     Type     Notes  

  MAXRECORDS    private:  int     Constant defi ning the maximum 
number of records permitted.  

  m_Record    private:  Record     Pointer to database records, which 
are of type Record.  

  m_CurrentRecord    private:  int     Position (index) of current record.  
  m_First    private:  int     Position (index) of fi rst (least 

recent) record in FIFO 
database structure.  

  m_Last    private:  int     Position (index) of last (most 
recent) record in FIFO 
database structure.  

  m_Full    private:  boolean     True if data is being overwritten.  
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  TABLE 6.A29.    Database Class — Methods 

   Method     Type     Notes  

  Database ()    public:    Constructor.  
∼ Database ()    private abstract:    Destructor.  
  goFirst ()    public:  int   Moves cursor to fi rst (least recent) record. 

Completes in 40   ms.  
  goLast ()    public:  int   Moves cursor to last (most recent) record. 

Completes in 40   ms.  
  goNext ()    public:  int   Moves cursor to the next record. Completes 

in 40   ms.  
  Go ( int )    public:  int   param: record [int  -  in]  

  Move cursor to the specifi ed record. 
Completes in 40   ms.  

  isFull ()    public:  boolean   True if the database is full. Subsequent writes 
will overwrite oldest data (FIFO).  

  isEOF ()    public:  boolean   True when the cursor is at the last record.  
  Read ()    public:  Record   Reads record at current position. Completes 

in 10   ms.  
  Read ( int )    public:  Record   param: position [int  -  in]  

  Reads record at specifi ed position; updates 
current record to specifi ed position. 
Completes in 50   ms.  

  Write ( Record *  )    public:  int   param: record [Record *   -  inout]  
  Adds new record to end of database. If 

isFull() is True, data will be overwritten. 
Completes in 50   ms.  

  Write ( int, Record *  )    public:  int   param: position [int  -  in]  
  param: record [Record *   -  inout]  
  Overwrites record at specifi ed position; 

updates current record to specifi ed 
position. Completes in 50   ms.  

  Flush ()    public:  int   Clears all records by setting fi rst and last 
logical record positions to zero; moves 
cursor to fi rst physical record position. 
Completes in 200   ms.  

6.8.3.3.12.1     r ecord  r elationships   

 •      Association link from class  Database

6.8.3.3.12.2     r ecord  a ttributes ( F ig.  6.A33 )   

6.8.3.3.12.3     r ecord  m ethods ( F ig.  6.A34 )   

 6.8.3.3.13    ErrorHandler     This class handles all errors generated by the 
application. All errors are generated by the IntersectionController class in 
response either to internal errors or error returns from method calls. 
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       Figure 6.A32.     Record class.  

Database

{2}

- MAXRECORDS:  int = 65536

- m_Record:  Record* [0..* ordered]

- m_CurrentRecord:  int

- m_First:  int

- m_Last:  int

- m_Full:  boolean

+ Database()

-* ~Database()

+ goFirst() : int

+ goLast() : int

+ goNext() : int

+ go(int) : int

+ isFull() : boolean

+ isEOF() : boolean

+ read() : Record

+ read(int) : Record

+ write(Record*) : int

+ write(int, Record*) : int

+ flush() : int

Record

- timestamp:  datetime

- source:  int

- data:  string

+ Record()

-* ~Record()

+ setTimestamp(datetime*) : void

+ setSource(int) : void

+ setData(string*) : void

+ getTimestamp() : datetime

+ getSource() : int

+ getData() : string

0..* {ordered}+m_Record
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6.8.3.3.13.1     e rror h andler  r elationships   

 •      Association link from class  IntersectionController

6.8.3.3.13.2     e rror h andler  m ethods ( F ig.  6.A35 )   

6.8.3.3.13.3     e rror h andler  b ehavioral  d etails ( F igs.  6.A36  and  6.A37 )   

 6.8.3.3.14    Support Classes     These comprise the structures and enumerated 
classes used to defi ne attributes in the classes detailed above. 

6.8.3.3.14.1     s plit ( F ig.  6.A38 )   
 Percentage of cycle time per phase. Comprises the nominal phase time plus 
the calculated extension due to traffi c volume. 

 The values are determined as follows:

   1.     In FIXED mode, the nominal times are used (i.e., the extensions are set 
to zero).  

  2.     In ACTUATED mode, the extensions contain fi xed values at the start of 
each cycle. These values are modifi ed in response to Vehicle Entry and 
Pedestrian Request events.  

  3.     In ADAPTIVE mode, the extensions are updated prior to the start of 
each cycle as determined by the calculateParameters( ) method of the 
m_IntersectionController object.    

6.8.3.3.14.1.1    Split Relationships      

 •      Association link from class  Parameters

6.8.3.3.14.2     p arameters ( F ig.  6.A39 )   

6.8.3.3.14.2.1    Parameters Relationships      

 •      Association link from class  Status
 •      Association link to class  Split
 •      Association link from class  IntersectionController

6.8.3.3.14.3     s tatus ( F ig.  6.A40 )   

6.8.3.3.14.3.1    Status Relationships      

 •      Association link to class  Parameters
 •      Association link to class  IntersectionController
 •      Dependency link from class  RemoteOverride
 •      Association link to class  Mode
 •      Association link to class  Phase
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       Figure 6.A38.     Split class.  

«struct»

Split
{8}

+ pctNormal:  float

+ pctExtension:  float

+ MIN_TIME:  float = 10

+ MAX_TIME:  float = 120

       Figure 6.A39.     Parameters class.  

«struct»

Parameters

+ cycleTime:  float

+ splits:  Split* [8 ordered]

       Figure 6.A40.     Status class.  

«struct»

Status

+ mode:  Mode

+ count:  int* [4 ordered]

+ parameters:  Parameters*

+ phase:  Phase

   6.8.3.3.14.4     p hase ( F ig.  6.A41 )        

   6.8.3.3.14.4.1     Phase Relationships      

     •      Association link from class  IntersectionController   
   •      Association link from class  Status       

   6.8.3.3.14.5     a spect ( F ig.  6.A42 )        

   6.8.3.3.14.5.1     Aspect Relationships      

     •      Association link from class  Approach       

   6.8.3.3.14.6     i ndication ( F ig.  6.A43 )        
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       Figure 6.A41.     Phase class.  

«enumeration»

Phase

+ Default:  int

+ GG_GG_RR_RR:  int

+ GY_GY_RR_RR:  int

+ YR_YR_RR_RR:  int

+ RR_RR_RR_RR_4:  int

+ RR_RR_GG_GG:  int

+ RR_RR_GY_GY:  int

+ RR_RR_YR_YR:  int

+ RR_RR_RR_RR_8:  int

       Figure 6.A42.     Aspect class.  

«enumeration»

Aspect

+ RR:  int

+ GG:  int

+ GY:  int

+ YR:  int

   6.8.3.3.14.6.1     Indication Relationships      

     •      Association link from class  IntersectionStandard       

   6.8.3.3.14.7     m ode ( F ig.  6.A44 )        

   6.8.3.3.14.7.1     Mode Relationships      

     •      Association link from class  Status   
   •      Association link from class  IntersectionController       

   6.8.3.3.14.8     o verride  t ype ( F ig.  6.A45 )        

   6.8.3.3.14.8.1     OverrideType Relationships      

     •      Dependency link from class  Override          

   6.8.4    Requirements Traceability 

 Tables  6.A30 – 6.A32  illustrate SDD compliance with the SRS requirements.   
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       Figure 6.A44.     Mode class.  

«enumeration»

Mode

+ Adaptive:  int

+ Actuated:  int

+ Timed:  int

+ Preempt:  int

+ Manual:  int

+ Remote:  int

+ Default:  int

       Figure 6.A45.     OverrideType class.  

«enumeration»

OverrideType

+ Manual:  int

+ Remote:  int

       Figure 6.A43.     Indication class.  

«enumeration»

Indication

+ R:  int

+ Y:  int

+ G:  int
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  TABLE 6.A30.    Architectural Requirements 

   Section Reference 
for SRS 
Requirement

   SDD Section 
Demonstrating

Compliance

   Comments  

  .2.5(10)    .2.2.2    Application software to be 
written in high - order OO 
language; C ++  selected  

  .2.6(2)    .2.2.1    Commercial RTOS  
  .2.6(3)    .2.2.3    Resource managers  

   Note: All the SRS section references have an additional prefi x  “ 5.7 ”  and all the SDD references 
have a prefi x  “ 6.8 ” . For ease of reading, these are not shown.   

  TABLE 6.A31.    Functional Requirements 

   Section Reference 
for SRS 
Requirement

   SDD Section 
Demonstrating

Compliance

   Comments  

  .2.6(1)    .3.3.2.2    SI units; speed limit is in km/h  
  .3.1.1, Figure 5.A3    .3.1, Figure 6.A3    Use cases and collaborations  
  .3.2, Figure 5.A4    .3.2, Figure 6.A10    Class model  
  .3.2.1    .3.1, .3.3.1    Requirements for Intersection Controller 

class
  .3.2.2    .3.1, .3.3.2    Requirements for Approach class  
  .3.2.3    .3.1, .3.3.3    Requirements for Pedestrian Traffi c 

Standard class  
  .3.2.4    .3.1, .3.3.3    Requirements for Vehicle Traffi c 

Standard class  
  .3.2.5    .3.1, .3.3.4    Requirements for Pedestrian Service 

Button class 
  .3.2.6    .3.1, .3.3.5    Requirements for Vehicle Presence 

Detector class 
  .3.2.7    .3.1, .3.3.6    Requirements for Manual Override class  
  .3.2.8    .3.1, .3.3.7    Requirements for Remote Override class  
  .3.2.9    .3.1, .3.3.8    Requirements for Emergency Vehicle 

Interface class 
  .3.2.10    .3.1, .3.3.9, .3.3.10    Requirements for Network Interface class  
  .3.2.11    .3.1, .3.3.11    Requirements for Traffi c History class  
  .3.2.12    .3.1, .3.3.11    Requirements for Incident Log class  

   Note: All the SRS section references have an additional prefi x  “ 5.7 ”  and all the SDD references 
have a prefi x  “ 6.8 ” . For ease of reading, these are not shown.   
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  TABLE 6.A32.    Timing Requirements 

   Section Reference for 
SRS Requirement 

   SDD Section 
Demonstrating

Compliance

   Comments  

  .3.3.1.1, Table 5.A14 (1)    .3.3.1.4, Figure 6.A13    Initialization  
  .3.3.1.1, Table 5.A14 (2)    .3.3.1.4, Figure 6.A13    Set default phase  
  .3.3.1.1, Table 5.A14 (3)    .3.3.1.4, Figure 6.A13    Start normal operation  
  .3.3.1.1, Table 5.A14 (4)    .3.3.1.4, Figure 6.A13    Advance phase — normal  
  .3.3.1.1, Table 5.A14 (5)    .3.3.6.4, Figure 6.A25    Advance phase — local  
  .3.3.1.1, Table 5.A14 (6)    .3.3.6.4, Figure 6.A25    Advance phase — remote  
  .3.3.1.1, Table 5.A14 (7)    .3.3.1.4, Figure 6.A13    Calculate cycle 

parameters— actuated
  .3.3.1.1, Table 5.A14 (8)    .3.3.1.4, Figure 6.A13    Calculate cycle 

parameters— adaptive
  .3.3.1.1, Table 5.A14 (9)    .3.3.13.3, Figure 6.A37    Critical error — display 

defaults
  .3.3.1.1, Table 5.A14 (10)    .3.3.13.3, Figure 6.A37    Critical error — alarm  
  .3.3.1.1, Table 5.A14 (11)    .3.3.13.3, Figure 6.A37    Critical error — reset  
  .3.3.1.1, Table 5.A14 (12)    .3.3.13.3, Figure 6.A36, 

Figure 6.A37  
  Write error Log  

  .3.3.1.1, Table 5.A14 (13)    .3.3.1.4, Figure 6.A13    Set phase  
  .3.3.1.1, Table 5.A14 (14)    .3.3.1.4, Figure 6.A13    Get phase  
  .3.3.1.1, Table 5.A14 (15)    .3.3.1.4, Figure 6.A13    Check phase  
  .3.3.1.1, Table 5.A14 (16)    .3.3.4.4, Figure 6.A19    Pedestrian request latching  
  .3.3.1.1, Table 5.A14 (17)    .3.3.4.4, Figure 6.A19    Pedestrian request reset  
  .3.3.1.1, Table 5.A14 (18)    .3.3.4.4, Figure 6.A19    Pedestrian request 

processing
  .3.3.1.1, Table 5.A14 (19)    .3.3.5.4, Figure 6.A22    Vehicle entrance  
  .3.3.1.1, Table 5.A14 (20)    .3.3.5.4, Figure 6.A22    Vehicle exit  
  .3.3.1.1, Table 5.A14 (21)    .3.3.5.4, Figure 6.A22    Vehicle request processing  
  .3.3.1.1, Table 5.A14 (22)    .3.3.5.4, Figure 6.A22    Vehicle reset request state  
  .3.3.1.1, Table 5.A14 (23)    .3.3.5.4, Figure 6.A22    Vehicle count update  
  .3.3.1.1, Table 5.A14 (24)    .3.3.1.4, Figure 6.A13    Vehicle count fetch  
  .3.3.1.1, Table 5.A14 (25)    .3.3.5.4, Figure 6.A22    Vehicle count reset  
  .3.3.1.1, Table 5.A14 (26)    .3.3.7.3    Get cycle parameters  
  .3.3.1.1, Table 5.A14 (27)    .3.3.7.3    Update cycle parameters  
  .3.3.1.1, Table 5.A14 (28)    .3.3.8.4, Figure 6.A28    Process message  
  .3.3.1.1, Table 5.A14 (29)    .3.3.8.4, Figure 6.A28    Process command  
  .3.3.1.1, Table 5.A14 (30)    .3.3.8.4, Figure 6.A28    Process message  
  .3.3.1.1, Table 5.A14 (31)    .3.3.11.3, Table 6.A29    Fetch database  
  .3.3.1.1, Table 5.A14 (32)    .3.3.11.3, Table 6.A29    Add record  
  .3.3.1.1, Table 5.A14 (33)    .3.3.11.3, Table 6.A29    Clear database  
  .3.3.1.1, Table 5.A14 (34)    .3.3.11.3, Table 6.A29    Add record  
  .3.3.1.1, Table 5.A14 (35)    .3.3.11.3, Table 6.A29    Clear database  

   Note: All the SRS section references have an additional prefi x  “ 5.7 ”  and all the SDD references 
have a prefi x  “ 6.8 ” . For ease of reading, these are not shown.   
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     Performance analysis activities can occur in all phases of the software develop-
ment life cycle (Liu,  2009 ). While it is natural to analyze performance measures 
in the testing phase when the individual software components have been inte-
grated together (and possibly with the embedded hardware platform), indica-
tive predictive performance analysis is often needed already in the design and 
programming phases — even in the requirements engineering phase. 

 In the testing phase, it is practical to  measure  the performance either in a 
real operating environment or, at least, in some simulated environment. 
Extensive measurements provide the most fruitful basis for performance anal-
ysis. However, there are often needs to analyze the performance of critical 
algorithms, achievable response times, and task schedulability before the com-
plete real - time system is available for direct measuring. In such cases, specifi c 
performance measures are usually predicted  or  estimated  using the existing 
collective knowledge related to similar software products, performing system -
 level simulations with selected algorithms, doing some instruction - level analy-
sis for program modules, applying theoretical principles and simple laws for 
parts of the real - time system, and so forth. Nonetheless, a precise and reliable 
performance analysis of embedded systems is practically impossible without 
direct measurements from the completed system. And even then, the measure-
ments should be analyzed carefully using statistical methodologies. For 
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instance, a response time might have a non - negligible variance instead of being 
strictly deterministic; this characteristic is connected to the real - time punctual-
ity defi ned in Chapter  1 . 

 Of all the places where theory and practice seldom coincide, none is prob-
ably more obvious than performance analysis. For all the scientifi c research 
on real - time performance analysis, those that have built real - world systems 
know that reality has the annoying habit of getting in the way of theoretical 
results. Approximate formulas that ignore resource contention, presume 
overly simplifi ed hardware, or make the assumption of zero context switch 
time are only of limited practical use. This criticism, nevertheless, does not 
mean that theoretical analysis is useless or that there are no useful theoretical 
results. It only means that there are far less realistic, cookbook - type approaches 
than would be desired by practitioners. The same observation also applies to 
other approximate methodologies used for predicting or estimating the per-
formance of real - time systems. 

 Some system performance optimization may be needed as a consequence 
of any performance analysis. Performance optimization aims for improving a 
specifi c measurable quality in such a way that it would eventually fulfi ll the 
requirements specifi cation. This is an important point: performance optimiza-
tion should be performed solely if there is an explicit demand for it; any 
optimization effort for just the sake of optimization (often referred to as  “ gold 
plating ” ) will cause unnecessary expense and possible schedule delays. 

 Real - time performance analysis based on simplifying estimation approaches 
is introduced in Section  7.1 . These straightforward techniques provide a handy 
toolset for limited performance analyses, and the toolset is fully usable even 
before it is possible to perform direct measurements. Section  7.2  gives a prag-
matic discussion on the use of classical queuing theory for analyzing real - time 
systems. Its applicability to buffer - size calculation and response - time modeling 
is illustrated with a few examples. Furthermore, input/output (I/O) perfor-
mance issues are considered in Section  7.3  with an emphasis on buffer - size 
calculation. This section highlights the common performance bottleneck pre-
sented by device I/O access. In Section  7.4 , a focused analysis of memory 
utilization in real - time systems is presented. The chapter is summarized in 
Section  7.5 , with some thoughts on performance optimization, too. Finally, a 
set of exercises is provided for both self - study and class usage in Section 7.6. 

 Some parts of this chapter have been adapted from Laplante  (2003) .  

   7.1    REAL - TIME PERFORMANCE ANALYSIS 

   7.1.1    Theoretical Preliminaries 

 In computational complexity theory (Arora and Barak,  2009 ), the complexity 
class P is the class of problems that can be solved by an algorithm that runs 
in polynomial time on a deterministic computing machine. On the other hand, 
the complexity class NP (non - polynomial) is the class of all problems that 
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cannot be solved in polynomial time by any deterministic machine, although 
a candidate solution can be verifi ed to be correct by a polynomial - time algo-
rithm. A particular decision - making or recognition problem is said to be  NP -
 complete  if it belongs to the class NP and all other problems in NP are 
polynomial transformable to it. Moreover, a problem is  NP - hard  if all prob-
lems in NP are polynomial transformable to that problem, but it has not been 
shown that the specifi c problem belongs to the class NP. 

 For example, the particular  Boolean satisfi ability problem , which arose 
during requirements consistency checking in Chapter  5 , is NP - complete. The 
general Boolean satisfi ability problem (termed  “  N  - Sat ” ) is NP - complete. 
However, the Boolean satisfi ability problem for systems involving two Boolean 
variables (termed  “ 2 - Sat ” ) or three Boolean variables (termed  “ 3 - Sat ” ) is in 
P, and there are tools available for solving such problems. Still, it is easy to 
imagine that the most interesting problems are N  - Sat type problems. NP -
 complete problems in real - time systems tend to be those relating to resource 
allocation, which is exactly the situation that occurs in multitask scheduling. 
This unfortunate fact does not bode well for the solution of real - time schedul-
ing problems, as will be discussed shortly. 

 The remarkable challenges in fi nding optimal solutions for real - time sched-
uling problems can be seen in nearly four decades of real - time systems research. 
Unfortunately, most important problems in real - time scheduling require either 
excessive practical constraints to be managed or are NP - complete or even 
NP - hard. Below is a representative sampling from the literature as summa-
rized in Stankovic et al.  (1995) :

   1.     When there are mutual exclusion constraints, it is impossible to fi nd a 
totally online optimal run - time scheduler.  

  2.     The problem of deciding whether it is possible to schedule a set of peri-
odic tasks that use only semaphores to enforce mutual exclusion is 
NP - hard.  

  3.     The multiprocessor scheduling problem with two processors, no resources, 
arbitrary partial - order relations, and every task having a 1 - unit computa-
tion time is polynomial. A partial - order relation indicates that any task 
can call itself; if task A calls task B, then the reverse is not possible; but 
if task A calls task B and task B calls task C, then task A can call task 
C.  

  4.     The multiprocessor scheduling problem with two processors, no resources, 
independent tasks, and arbitrary task computation times is NP - complete. 

  5.     The multiprocessor scheduling problem with two processors, no resources, 
independent tasks, arbitrary partial order, and task computation times 
of either 1 or 2 units of time is NP - complete.  

  6.     The multiprocessor scheduling problem with two processors, one 
resource, a forest partial order (partial order on each processor), and the 
computation time of every task equal to 1 unit is NP - complete.  
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  7.     The multiprocessor scheduling problem with three or more processors, 
one resource, all independent tasks, and each computation time of every 
task equal to 1 unit is NP - complete.  

  8.     Earliest deadline scheduling is not optimal in the multiprocessing case.  
  9.     For two or more processors, no deadline - scheduling algorithm can be 

optimal without complete a priori  knowledge of deadlines, computation 
times, and task start times.    

 Hence, it turns out that most multiprocessor scheduling problems are in NP. 
However, for deterministic scheduling, this is not a serious problem because 
a polynomial scheduling algorithm can be used to develop an optimal schedule 
if the specifi c problem is not NP - complete (Stankovic et al.,  1995 ). In such 
cases, heuristic search techniques can be applied. These offl ine techniques 
typically just need to fi nd competitive schedules, not any optimal ones. And 
this is what practicing engineers do when workable theories do not exist —
 engineering judgment must prevail.  

   7.1.2    Arguments Related to Parallelization 

Amdahl ’ s Law  is a classical argument regarding the effectiveness of parallel-
ization that can be achieved by a parallel computer system (Amdahl,  1967 ). 
Today, this fundamental law is somewhat timely even in real - time systems, 
because of the growing usage of multi - core processors (or  “ chip multiproces-
sors ” ) with an increasing number of parallel on - chip cores (Hill and Marty, 
 2008 ). These multi - core platforms are used in signifi cant quantities, for instance, 
in cell phone exchanges, which are mostly fi rm real - time systems. Nevertheless, 
the current usage of multi - core processors in such applications still resembles 
the use of multiple independent uniprocessors, instead of utilizing true paral-
lelization between the available cores. 

 Defi nition: Amdahl ’ s Law 

 Amdahl stated that for a constant problem size, the incremental speedup 
approaches zero as the number of processor elements grows (Amdahl, 
 1967 ). This observation highlights a severe constraint for parallelism in 
terms of speedup as merely a software property, not a hardware one. 

 Formally, let  N  be the number of equal processors available for parallel 
processing. Let  S  be the fraction of program code that is of serial nature, 
that is, it cannot be parallelized at all (0    ≤     S     ≤    1). A usual reason why a 
portion of code cannot be parallelized is a fi rm sequence of operations, each 
depending on the result of the previous operation. Thus, (1    −     S ) is the frac-
tion of code that can be parallelized. The achievable speedup is then deter-
mined as the ratio of the code before allocation to the parallel processors 
to the ratio of that afterwards:
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 Amdahl ’ s law is cited as an argument against parallel systems and, in particu-
lar, against massively parallel processors. For example, it can be stated that 
 “ there will always be a part of the computation which is inherently sequential, 
(and) no matter how much you speed up the remaining 90%, the computation 
as a whole will never speed up by more than a factor of 10. The processors 
working on the 90% that can be done in parallel will end up waiting for the 
single processor to fi nish the sequential 10% of the task ”  (Hillis,  1998 ). But 
from the practical point of view, Amdahl ’ s pessimistic argument is actually 
fl awed. The key assumption of Amdahl ’ s law is that the problem size remains 
 constant ; and then at some point there is a diminishing increment of return 
for speeding up the computation. Problem sizes, however, tend to scale 
with the size of a parallel system. Therefore, parallel computer systems, 
which are bigger in number of processors, are used to solve larger (more 
demanding) problems than uniprocessor systems. And this is true both in 
scientifi c number crunching as well as in advanced real - time systems with 
multi - core processors. 

 Amdahl ’ s law stymied the fi eld of parallel and massively parallel computers 
for many years, creating an insoluble problem that limited the effi ciency and 
application of parallelism to various problems. The skeptics of parallelism took 
Amdahl ’ s law as the insurmountable bottleneck to any kind of practical paral-
lelism, which ultimately impacted on real - time systems as well. Fortunately, 
later research provided new insights into Amdahl ’ s law and its relation to 
large - scale parallelism. 

 Two decades after the introduction of Amdahl ’ s law, Gustafson demon-
strated with a 1024 - processor system at Sandia National Laboratories that the 
key presumption in Amdahl ’ s Law is clearly inappropriate for massive paral-
lelism (Gustafson,  1988 ). He found that the problem size scales generally with 
the number of processors or with a more powerful processor, instead of 
remaining constant as presumed by Amdahl. However, what is remaining 
more or less constant is the used (or acceptable) computing time. 

 Gustafson ’ s empirical results demonstrated that the parallel or vector part 
of a program scales, indeed, with the problem size. Nonetheless, inherent times 
for vector start - up, program loading, serial bottlenecks, and I/O that make up 

    SpeedupAmdahl = + −( )
+ −( ) =
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 Clearly, for  S     =    0 linear speedup can be obtained as a function of the 
number of processors. But for  S     >    0, perfect speedup is no more possible 
due to the disturbing sequential component. In such cases, the speedup is 
saturating to a limit value:

    lim
N

S
→∞

=SpeedupAmdahl 1     (7.2)   
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the serial component of the run do not usually grow with the problem size 
(Gustafson,  1988 ). 

   

       Figure 7.1.     Gustafson ’ s unbound speedup compared with Amdahl ’ s saturating speedup 
( →    2) when 50% of code is suitable for parallelization.  
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 Defi nition: Gustafson ’ s Law 

 If the fi rmly serial code fragment,  S , and the parallelized fragment, (1    −  S ), 
are processed by a parallel computer system with  N  equal processors, then 
the achievable speedup is given as:

    SpeedupGustafson = − −( )N N S1     (7.3)   

 Comparing the bar charts of Equations  7.1  and  7.3  in the example case of 
 S     =    0.5 (see Fig.  7.1 ), it can be concluded that Gustafson provides a more 
optimistic picture of speedup due to parallelism than does Amdahl. In 
Gustafson ’ s practical view, it is easier to achieve parallel effi ciency than is 
implied by Amdahl ’ s law (Gustafson,  1988 ). Moreover, the speedup of Equation 
 7.3  does not saturate as  N  approaches infi nity.   

 A different take on the fl aw of Amdahl ’ s Law can be observed as  “ a more 
effi cient way to use a parallel computer is to have each processor perform 
similar work, but on a different section of the data    . . .    where large computa-
tions are concerned this method works surprisingly well ”  (Hillis,  1998 ). Doing 
the same task but on a different range of data circumvents an underlying 
presumption in Amdahl ’ s law, that is  “ the assumption that a fi xed portion of 
the computation    . . .    must be sequential. This estimate sounds plausible, but it 
turns out not to be true of most computations ”  (Hillis,  1998 ). 

 Lastly, the current  “ multi - core era ”  could be viewed as a partial conse-
quence of Gustafson ’ s law. Nonetheless, it remains truly challenging to paral-
lelize real - time software effectively and divide the computing load dynamically 
to multiple cores.  
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   7.1.3    Execution Time Estimation from Program Code 

 It is common to analyze real - time systems  a priori  to see if they will meet their 
critical deadlines. Unfortunately, in a practical sense, this is rarely possible 
exactly due to the NP - completeness of most scheduling problems and severe 
constraints imposed by common synchronization mechanisms. Nevertheless, it 
is possible to get a handle on the system ’ s behavior through approximate 
analysis. The fi rst step in performing any kind of schedulability analysis is to 
predict, estimate, or measure the execution time of essential code units. 

 The need to know the execution time of certain program modules and the 
overall system time loading before implementation is important from both 
engineering and project - management perspectives. Not only are CPU utiliza-
tion requirements expressed as specifi c design goals, but also knowing them 
beforehand is important in selecting, for instance, the embedded processor 
platform. During the programming and testing phases, estimation of CPU 
utilization is needed to recognize those problematic code units that are par-
ticularly slow or whose response times are inadequate. Several methods can 
be used to determine module execution times and the CPU utilization factor. 

 Most measures of real - time performance require an execution time esti-
mate,  ei , for each parallel task. The most accurate method for obtaining the 
execution time of completed code is to use a logic analyzer that is described 
in Chapter  8 . One advantage of this direct approach is that all hardware laten-
cies, as well as other system delays and uncertainties, are taken into account. 
The drawback in using the logic - analyzer approach is that the entire system 
or subsystem must be completely programmed and the target hardware avail-
able. Hence, the logic analyzer is usually employed solely in the fi nal stages of 
programming, during testing, and especially during system integration. 

 When a logic analyzer is not available, the code execution time can be 
estimated by examining the compiler output and counting machine language 
instructions either manually or using automated tools. This technique also 
requires that the code be written, a reasonable sketch of the fi nal code exists, 
or highly similar systems are available for indicative analysis. The approach 
simply involves tracing the worst - case execution path through the code, iden-
tifying the machine language instructions along the way, and accumulating 
their execution times. 

 Another possible method for code execution timing uses the system clock 
(generated by a timer), which is read before and after executing the particular 
program code. The time difference can then be used to determine the actual 
time of execution. This straightforward technique, however, is only viable 
when the sequence of code to be timed is suffi ciently time - consuming relative 
to the consecutive timer calls. 

 When it is too early for the logic analyzer, or if one is not available, instruc-
tion counting is a practical method for determining time loading. In this 
approximate approach, the actual CPU - specifi c instruction times are needed. 
They can be obtained from the manufacturer ’ s datasheets by timing the 
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specifi c instructions using a simulator, or simply by educated guessing. In addi-
tion, read/write access times and the number of possible wait states for each 
memory operation are needed as well. 

 Example: Instruction Counting Approach 

 Consider the inertial measurement system discussed earlier in this text. A 
certain program module converts raw sensor pulses into the actual accelera-
tion components that are later compensated for temperature and other 
effects. The module is just to decide if the aircraft is still on the ground, in 
which case only a small acceleration reading for each of the XYZ compo-
nents is allowed (represented by the symbolic constant PRE_TAKE ). Now, 
consider a time - loading analysis for the corresponding C code.

#define SCALE 0.01 /* scaling factor  */
#define PRE_TAKE 0.1 / * maximum allowable  */
void accelerometer (unsigned x, unsigned y, unsigned 
z, float *ax, float *ay, float *az, unsigned on_ground, 
unsigned *signal)
{
/* convert pulses to xyz accelerations  */
*ax = (float) x *SCALE;
*ay = (float) y *SCALE;
*az = (float) z *SCALE;
if(on_ground)

if(*ax > PRE_TAKE || 
*ay > PRE_TAKE || 
*az > PRE_TAKE)
/* no more on the ground: set a bit  */
*signal = *signal | 0x0001; 

}

 These C - language instructions with the compiled assembly language instruc-
tions are shown in the following listing for convenient execution - path 
tracing. Generic assembly language for a two - address machine is assumed. 
The assembler and compiler directives have been omitted (along with some 
data - allocation pseudo operations) for clarity and since they do not impact 
the time loading. 

 The assembly instructions beginning with  “ F ”  are fl oating - point instruc-
tions that require 5    μ s. And the FLOAT instruction converts an integer to 
fl oating - point format. All other instructions are of integer type and require 
0.6    μ s.

/* convert pulses to xyz accelerations  */
*ax = (float) x *SCALE;

LOAD R1,&x
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FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&ax

*ay = (float) y *SCALE;
LOAD R1,&y
FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&ay

*az = (float) z *SCALE;
LOAD R1,&z
FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&az

if(on_ground)
LOAD R1,&on_ground
CMP R1,0
JE @2

if(*ax > PRE_TAKE || 
*ay > PRE_TAKE || 
*az > PRE_TAKE)

FLOAD R1,&ax
FCMP R1,&PRE_TAKE
JLE @2
FLOAD R1,&ay
FCMP R1,&PRE_TAKE
JLE @2
FLOAD R1,&az
FCMP R1,&PRE_TAKE
JLE @2

@1:
/* no more on the ground: set a bit  */
*signal = *signal | 0x0001; 

LOAD R1,&signal
OR R1,1
STORE R1,&signal

@2:

 Tracing the worst - case execution path and counting the instructions shows 
that there are 12 integer (7.2    μ s) and 15 fl oating - point (75    μ s) instructions 
for a total execution time of 82.2    μ s. Since this sequence of code runs in a 
5 - ms cycle, the corresponding time - loading is only 82.2/5000    ≈    1.6%. 

 In the previous example, we assumed a nonpipelined CPU architecture for 
simplicity. However, in the next example, we calculate the best -  and worst - case 
execution times (BCET and WCET) for another sequence of assembly code, 
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fi rst without assuming an instruction pipeline, and then for a three - stage 
instruction pipeline. 

 Example: Instruction Counting in Nonpipelined and Pipelined 
CPU Platforms 

 Consider the following assembly - language code with 12 numbered 
instructions: 

  1.        LOAD    R1, & a ; load contents of  “ a ”  to R1  
  2.         LOAD    R2, & a ; load contents of  “ a ”  to R2  
  3.         TEST    R1,R2 ; compare R1 and R2  
  4.         JNE    @L1  ; go to @L1 if R1 and R2 are not equal  
  5.         ADD    R1,R2 ; R1    =    R1    +    R2  
  6.         TEST    R1,R2 ; compare R1 and R2  
  7.         JGE    @L2   ; go to @L2 if R1    ≥    R2  
  8.         JMP    @L3  ; go to @L3 unconditionally  
  9.     @L1    ADD    R1,R2 ; R1    =    R1    +    R2  

  10.         JMP    @L3   ; go to @L3 unconditionally  
  11.     @L2    ADD    R1,R2 ; R1    =    R1    +    R2  
  12.     @L3    SUB    R2,R3 ; R2    =    R2    −    R3  

 Now, calculate the following estimates:

   1.     The best -  and worst - case execution times (nonpipelined).  
  2.     The best -  and worst - case execution times (pipelined).    

 First, identify all the possible execution paths (A i  denotes  “ assembly instruc-
tion number i  ” ):

Path 1 :      A1 – A4, A9 – A10, A12  

Path 2 :      A1 – A7, A11 – A12  

Path 3 :      A1 – A8, A12    

 Hence, Path 1 includes 7 instructions @ 0.6    μ s each    →    4.2    μ s. Paths 2 and 3 
include both 9 instructions @ 0.6    μ s each    →    5.4    μ s. These are the BCET and 
WCET for this code sequence, respectively. 

 For the second case, assume that a three - stage pipeline consisting of fetch 
(F), decode (D), and execute (E) stages is in use and that each stage takes 
0.6    μ s/3    =    0.2    μ s. Here, it is necessary to simulate the contents of the instruc-
tion pipeline for each of the three execution paths, fl ushing the pipeline 
when required. 

 For Path 1, the pipeline execution trace is given in Figure  7.2 . At the 
bottom of the trace, time is shown in multiples of 0.2    μ s; this yields a total 
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execution time of 2.6    μ s. For Path 2, the pipeline trace looks correspond-
ingly as depicted in Figure  7.3 . This represents a total execution time of 
2.6    μ s. Furthermore, for Path 3, the execution trace is shown in Figure  7.4 . 
Also this path yields a total execution time of 2.6    μ s. Thus, the BCET and 
WCET happen to be equal. This is just a coincidence, and, in general, there 
is naturally some difference between them.   

       Figure 7.2.     Pipeline simulation trace for Path 1.  

F1 D1 E1
   F2 D2 E2
      F3 D3 E3
         F4 D4 E4 Flush the Pipeline
            F5 D5
                  F9 D9  E9
                     F10 D10 E10 Flush the Pipeline
                         F11 D11
                                 F12 D12 E12
.  .  .  .  .  .  .  .   .   .   .   .   ..  .  .  .  .  .  .  .   .   .   .   .   .
1  2  3  4  5  6  7  8   9   10  11  12  13

       Figure 7.3.     Pipeline simulation trace for Path 2.  

F1 D1 E1
   F2 D2 E2
      F3 D3 E3
         F4 D4 E4
            F5 D5 E5
               F6 D6 E6
                  F7 D7 E7
                     F8 D8 Flush the Pipeline
                           F11 D11 E11
                               F12 D12 E12
.  .  .  .  .  .  .  .  .  .   .   .   ..  .  .  .  .  .  .  .  .  .   .   .   .
1  2  3  4  5  6  7  8  9  10  11  12  13

       Figure 7.4.     Pipeline simulation trace for Path 3.  

F1 D1 E1
   F2 D2 E2
      F3 D3 E3
         F4 D4 E4
            F5 D5 E5
               F6 D6 E6
                  F7 D7 E7
                     F8 D8 E8 Flush the Pipeline
                        F9 E9
                              F12 D12 E12
.  .  .  .  .  .  .  .  .  .  .   .   ..  .  .  .  .  .  .  .  .  .  .   .   .
1  2  3  4  5  6  7  8  9  10 11  12  13
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 The laborious process of instruction counting could be automated if a 
parser is written for the target assembly language that can resolve branching. 
Besides, commercial performance analysis software is available for execution 
profi ling. 

 In addition, the determination of instruction execution times is also depen-
dent on memory access times and wait states, which can vary depending on 
the source region of the instruction code or data in memory. Some organiza-
tions that frequently design real - time systems on a variety of CPU platforms 
use special simulation software to estimate instruction execution times and 
CPU throughput. With these simulators, users can typically input the CPU 
type, memory speeds for different address ranges, as well as the instruction 
mix, and calculate total instruction times and throughput. 

 Moreover, sections of code can be timed conveniently by reading the system 
clock before and after the execution of the code. The time difference is then 
used to determine the actual execution time. Of course, if the code sequence 
under examination takes only a few microseconds or so, it is recommended to 
execute the code several thousand times in a loop. This will help to reduce 
inaccuracies introduced by the granularity of the system clock. When such 
looping is applied, it is necessary to calculate the additional time spent in the 
empty loop structure and subtract it from the total. 
   

 Example: Timing Accuracy with a 60 - kHz System Clock 

 Suppose 2000 repetitions of the program code under interest take 450   ms 
with the clock granularity of 16.67    μ s. Hence, the execution time measure-
ment has a high accuracy as follows:

   Accuracy =
⋅

⋅
⋅ ≈ ±

−

−

16 67 10
450 10

100 0 0037
6

3

.
% . %.   

 The following C code can be used to time a single high - level language instruc-
tion or a series of instructions. The number of iterations needed can be varied 
depending on how short the code to be timed is; the shorter the code, the more 
iterations should naturally be used to get an adequate accuracy. Here, 
 current_clock_time()  is a system function that returns the current time, 
and  function_to_be_timed()  is where the actual code to be timed should 
be placed.

 #include system.h 
 unsigned long timer(void) 
 { 
    unsigned long time0, time1, time2, time3, i, j, 
    loop_time, total_time 
    iteration  =  1000000L; 
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    time0  =  current_clock_time(); / *  read time now  * / 
    for (j = 1; j <  = iteration; j +  + ); / *  run empty loop  * / 
    time1  =  current_clock_time(); / *  read time now  * / 
    loop_time  =  time1 - time0;                   / *  empty loop time  * / 
    time2  =  current_clock_time(); / *  read time now  * / 
    for (i = 1; i <  = iteration; i +  + )       / *  time function  * / 
                function_to_be_timed(); 
    time3  =  current_clock_time(); / *  read time now  * / 
    total_time  =  (time3 - time2 - loop_time)/iteration; 
    return total_time;                                              / *  function ’ s time  * / 
 }   

   7.1.4    Analysis of Polled - Loop and Coroutine Systems 

 The response time for a  polled - loop system  consists of three essential compo-
nents: the cumulative hardware delays involved in setting the software fl ag by 
some external device; the time for the polled loop to test the fl ag; and the time 
needed to process the event associated with the fl ag (see Fig.  7.5 ). The fi rst 
delay component is typically on the order of nanoseconds and can usually 
be ignored. On the other hand, the time to check the fl ag and jump to the 
handler routine can be several microseconds. And the time to process the 
event related to the fl ag depends on the task involved (anyhow larger than 
the two preceding delays). Hence, calculation of a response time for polled 
loops is straightforward.   

 The above case assumes that suffi cient processing time is available between 
consecutive events. However, if events begin to overlap each other, that is, if 
a new event is initiated while a previous one is still being processed, then the 
response time is becoming worse. In general, if  t F   is the time needed to check 
the fl ag and  t P   is the time to process the event, including resetting the fl ag (and 
ignoring the time needed by the external device to set the fl ag), then the 
response time for the  N th overlapping event is bounded by

    Bound N t tF P= +( ).     (7.4)   

 In practice, some limit is placed on  N , that is, the number of events that are 
allowed to overlap. Nonetheless, overlapping events may not be desirable at 
all in certain applications. 

       Figure 7.5.     Delay components of polled - loop response time.  
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Delay

(Nanoseconds)
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Delay

(Microseconds)
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 Furthermore, the absence of interrupts in a  coroutine system  makes the 
determination of response time rather easy, and the time is simply obtained 
by tracing the worst - case execution path through all tasks (see Fig.  7.6 ). In 
such case, the execution time of each phase must fi rst be determined using one 
of the approaches discussed above.    

   7.1.5    Analysis of Round - Robin Systems 

 Assume that a round - robin system has  n  tasks in the ready queue, no new ones 
arrive after the scheduling starts, and none terminates prematurely. The task 
release times are arbitrary — in other words, although all tasks are ready for 
execution at the same time, the order of execution is not specifi cally prede-
signed, but is still fi xed. Further assume that all the tasks have the maximum 
end - to - end execution time of  c  time units. This assumption might fi rst appear 
overly unrealistic. Nevertheless, suppose that each task,  τ   i  , has a different 
maximum execution time,  c i  ; then letting  c     =    max{ c  1 ,    . . .    ,  c n  } yields a reason-
able  upper bound  for the system performance and allows the use of this simple 
model. 

 Now, let the constant timeslice for each task be  q  time units. If any task 
completes before the end of its time quantum, in practice, that slack time 
would be assigned to the next ready task in the queue. However, for simplicity 
of the analysis, we assume here that the possible slack times are not utilized 
at all. This does not hurt the analysis seriously because only an upper bound 
is desired, not an exact response time solution. 

 Ideally, each task would get 1/ n  of the available CPU time in slices of  q  time 
units, and would wait no longer than ( n     − 1) q  time units until its next time up. 
Since each task requires at most ⎡ c / q ⎤ time units to complete (where ⎡ · ⎤ rep-
resents the  “ ceiling ”  function, which yields the smallest integer greater than 
the quantity inside the half brackets), the waiting time will be ( n     − 1) q ⎡ c / q ⎤. 
Thus, the worst - case time from readiness to completion for any task (also 

       Figure 7.6.     Tracing the execution path in a two - task coroutine system. A central dis-
patcher calls  task_1()  and  task_2()  by turns, and a  switch  statement in each task 
(not shown) steps the phase - driven code.  

void task_1()
...
task_1a();
return;

task_1b();
return;

task_1c();
return;

void task_2()
...
task_2a();
return;

task_2b();
return;

Repeat the
Sequence

Begin
Here
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known as turnaround time), denoted  T , is the waiting time plus the undis-
turbed time to complete,  c , or

    T n q c q c= −( ) ⎡ ⎤ +1 .     (7.5)   

   

 Example: Turnaround - Time Calculation with Context Switching Overhead 

 First, suppose that there is one task with a maximum execution time of 
500   ms. The time quantum is now 40   ms, and the context switch time is 1   ms. 
Hence,  n     =    1,  c     =    500,  q     =    40,  o     =    1. So,

   T = −( )⋅ + ⋅[ ]⎡ ⎤ + =1 1 40 1 1 500 40 500 513 ms,   

 which is expected, since the context switch to serve the round - robin clock 
interrupt costs 1   ms each time for the 13 times it occurs. 

 Example: Turnaround Time Calculation without Context 
Switching Overhead 

 First, suppose that there is only one task with a maximum execution time 
of 500   ms, and that the time quantum is 100   ms. Hence,  n     =    1,  c     =    500, 
 q     =    100, and

   T = −( )⋅ ⋅ ⎡ ⎤ + =1 1 100 500 100 500 500 ms,   

 which is the duration of fi ve time quanta as expected. 
 Next, suppose there are fi ve equally important tasks with a maximum 

execution time of 500   ms. The time quantum is still 100   ms. Thus,  n     =    5, 
 c     =    500,  q     =    100, which yields correspondingly

   T = −( )⋅ ⋅ ⎡ ⎤ + =5 1 100 500 100 500 2500 ms.   

 This result is intuitively agreeable, since it would be expected that fi ve 
consecutive tasks of 500   ms each would take altogether 2500   ms end - to - end 
to complete. 

 Furthermore, assume that there is a  non - negligible  context switching overhead, 
 o , associated with task switching. Each task still waits no longer than ( n     − 1) q  
until its next time quantum, but there is an inherent overhead of  n     ·     o  time 
units each time around for context switching. Again, each task requires at most 
⎡ c / q ⎤ time quanta to complete. An additional assumption is that there is an 
initial  “ context switch ”  to load the fi rst time around. Therefore, the worst - case 
turnaround time for any task is now at most

    T n q n o c q c= −( ) + ⋅[ ]⎡ ⎤ +1     (7.6)   
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 In terms of the time quantum, it is desirable that  q     <     c  to achieve fair behavior 
for the round - robin system. On the other hand, if  q  is very large, the round -
 robin algorithm is in fact the fi rst - come, fi rst - served algorithm, in that each 
task will execute to its completion in the order of arrival and within the very 
large time quantum. 

 The approximate technique just described is also applicable for cooperative 
multitasking analysis or any kind of fair cyclic scheduling with non - negligible 
context switching costs.  

   7.1.6    Analysis of Fixed - Period Systems 

 In general, plain utilization - based analysis is not accurate and provides satis-
factory bounds just for a highly simplifi ed task model. Therefore, a necessary 
and suffi cient condition for schedulability based on worst - case response - time 
calculation is presented below. 

 For the highest - priority task, the worst - case response time will evidently be 
equal to its own execution time. However, other tasks running on the real - time 
system are subjected to interference caused by execution of higher - priority 
tasks. For any task  τ   i   with an execution time of  e i   time units, the response time, 
 R i  , is given as

    R e Ii i i= + ,     (7.7)  

  where  I i   is the maximum possible delay in execution (caused by higher priority 
tasks) that task  τ   i   is going to experience in any time interval [ t , t     +     R i  ). At the 
most critical time instant, which is the instant when all higher - priority tasks 
are released along with task  τ   i  ,  I i   will have its maximum contribution. 

 Consider a task  τ   j   of higher priority than  τ   i  . Within the interval [0,  R i  ), the 
release time of  τ   j   will be ⎡ R i  / p j  ⎤, where  p j   is the execution period of  τ   j  . Each 
release of task  τ   j   is going to contribute to the amount of interference  τ   i   is going 
to suffer, and is expressed as:

    Maximum interference /= ⎡⎢ ⎤⎥R p ei j j.     (7.8)   

 Each task of higher priority is interfering with task  τ   i  . Hence,

 Next, suppose there are six equally important tasks, each with a maximum 
execution time of 600   ms, the time quantum is 40   ms, and every context 
switch costs 2   ms. Thus,  n     =    6,  c     =    600,  q     =    40,  o     =    2. Then,

   T = −( )⋅ + ⋅[ ]⎡ ⎤ + =6 1 40 6 2 600 40 600 3780 ms,   

 which again is agreeable, because one would expect six tasks of 600   ms in 
duration to already take 3600   ms without any context switching costs. 
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 Example: Response Time Calculation in a Rate - Monotonic Case 

 To illustrate the response time analysis for a fi xed - priority scheduling scheme, 
consider a task set to be scheduled rate monotonically, as shown below:

   τ1 1 13 9: ,e p= =  

   τ2 2 24 12: ,e p= =  

   τ3 3 32 18: ,e p= =   

 For every task set, it is always a good practice to calculate fi rst the CPU 
utilization factor,  U  of Equation  1.2 , to make sure that the real - time system 
is not overloaded. Here,

   U e pi i

i

= = + + ≈
=
∑

1

3 3
9

4
12

2
18

0 72. .   

 According to the linguistic classifi cation of Chapter  1 , 72% belongs to the 
 “ questionable ”  utilization zone of 70 – 82%, which is well below overloading. 

    I R p ei i j

j HPR i

= ⎡⎢ ⎤⎥
∈ ( )
∑ /     (7.9)  

  where  HPR ( i ) is the set of higher - priority tasks with respect to  τ   i  . Substituting 
this  I i   into Equation  7.7  yields

    R e R p ei i i j j

j HPR i

= + ⎡⎢ ⎤⎥
∈ ( )
∑ / .     (7.10)   

 Due to the inconvenient ceiling function, it is diffi cult to solve for  R i   directly. 
Without getting into details, a neat recursive solution is provided, where the 
equation for calculating  R i   is evaluated iteratively by rewriting it as a recur-
rence relation

    R e R p ei
n

i i
n

j j

j HPR i

+

∈ ( )
= + ⎡⎢ ⎤⎥∑1 / .     (7.11)  

  where   Ri
n is the result of the  n th iteration. 

 When using the recurrence relation to fi nd response times, it is necessary 
to compute consecutive values of   Ri

n+1 iteratively until the fi rst value of  m  is 
found such that   R Ri

m
i
m+ =1 . This   Ri

m is then the desired response time,  R i  . It is 
important to note that if the recursive equation does not have a solution, then 
the value of   Ri

n+1 will continue to grow, as in the overloaded case when a task 
set has a CPU utilization factor greater than 100%. 
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   7.1.7    Analysis of Nonperiodic Systems 

 In practice, a real - time system having one or more aperiodic or sporadic cycles 
could be modeled as a rate - monotonic system, but with the nonperiodic tasks 
approximated as having a period equal to their worst - case expected inter -
 arrival time. However, if this rough approximation leads to unacceptably high 
utilizations, it may be possible to use some heuristic analysis approach instead. 
Queuing theory (Gross et al.,  2008 ) could also be helpful in this regard. Certain 
important results from queuing theory are discussed later. 

 The calculation of response times for interrupt - driven systems is dependent 
on a variety of factors, including interrupt latency, scheduling/dispatching 
times, and context switch times. Determination of context save/restore times 
is carried out similarly as execution time estimation for any application code. 
The scheduling time is negligible when the CPU uses an interrupt controller 
supporting multiple interrupts. When a single interrupt is supported in con-
junction with an interrupt controller, it can be timed using straightforward 
instruction counting. 

 Interrupt latency is a component of response time, and is the (varying) 
period between when a device requests an interrupt and when the fi rst instruc-
tion for the associated interrupt service routine executes. In the design of a 
real - time system, it is necessary to consider what the worst - case interrupt 
latency can be. Typically, such an uncommon situation would occur when all 
possible interrupts in the system are requested simultaneously. The number of 
tasks also contributes to the worst - case latency, because a real - time operating 
system needs to disable interrupts while it is processing lists of blocked or 
waiting tasks. If the real - time software contains a large number of parallel 
tasks, it is necessary to perform some latency analysis to verify that the operat-

 The highest priority task,  τ  1 , will naturally have a response time equal to 
its execution time, so  R  1     =    3. Moreover, the medium priority task,  τ  2 , will 
have its response time iterated using Equation  7.11 . First, let   R2

0 4= , and 
then two recursive values following   R2

0 are derived as:

   R2
1 4 4 9 3 7= + ⎡ ⎤ ⋅ =  

   R2
2 4 7 9 3 7= + ⎡ ⎤ ⋅ =   

 The equality   R R2
1

2
2=  implies that  R  2     =    7. Similarly, the response time of the 

lowest priority task,  τ  3 , is calculated as follows. First,   R3
0 2= , and two recur-

sive values are again obtained from Equation  7.11 :

   R3
1 2 2 9 3 2 12 4 9= + ⎡ ⎤ ⋅ + ⎡ ⎤ ⋅ =  

   R3
2 2 9 9 3 9 12 4 9= + ⎡ ⎤ ⋅ + ⎡ ⎤ ⋅ =   

 As   R R3
1

3
2= , the response time  R  3     =    9. 
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ing system is not disabling interrupts for an unacceptably long time. 
Nevertheless, in hard real - time systems, it is always good to keep the number 
of tasks as low as practical. 

 Another contributor to interrupt latency is the time needed to complete 
execution of the particular machine language instruction that was interrupted. 
Hence, it is necessary to fi nd the worst - case execution time of every machine 
language instruction by measurement, simulation, or manufacturer ’ s data-
sheets. The instruction with the longest execution time in the program code 
will maximize the contribution to interrupt latency if it has just begun execut-
ing when the interrupt request arrives. 

 For instance, suppose in a certain 32 - bit microcontroller, all fi xed - point 
instructions take 2    μ s, fl oating - point instructions take 10    μ s, and special instruc-
tions, such as trigonometric functions, take 50    μ s. The real - time software under 
consideration is known to have only one arc - tangent instruction, but its con-
tribution to interrupt latency can be as high as 50    μ s. Nonetheless, the prob-
ability of executing the specifi c arc - tangent instruction just when an interrupt 
occurs is obviously very low. The latency caused by instruction completion is 
often overlooked, possibly resulting in unexplained sporadic problems in hard 
and fi rm real - time systems. 

 Deliberate disabling of interrupts by the real - time software can create 
substantial interrupt latency, and hence it must be included in the overall 
latency estimation, too. Interrupts are disabled for a number of reasons, includ-
ing protection of critical regions, buffering routines, and context switching. But 
it is recommended to avoid interrupt disabling when possible and to minimize 
the length of periods when they have to be disabled. As a rule of thumb, no 
application software should have the right to disable interrupts, but interrupt 
disabling is allowed solely in system software. 

 Instruction and data caches, instruction pipelines, and  direct memory access  
( DMA ), all designed to improve  average  computing performance, destroy 
determinism and thus make prediction of real - time performance troublesome. 
In the case of an instruction cache, for example, it is uncertain whether the 
requested instruction is in the cache. Where it is being fetched from has a 
signifi cant effect on the execution time of that instruction. Besides, to bring 
the missing instruction into the cache, a time - consuming replacement algo-
rithm must be applied. Therefore, to carry out a strict worst - case performance 
analysis, it must be pessimistically assumed that every instruction is not fetched 
from cache but from the slower main memory instead. This assumption has a 
very deleterious effect on the predicted performance. Similarly, in the case of 
pipelines, one must assume that at every possible opportunity, the pipeline 
needs to be fl ushed. Finally, when DMA is used in the real - time system, it must 
be assumed that cycle stealing is occurring at every opportunity, thus infl ating 
instruction fetch times. 

 Do these special cases all mean that the widely used architectural enhance-
ments render a computer system effectively unanalyzable for real - time per-
formance? Unfortunately, yes, because the traditional worst - case analysis 
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leads to impractically pessimistic outcomes due to long - tailed execution time 
distributions. There is, indeed, a nonzero probability that an avalanche of cache 
misses, pipeline fl ushes, and cycle stealing would occur when executing a par-
ticular code sequence. By making experiential assumptions about the impact 
of these statistically appearing effects, however, an indicative estimation of 
performance is still possible. 

 To cope more effectively with the  “ destroyed determinism ”  dilemma, it 
could be benefi cial to create probabilistic performance models for caches, 
pipelines, and DMA for execution time analysis (Liang and Mitra,  2008 ). 
Bernat et al. introduced the notion of  probabilistic hard real - time systems
(Bernat et al.,  2002 ). Such systems should defi nitely meet all the required 
deadlines, but it is suffi cient to have a probabilistic guarantee very close to 
100% instead of an absolute guarantee. This practical relaxation reduces dras-
tically the worst - case execution times to be considered, for instance, in schedu-
lability analysis. Nonetheless, it remains problematic to use the advanced CPU 
and memory architectures in hard real - time systems.   

   7.2    APPLICATIONS OF QUEUING THEORY 

 The classic queuing problem in applied statistics involves one or more  pro-
ducer  processes called servers and one or more  consumer  processes called 
customers (Gross et al.,  2008 ). Queuing theory has been applied to the analysis 
of real - time systems this way since the mid - 1960s (Martin,  1967 ). However, it 
seems to be mostly omitted from the recent real - time literature. 

 A standard notation for a queuing system is a three tuple, such as M/M/1 
(Gross et al.,  2008 ). The fi rst component describes the probability distribution 
for the time between arrivals of customers, the second is the probability dis-
tribution of time needed to service each customer, and the third is the number 
of available servers. The letter  “ M ”  is customarily used to represent exponen-
tially distributed interarrival or service times. 

 In a real - time system, the fi rst component of the tuple could represent the 
probability distribution of the interarrival time for a certain interrupt request. 
The second component would then be the probability distribution of the time 
needed to service that interrupt. And the third component would be unity for 
a uniprocessor system and an integer > 1 for multiprocessing systems. The well -
 known properties of this queuing model can be used, for instance, to predict 
mean service times for tasks in a real - time system. 

   7.2.1    Single - Server Queue Model 

 The simplest queuing model is the M/M/1 queue, which represents a single -
 server system (see Fig.  7.7 ) with a Poisson arrival distribution (exponential 
interarrival times for the customers or interrupt requests with mean 1/ λ ), 
exponential service or processing time with mean 1/ μ , and 1/ λ     >    1/ μ . Moreover, 
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the queue length and the number of possible customers are assumed infi nite. 
As suggested before, this model can be used effectively to model certain 
aspects of real - time systems; it is particularly useful because the theory is well 
established, and hence several important results are immediately available 
(Kleinrock,  1975 ). For example, let  N  be the number of customers in the queue. 
Letting  ρ     =     λ / μ , then the expected number of customers in the queue in such 
a single - server system is  

    N =
−
ρ

ρ1
,     (7.12)   

 with the corresponding variance

    σ ρ
ρ

N
2

21
=

−( )
.     (7.13)   

 The mean time a customer spends in the entire system (a typical performance 
measure) can be expressed as

    T =
−

1
1

μ
ρ

.     (7.14)   

 In addition, a random variable  Y  for the time spent in the system has the 
exponential probability distribution

    s y e y( ) = −( ) − −( )μ ρ μ ρ1 1 .     (7.15)  

  with  y     ≥    0. 
 Finally, it can be shown that the probability that at least  k  customers are in 

the queue simultaneously is

    Pr .≥[ ] =k k in system ρ     (7.16)   

 In the M/M/1 model, the probability of exceeding a certain number of custom-
ers in the system decreases geometrically. If interrupt requests are considered 
customers in a real - time system, then two such requests in the system at the 

       Figure 7.7.     A simple single - server queuing model for analyzing real - time systems.  
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same time (a time - overloaded condition) have a considerably greater proba-
bility of occurrence than three or more simultaneous requests. Thus, building 
robust systems that can tolerate a single time overload condition will contrib-
ute signifi cantly to system reliability, while worrying about multiple time over-
load conditions is usually pointless. The following subsections describe how 
the M/M/1 queue can be used conveniently in the analysis of real - time systems.  

   7.2.2    Arrival and Processing Rates 

 Consider an M/M/l queuing system in which the customer represents an inter-
rupt request of a certain type and the server represents the particular process-
ing required for that request. In this uniprocessor model, a waiter in the queue 
represents a time - overloaded condition. Because of the nature of the arrival 
and processing times, this condition could occur in practice. Suppose, however, 
that the arrival or processing times can vary. Varying the arrival rate, which is 
represented by the parameter  λ , could be accomplished by modifying the 
hardware or altering the actual process causing the interrupt. Changing the 
processing rate, represented by the parameter  μ , could be achieved by code 
optimization or changing the CPU. In any case, fi xing one of these two param-
eters, and selecting the second parameter in such a way as to reduce the prob-
ability that more than one interrupt will be in the system simultaneously, will 
ensure that time overloading cannot occur within a specifi c confi dence inter-
val. This is illustrated in the following two examples. 
   

   
 Example: Mean Processing Time Calculation 

 Suppose 1/ λ , the mean inter - arrival time between interrupt requests, is 
known to be 10   ms. It is desired to fi nd the mean processing time, 1/ μ , nec-
essary to guarantee that the maximum probability of time overloading is 
1%. 

 By using Equation  7.16 , we obtain:

   Pr .≥[ ] = ⎛
⎝⎜

⎞
⎠⎟

≤2 0 01
2

 in system
λ
μ

  

 which can be solved for 1/ μ  as follows:

   1 0 01
1

μ λ
≤ ≤.

. ms   

 Thus, the mean processing time, 1/ μ , should be no more than 1   ms to guar-
antee with 99% confi dence that time overloading cannot occur. 
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 Obviously, the context switching time and blocking due to possible semaphore 
waits are not incorporated in these approximate analyses. Nevertheless, this 
straightforward approach can be useful in exploring the feasibility of a real -
 time system with aperiodic or sporadic interrupts, in particular.  

   7.2.3    Buffer Size Calculation 

 The M/M/1 queue model can also be used for buffer - size calculations by por-
traying the  “ customers ”  as data being placed in a buffer. The  “ service time ”  is 
the time needed to pick up the buffered data by some server process. In such 
case, the basic properties of M/M/1 queues are used to calculate the expected 
buffer size needed to hold the data using Equation  7.12 , and the mean time a 
datum spends in the system (or datum ’ s age) using Equation  7.14 . This is 
shown in the following example. 
    

 Example: Expected Number of Data Items and Their Mean Age 

 Assume a process produces data with an interarrival rate given by the 
exponential distribution  λ     =    4 e   − 4   t  , and data is consumed by a process at 
another rate given by the exponential distribution  μ     =    5 e   − 4   t  . 

 To calculate the expected number of data items in the buffer, we use 
Equation  7.12 :

   N =
−

=
−

=
λ μ

λ μ1
4 5

1 4 5
4.   

 Example: Mean Inter - Arrival Time Calculation 

 Next, presume the service time, 1/ μ , is known to be 5   ms. Here, it is desired 
to fi nd the mean interarrival time for interrupts, 1/ λ , to guarantee that the 
probability of time - overloading is not more than 1%. 

 Again,

   Pr . ,≥[ ] = ⎛
⎝⎜

⎞
⎠⎟

≤2 0 01
2

 in system
λ
μ

  

 which is now solved for 1/ λ :

   
1 1

0 01
50

λ μ
≥ ≥

.
. ms   

 Hence, the mean interarrival time between two interrupt requests should 
be at least 50   ms to guarantee only a 1% risk of time overloading. 
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   7.2.4    Response Time Modeling 

 The mean response time for a process handling an interrupt request in the 
absence of other competing processes can also be computed if an M/M/1 
model is assumed. In this case, Equation  7.14  is used to determine the mean 
time spent in the system by an interrupt request (the mean response time) as 
illustrated below. 
   

 Example: Mean Response Time and Its Probability Distribution 

 Suppose a process, which serves a sporadic interrupt that occurs with an 
inter - arrival time given by the exponential distribution function with mean 
1/ λ     =    5   ms. The process handles the interrupt in an amount of time deter-
mined by another exponential function with mean 1/ μ     =    3   ms. 

 Now, the mean response time for this interrupt request is determined by 
Equation  7.14 :

   
T =

−
=

−
=1

1
3

1
1 5
1 3

7 5
μ
λ μ

. . ms
  

 A probability distribution for the random variable,  Y , determining the mean 
response time can be found by using Equation  7.15 :

   s y e
ey

y

( ) = −( ) =−( ) −( )
−1

3
1 3 5

2
15

1 3 1 3 5
2 15

.   

 Standard deviation gives a useful indication on the statistical confi dence of 
the mean value, and it can be calculated by taking a square root of the cor-
responding variance,   σN

2 , which is fi rst determined using Equation  7.13 . 
Thus,

   σ λ μ
λ μ

N =
−( )

=
−

≈
1

4 5
1 4 5

4 52 . .   

 This is a notably large standard deviation compared to the mean value, and 
leads to the wide margin of 4    ±    4.5 for the number of data elements in the 
buffer. 

 In addition, the mean age of the data items in the buffer can be found 
by using Equation  7.14 :

   T =
−

=
−

=1
1

1 5
1 4 5

1
μ
λ μ

 s.   
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 Note that the expected response time will be deleteriously affected if the mean 
interrupt rate is greater than the mean service rate.  

   7.2.5    Other Results from Queuing Theory 

 The simple M/M/1 queue can be used also in a variety of other ways to model 
real - time systems. The only requirements are that the producer be modeled as 
a Poisson process and that the consumption time be exponential. Although 
the theoretical model assumes an infi nite - length queue, confi dence intervals 
can be fi xed appropriately for modeling practical fi nite - length queues. 

 Furthermore, consumer – producer systems that can be modeled to match 
other queue models can benefi t from the well - known results there. For example, 
an M/G/1 queue with Poisson arrival (exponential interarrival) and  general  
service time probability distributions could be used. Other results cover the 
general arrival as well as service densities (Gross et al.,  2008 ). Relationships 
involving balking consumers, those that leave the queue, can be used to rep-
resent rejected spurious interrupts or time overloads. 

 An important result in queuing theory,  Little ’ s law , has also some applica-
tion in performance prediction of real - time systems. This law, which appeared 
in 1961, is expressed below (Kleinrock,  1975 ). 

    Defi nition: Little ’ s Law 

 The expected number of consumers in a queuing system,   Nco, is equal to 
the mean arrival rate of the consumers to that system,   rar, multiplied by the 
mean time spent in the system,   tsp:

    N r tco ar sp= .     (7.17)   

 If altogether  n  producers are available, then we can generalize Little ’ s 
law as

    N r tco i ar i sp

i

n

=
=
∑ , , ,

1

    (7.18)  

  where   ri ar,  is the mean arrival rate for consumers to producer  i , and   ti sp,  is 
the corresponding mean service time. 

 What makes this law signifi cant is that the outcome is independent of any 
defi nite probability distributions related to the underlying scenario. Moreover, 
viewing each task as a producer and interrupt arrivals as consumers, Little ’ s 
law is, actually, Equation  1.2  for CPU utilization with substitutions   e ti i sp= ,  and 
  1 p ri i ar= , . 

   

www.it-ebooks.info

http://www.it-ebooks.info/


404 PERFORMANCE ANALYSIS TECHNIQUES

 Another useful result of queuing theory is the   Erlang loss formula   ( ELF ), 
which dates back to 1917 (Kleinrock,  1975 ). Originally, the term  “ Erlang ”  
refers to a unit used in telephone systems as a statistical measure of service 
load on switching equipment. Erlang represents a time - average of the number 
of concurrent telephone calls handled by the switching equipment. Nevertheless, 
an analogous scenario exists precisely in real - time systems when considering 
the service of interrupts by a number of processes. 

   

     

 Example: The Use of  ELF  in Analyzing Real - Time Systems 

 Applying the ELF of Equation  7.19  to the previous real - time example 
(where producer    =    process and consumer    =    interrupt) gives  m     =    4, 
 λ     =    1/282.5, and  μ     =    1/16.5; then

 Defi nition: Erlang Loss Formula 

 Assume there are  m  producers and a variable number of consumers. Each 
newly arriving consumer is serviced by a producer, unless all producers are 
busy (a potential blocking condition). In this case, the consumer is simply 
lost. If it is assumed that the average service time of producers is 1/ μ , and 
the average interarrival time of consumer is 1/ λ , then the probability that 
all producers are busy is given by

    P
m

k

m

k

k

mbusy = ( )

( )
=

∑
μ λ

μ λ

!

!

.

0

    (7.19)   

 This  P  busy  can be seen as an explicit measure of the  quality of service , where 
 P  busy     =    0 corresponds to the ideal condition. 

 Example: Expected Number of Consumers versus Time Loading 

 Presume a real - time system is known to have three periodic interrupts 
occurring at 10, 20, and 100   ms and a sporadic interrupt that is known to 
occur in average every 1000   ms. The average processing times for these 
interrupts are 3, 8, 25, and 30   ms, respectively. 

 Then, by Little ’ s law, the expected number of consumers in the queue 
(or time - loading) is

   Nco = + + + =3
10

8
20

25
100

30
1000

0 98. .   

 This result is equal to the one obtained by using Equation  1.2  for CPU 
utilization with the substitutions defi ned above. 
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   7.3    INPUT/OUTPUT PERFORMANCE 

 One performance area that varies greatly owing to device dependencies is the 
bottleneck presented by hard - disk and device I/O access. In many fi rm and 
soft real - time systems, disk I/O is the single greatest contributor to perfor-
mance degradation. Therefore, hard disks are typically avoided in hard real -
 time systems. Or, at least, their usage is limited to certain  “ soft ”  periods that 
are less time critical. Moreover, when analyzing a system ’ s performance 
through straightforward instruction counting, it is very diffi cult to account for 
disk device access times. In most cases, the recommended approach is to 
assume worst - case access times for all device I/O and include them in perfor-
mance estimations. 

 Furthermore, when a real - time system participates in some form of a com-
munications network — a fi eldbus network or a local area network — loading 
of the network can seriously affect the real - time performance and make esti-
mation of that performance diffi cult. Therefore, it is practical to estimate the 
performance of the system assuming fi rst that the communications network is 
in the best possible state (i.e., has no other users). Later on, direct measure-
ments of performance can be taken under varying conditions of loading, and 
a performance curve can be generated. This empirical analysis should be 
complemented with appropriate statistical methodologies. 

   7.3.1    Buffer Size Calculation for Time - Invariant Bursts 

 A buffer is a set of consecutive memory locations that provide temporary 
storage for data that are being input or output or are being passed between 
two individual tasks. The use of linear and ring buffers in real - time systems 
was discussed in Chapter  3 . 

 Assume that the data are being sent for some fi nite time called a burst 
period. If the data are produced at a rate of  P ( t ) and can be consumed at a 
rate of  C ( t ), where  C ( t )    <     P ( t ), for a burst period of  T , what is the size of the 

   Pbusy =

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ +

282 5
16 5

24

1
282 5
16 5

282 5
16 5

2
282

4

2

.
.

.
.

.
.

.55
16 5

6
282 5
16 5

24
0 783 4

.
.

.

. .
⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

≈   

 Hence, there is a probability of 78% for time overloading due to simultaneous 
interrupts. Considering the mean time - loading factor of 98% ( “ dangerous ” ) 
from the previous example, this result seems reasonable. In Chapter  3 , we 
learned from the rate - monotonic theory that a time - loading factor below 69% 
is suffi cient (but not necessary) to guarantee that no overloads occur with any 
number of tasks. Besides, a nominal time - loading factor of 60% ( “ safe ” ) is 
used commonly as a design parameter for cell phone exchanges, for instance. 
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buffer needed to prevent any data from being lost? In the trivial case when 
both  P ( t ) and  C ( t ) are constant, denoted  P  and  C , respectively, and when the 
consumption rate  C  is greater than or equal to the production rate  P , then no 
buffer is needed since the system can always consume data faster than they 
can be produced. However, if  C     <     P , then an overfl ow will eventually occur. 
To calculate the buffer size needed to avoid any overfl ow for a burst of period 
 T , note that the total data produced is  P     ·     T , and the total data consumed 
within that period is  C     ·     T . Thus, there is an excess of ( P     −     C ) T  data units. This 
is how much data must be stored in the buffer. Hence, the required buffer size, 
 B , can be calculated as

    B P C T= −( ) .     (7.20)   

   
 Example: Time - Invariant Bursts 

 Suppose a data acquisition unit is providing data to a real - time computer 
via DMA at 100   K bytes/s in bursts of 0.1 second duration occurring every 
5 seconds. The computer is capable of processing the data at 10   K bytes/s. 
What is the minimum buffer size required? Using Equation  7.20  yields:

   B = −( ) ⋅ =102400 10240 0 1 9216bytes/s  s  bytes. .   

 Handling data that occur in bursts with Equation  7.20  is possible solely if 
the buffer can always be emptied before another burst occurs. Emptying 
the buffer in the previous case will take only 0.9 second, which provides a 
suffi cient time margin before the next expected data burst. 

 If data bursts occur too frequently, then buffer overfl ow will necessarily take 
place. In such case, the real - time system becomes unstable, and either upgrad-
ing the processor (hardware/software) or slowing down the production process 
is necessary to solve the problem.  

   7.3.2    Buffer Size Calculation for Time - Variant Bursts 

 It is often not adequate to assume that burst periods are fi xed; they may fre-
quently be variable. Suppose that a task produces data at a rate given by the 
real - valued function  P ( t ). Further suppose that another task consumes or uses 
the data produced by the fi rst task at a rate determined by the real - valued 
function  C ( t ). The data are produced during a fi nite burst period  T     =     t  2     −     t  1 , 
where  t  2  and  t  1  ( t  2     >     t  1 ) represent the fi nish and start times of the data burst, 
respectively. Then the buffer size needed at time  t  2  can be expressed as

    B t P t C t dt
t

t

2

1

2

( ) = ( ) − ( )[ ]∫ .     (7.21)   

   

www.it-ebooks.info

http://www.it-ebooks.info/


INPUT/OUTPUT PERFORMANCE 407

 Furthermore, if the burst ending time is determined by a real - valued function 
 u ( t ), where  t  is the burst starting time, then for a burst starting at  t  1  and ending 
at  t  2     =     u ( t  1 ), the necessary buffer size at time  t  2  is

    B t P t C t dt
t

u t

2

1

1

( ) = ( ) − ( )[ ]
( )

∫ .     (7.22)   

   
 Example: Random Burst Period 

 In the previous example, if the data burst ends at a time instant  t  2  deter-
mined by the Gaussian bell function, then  u ( t  1 ) of Equation  7.22  can be 
expressed as

   u t e t
1

2 21

2
1

2( ) = − −( )

π
.   

 Example: Time - Variant Bursts 

 Assume, a task produces data at a rate (in bytes/s) that is determined by 
the function  P ( t ) having a discontinuous derivative:

   P t

t t

t t

t

( ) =
≤ ≤

−( ) < ≤
>

⎧
⎨
⎪

⎩⎪

10000 0 1

10000 2 1 2

0 2

,   

 with  t  representing the (non - negative) burst time. In addition, the data are 
consumed by a task at a rate determined by another function:

   C t

t t

t t

t

( ) =
( ) ≤ ≤
−( ) < ≤

>

⎧
⎨
⎪

⎩⎪

10000 4 0 2

10000 1 4 2 4

0 4

.   

 Now, if the burst period is known to be 1.6 seconds (from  t  1     =    0 to  t  2     =    1.6), 
what is the necessary buffer size? Applying Equation  7.21  yields,

   

B P t C t dt

t t dt t t

1 6

10000 4 10000 2 4

0

1 6

0

1

.
.

( ) = ( ) − ( )[ ]

= −( ) + −( ) −[ ]

∫

∫ ddt

t t t

1

1 6

2 1

0

1 6

1

2 1 6

1
10000 3 8 2 5 8 6000

.

. .

.∫
= + −⎛

⎝⎜
⎞
⎠⎟

=  bytes
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 Determining  when  the maximum buffer size is needed is easily done by graph-
ing the consumer,  C ( t ), and producer,  P ( t ), function curves, and then inspecting 
them to identify when the difference in the areas under the curves is having 
its maximum.   

   7.4    ANALYSIS OF MEMORY REQUIREMENTS 

 With memory becoming continuously denser and cheaper, memory utilization 
analysis has become less of a concern also in many real - time applications. Still, 
effi cient use of memory is particularly important in small embedded systems, 
and, for instance, in aerospace applications where savings in size, power con-
sumption, and cost are highly desirable. In a small embedded system, all the 
available memory can reside inside a microcontroller, and, hence, there is no 
way to extend it. On the other hand, in larger systems, it may be possible to 
enhance the memory by simply changing the memory components, for instance, 
from 512   K byte Flash chips to 4   M byte ones. 

   7.4.1    Memory Utilization Analysis 

 The total memory utilization in a real - time system is the sum of individual 
memory utilizations for all memory areas. Suppose that a memory map (see 
Fig.  2.7  for a typical memory map) consists of the following four areas:

   1.     Program  
  2.     Stack  
  3.     Data  
  4.     Parameters    

 Then the total memory utilization,  M r      ∈    [0, 1], is calculated as

    M M P M P M P M PT PG PG ST ST DT DT PM PM= ⋅ + ⋅ + ⋅ + ⋅ ,     (7.23)  

 Now, presume the burst starts at time  t  1     =    0, then it will end at the time 
instant  u (0)    =    0.053991. Recalculation of the buffer size yields

   

B P t C t dt

t t dt

0 053991

10000 4

0

0 053991

0

0 053991

.
.

.

( ) = ( ) − ( )[ ]

= −( )

∫

∫∫
= ( ) ≈ ⇒10000 3 8 10 9 112 0 053991

0
t

.
.

.

 bytes  bytes
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  where  M PG  ,  M ST  ,  M DT  , and  M PM   represent the memory utilization for the 
program, stack, data, and parameters areas, respectively; and  P PG  ,  P ST  ,  P DT  , and 
 P PM   are fractions of the total memory allocated for those memory areas, 
respectively. Possible memory - mapped I/O and DMA memory are not included 
in the following memory - utilization equation, since they are fi xed in hardware. 
Thus, memory utilization is calculated by dividing the number of used loca-
tions in a particular memory area by the number of available memory loca-
tions in that area:

    M
U
T

A T PG ST DT PMA
A

A

= ∈{ }, , , , , ,     (7.24)  

  where  U A   is the number of locations used in memory area   A  , and  T A   is the 
total number of available memory locations in that area. The limit value for 
 T A   is obviously determined by the hardware platform, but the actual value of 
 U A   is provided by the linker/locator program. Nonetheless, in the case of stack, 
the value of  U ST   is dependent on multiple factors, such as the real - time operat-
ing system used, the depth of nested procedure calls, the use of local variables, 
and the number of simultaneous interrupts. Therefore, the estimation of ade-
quate  T ST   must be done with utmost care, and it is recommended to leave 
reasonable safety margins between stack and other areas to prevent sporadic 
stack overfl ows. 

 Although the program instructions may be stored in RAM instead of ROM 
for increased fetching speed and possible modifi ability, all global variables are 
stored in RAM. While the size of the available RAM area is determined at 
system design time, the loading factor for this area is not known until the 
application programs have been completed. 
   

 Example: Total Memory Utilization 

 Suppose, a soft real - time system has 64   M bytes of program memory that 
is loaded at 75%, 16   M bytes of data memory that is loaded at 25%, and 
8   M bytes of stack area that is loaded at 50%. All these memory - loading 
fi gures represent the corresponding worst - case values. Besides, there is no 
separate parameters area in this particular memory confi guration. Thus, the 
total memory utilization can be calculated by Equation  7.23 

   
MT = ⋅ + ⋅ + ⋅0 75

64
88

0 25
16
88

0 5
8
88

. . .

Program Stack Data��� �� ��� �� ����

≈ 0 64. .
  

 Lastly, it should be emphasized that even if the total memory utilization is well 
below 100%, if any of the memory areas has utilization greater than 100%, 
then the real - time system cannot operate properly. 
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 In the previous example, the imaginary soft real - time system had totally 
88   M bytes of memory. However, the memory needs of embedded control 
systems are usually much lower. This is illustrated in Table  7.1 , where two 
electric motor drives are considered — a  low - cost  motor drive (with a 16 - bit 
CPU) and a high - performance  one (with a 24 - bit CPU). These memory require-
ments are typical for similar embedded systems. 

 A survey of memory behavior of embedded software is provided by Wolf 
and Kandemir  (2003) . That survey is somewhat unique, since it considers the 
memory system from the software viewpoint. They point out that  “ in many 
cases, the memory system is the primary limitation on the performance and 
power consumption of the embedded software. ”  And what makes the situation 
complicated for system designers is the interdependence between perfor-
mance and power consumption. For instance, it is hard to maximize the 
performance and simultaneously minimize the power consumption in battery -
 powered embedded systems.  

   7.4.2    Optimizing Memory Usage 

 In modern computer systems, memory constraints are not as troublesome as 
they once were. Nevertheless, in embedded applications or in legacy systems 
(those that are being reused), often the real - time systems engineer is faced 
with strict restrictions on the amount of memory available for program storage 
or for scratch - pad calculations, dynamic allocation, and so forth. Since there 
exists commonly a fundamental trade - off between memory usage and CPU 
utilization, when it is desired to optimize for memory usage, it is necessary to 
trade computing performance to save memory. For example, to calculate a 
trigonometric function accurately using a lengthy series expansion is a CPU -
 intensive approach, while a large look - up table would be a memory - intensive 
solution. And a medium - size look - up table with linear interpolation could 
provide a practical compromise between those two extremes. These implemen-
tation issues are discussed further in Chapter  8 . 

 Moreover, it is important to match the real - time processing algorithms to 
the underlying computer architecture. For instance, it is necessary to recognize 
the effects of such features as cache size (memory hierarchy) and pipeline 

  TABLE 7.1.    Memory Specifi cations of  Low - Cost  (  LC  ) and  High - Performance  (  HP  ) 
Motor Drive Products 

  Drive Id.    Memory Type    Memory Size    Purpose  

  LC    ROM    64   K bytes    Program  
  RAM    2   K bytes    Stack and data  
  EEPROM     “ Tiny ”     Parameters  

  HP    ROM     “ Small ”     Booting program  
  Flash    512   K bytes    Program (storage) and parameters  
  RAM    384   K bytes    Stack, data, and program (execution)  
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characteristics (internal parallelism) in hard and fi rm real - time applications. 
In the case of cache size, any time - critical algorithm could be tailored to maxi-
mize the cache hit ratio, and hence minimize the effective memory access time. 
In the case of pipeline characteristics, on the other hand, increasing the code ’ s 
locality of reference can reduce the amount of deleterious pipeline fl ushing. 
A pragmatic discussion on the worst - case execution time problem for real -
 time systems with careful considerations on caches and pipelines is provided 
by Wilhelm et al. (altogether 15 coauthors) in Wilhelm et al.  (2008) . 

 As mentioned above, memory utilization is less of a problem today than it 
has been in the past, but occasionally a severely constrained system needs to 
be designed in which the available main memory is small in relation to the 
program size. Besides, it is expected that this situation will arise more fre-
quently in the future, as ubiquitous and mobile computing applications call for 
very compact processors with small memories. Most of the approaches devel-
oped to reduce memory utilization date from a time when memory was at a 
premium and might violate the principles of good software engineering. 

 Memory utilization in one area can be reduced at the expense of another. 
For example, all variables that are local to procedures increase the loading in 
the stack area of memory, whereas global variables appear in the data area. 
By forcing variables to be either local or global, relief can be purchased in one 
area of memory at the expense of the other, thus making it possible to balance 
the individual memory utilizations. 

 In addition, intermediate result calculations that are computed explicitly 
require a variable either in the stack or the data area, depending on whether 
it is local or global. The intermediate value could be forced into a work register 
instead by omitting the intermediate calculation. Nonetheless, such a  “ forcing ”  
is dependent on the used programming language and the code optimization 
abilities of the compiler. 

 Memory fragmentation does not impact memory utilization directly, but it 
can produce effects resembling memory overloading. In this case, although 
suffi cient memory is available, it is not contiguous. Although memory -
 compaction schemes were discussed in Chapter  3  and it was noted that they 
are not desirable in real - time systems, they may be necessary in serious cases 
of memory overutilization. Nevertheless, this applies to soft real - time systems 
only.   

   7.5    SUMMARY 

 Performance analysis is not a separate stage in the software life cycle, but it is 
necessary to analyze the performance of software tasks or even the entire 
real - time system in all stages of the life cycle. Every performance analysis 
action can be seen as a consequence of the defi nition:  “ A real - time system is 
one whose logical correctness is based on both the correctness of the outputs 
and their timelines ”  — particularly the  “ timelines ”  part of this defi nition. Hence, 
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performance analysis is often focused on predicting, estimating, or measuring 
specifi c execution times, interrupt latencies, response times, and so on. For 
these purposes, a collection of approximate as well as more rigorous method-
ologies and tools are needed. 

 The approximate techniques include miscellaneous theoretical models, 
straightforward instruction - counting approaches with pipeline -  and cache -
 related simplifi cations, plain task models for estimating worst - case bounds, etc. 
Moreover, the use of queuing theory offers effective means for analyzing the 
behavior of buffer structures and real - time systems with aperiodic or sporadic 
events, for instance. But all these techniques are more or less approximate, 
and the advanced CPU and memory architectures do anyway destroy the 
determinism in real - time systems. So, what is the value of such imprecise tools 
for the practitioner? 

 Well, performance prediction/estimation is the best the practitioner can do 
when it is not yet possible to make direct measurements or execution profi ling 
from the completed real - time system (followed by a careful statistical analysis) 
in a realistic operating environment. Approximate results can provide useful 
insight  and  upper bounds  for critical timelines. Such complementary informa-
tion could be utilized when making specifi c design decisions, and, particularly, 
for early recognition of problematic areas in real - time software. In addition, 
the use of approximate performance analysis tools is helpful when educating 
software and systems engineers, since it is easy to illustrate the effects of 
system parameters for a certain performance measure by simple quantitative 
techniques. 

 The I/O performance of embedded systems is of great importance, because 
embedded computers typically have intensive time - critical interaction with 
their operating environment. In general, communications networks have a 
growing role in real - time applications. Nevertheless, fi eldbus and local area 
networks can be seen as signifi cant sources of uncertainty due to varying 
loading conditions, which affect the achievable response times and their punc-
tuality in distributed systems. To obtain meaningful performance estimates in 
a network environment, realistic statistical models for network traffi c should 
be used; otherwise, there is a threat to either over -  or under - estimate some 
response times drastically. Essentially, the best method would be to make 
direct performance measurements in a real operating environment with true 
traffi c conditions. Furthermore, it might be practical to implement parallel 
fi eldbus networks when the nature of transferred data is varying from high -
 priority control commands (short message frames) to low - priority operational 
statistics (long message frames), for example. In that case, one lightly loaded 
network could be reserved for high - priority messages and another network 
for all lower - priority traffi c. 

 Memory performance is the other general performance class, and it can be 
divided into two subclasses: memory speed and memory size. While the bottle-
neck of memory speed is commonly relieved with hierarchical memory systems, 
the potential problem of memory size is usually handled case by case. In 
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nonreal - time computing, the problem of memory size is less common; but in 
small embedded systems, there is frequently a necessity to perform memory -
 size optimization due to severe constraints set by ubiquitous systems, wireless 
sensor networks, and other mobile units. Therefore, the memory size and 
power consumption constraints should be addressed in all stages of the soft-
ware development project — they are not merely hardware issues. 

 Performance analysis is often followed by performance optimization actions. 
Whenever something is  “ optimized, ”  the (multi - objective) cost function —
 although it may be partly qualitative — should be explicitly defi ned. 
Unfortunately, this healthy approach is not always the standard practice; 
too often, the implicit cost functions applied are focused on a single 
objective leading to disappointing, suboptimal, and sometimes disastrous 
results. Practical issues related to performance optimization are discussed in 
Chapter  8 .   

 7.6   EXERCISES 

       7.1.    Show that there is no such value   �S for the serial code fragment  S  that 
would yield Speedup Amlahl     =    Speedup Gustafson  with   0 1< <�S  and  N     >    1.   

    7.2.    A polled - loop system checks a binary status signal every 100    μ s. Testing 
the signal and vectoring to the corresponding interrupt processing 
routine take 15    μ s. If it takes 625    μ s to serve the interrupt, what is the 
minimum response time for this polled interrupt? And what is the 
maximum response time?   

    7.3.    Consider a foreground/background system that has three task cycles: 10, 
40, and 1000   ms. If the worst - case task completion times have been esti-
mated as 4, 12, and 98   ms, respectively, what is the CPU utilization factor 
of the whole system?   

    7.4.    An intelligent node of a distributed control system has four tasks,  τ  1  –  τ  4  
(rate - monotonic priorities), with the corresponding execution periods 
 p  1     =    10   ms,  p  2     =    100   ms,  p  3     =    500   ms, and  p  4     =    1000   ms. The execution 
times are  e  1     =    2   ms,  e  2     =    15   ms,  e  3     =    100   ms, and  e  4     =    10   ms, respectively. 
However, task  τ  1  is a critical control loop, whose execution period affects 
directly to the achievable control performance. Hence, in principle, that 
execution period should be as short as possible. What is the minimum 
execution period for  τ  1  ( =     p  1,min ), if the maximum allowed CPU utiliza-
tion factor is 0.91 ( “ dangerous ” )?   

    7.5.    What is the worst - case response time for the background task in a 
foreground/background system in which the background task requires 
100   ms to complete, the single foreground task executes every 50   ms and 
requires 25   ms to complete, and context switching takes no more than 
100    μ s?   
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7.6.    Consider a preemptive priority system. The three tasks in the system, 
time needed to complete, and priority are given below: 

   Task Id.     Time Needed (ms)     Priority (1 is highest)  
τ1   40    3  
τ2   20    1  
τ3   30    2  

   Task Id.     Task Cycle     Time Needed (ms)     Priority (1 is highest)  
τ1   10   ms    4    1  
τ2   20   ms    5    3  
τ3   40   ms    10    2  
τ4   Background    5    n/a  

 If the tasks arrive in the order  τ1 ,  τ2 ,  τ3 , what is the time needed to com-
plete each task?   

7.7.    A preemptive foreground/background system has three interrupt - driven 
task cycles, described below (with context switch time ignored):

(a)     Draw an execution time line for this system.  
(b)     What is the CPU utilization factor?  
(c)     Considering the context switch time to be 1   ms, redraw the execu-

tion time line for this system.  
(d)     What is the CPU utilization factor with the context switch time 

included?      

7.8.    A producer generates data at 1 byte per 200   ns in bursts of 64   K bytes.
A consumer, on the other hand, can read the data in 32 - bit words, but 
only at a rate of 1 word every 2    μ s. Calculate the minimum buffer size 
required to avoid overfl ow, assuming there is enough time between suc-
cessive data bursts to empty the buffer.   

7.9.    Show that when the producer and consumer tasks have constant rates, 
then Equation  7.21  becomes Equation  7.20 .   

7.10.    A producer task is known to be able to process data at a rate that is 
exponentially distributed with average service time of 3   ms per datum. 
What is the maximum allowable average data rate if the probability of 
collision is to be no more than 0.1%? Assume that the data arrive at 
intervals that are exponentially distributed.   

7.11.    A computer in a soft real - time system has instructions that require two 
bus cycles, one to fetch the instruction and another to fetch the data. 
Each bus cycle takes 250   ns and each instruction takes 500   ns (i.e., the 
internal processing time is assumed negligible). The computer has a hard 
disk with 16,512 byte sectors per track. Disk rotation time is 8.092   ms. 
To what percentage of its normal speed is the computer degraded during 
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DMA transfer, if each cycle - stealing DMA operation takes one bus 
cycle? Consider two cases: 16 - bit bus transfer and 32 - bit bus transfer.   

7.12.    Which characteristics of  reduced instruction set computer  ( RISC ) archi-
tectures tend to reduce the total interrupt latency as compared to 
 complex instruction set computer  ( CISC ) architectures (see Chapter  2  
for RISC and CISC)?     
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     In addition to the fundamental hardware and software technologies, a variety 
of engineering methodologies is needed when developing real - time systems. 
While principal real - time system technologies were discussed in Chapters  2  –  4 , 
Chapters  5  –  7  covered essential system development methodologies. Now we 
could ask, is that  all  that the practitioner needs during a software development 
project? And the answer is obviously  “ no ”  — there is, indeed, a heterogeneous 
collection of techniques and tools that complement the fundamental technolo-
gies and methodologies in real - time systems engineering. This pragmatic 
chapter is devoted to a carefully selected sample of these complementary 
considerations. 

 Total system cost is an important factor in software development projects; 
therefore, it is desirable to have a reliable overall effort estimate available as 
early as possible. An accurate effort estimate is critical for managing resource 
allocation and scheduling throughout the development life cycle. Various soft-
ware metrics and experiential cost models can be used for predicting the 
progress and costs of a project. Any meaningful prediction should rely on the 
experience and insight gained in similar software projects (preferably within 
the same organization). Thus, the knowledge - driven parameters of general 
cost models could evolve in time leading to continuously improving cost 
estimates — at least in principle. Sections  8.1  and  8.2  present some commonly 
used software metrics and so - called constructive cost models, respectively. 

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.
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 Furthermore, identifying and managing uncertainty is a standard part of the 
engineering of complex systems. When dealing with real - time systems, however, 
special forms of uncertainty create even greater challenges. What are the 
reasons behind this phenomenon? Well, the obvious answer is that real - time 
systems must add the assurance of temporal correctness to the already demand-
ing tasks of sensor interfacing and actuator control (Laplante,  2004 ). But the 
problem is actually more complicated than that. Hence, it is very important to 
be aware of the different forms of multidimensional uncertainty in real - time 
systems. The broad uncertainty issue is addressed in Section  8.3 . 

 Autonomous embedded systems should remain operational for lengthy 
periods without any intervention by maintenance or service personnel. This is 
usually achieved by thorough reliability engineering, using high - quality com-
ponents and subsystems, carrying out extensive testing efforts, and so forth. 
Testing in different phases of the development project provides effective 
means for improving the initial reliability of real - time systems. Nevertheless, 
both autonomous and safety - related systems, such as elevators, planetary 
rovers, aircraft and nuclear power plants, are commonly also designed to have 
certain fault tolerance. Fault tolerance is needed to ensure that the real - time 
system remains functional after some critical fault occurs. In such cases, the 
initial reliability is not considered adequate without fault tolerance extensions, 
which can be implemented, for instance, through hardware redundancy, various 
error - correction capabilities, or functional robustness against missed deadlines. 
A practical discussion of fault - tolerant embedded systems and a variety of 
testing schemes is given in Sections  8.4  and  8.5 , respectively. 

 Moreover, there are several performance optimization techniques for time -
 critical program code. Although fl oating - point arithmetic and a complete suite 
of mathematical functions are routinely available when writing simulation and 
design software, this is not the normal situation when programming embedded 
systems. It is sometimes the case that only fi xed - point (integer) arithmetic is 
available in the CPU ’ s native instruction set, with special functions computed 
using series expansions or look - up tables — even multiplication and division 
instructions might be missing. Thus, a considerable portion of the practitioner ’ s 
design and programming effort may be needed for  “ patching ”  the limitations 
of the embedded computing platform. Section  8.6  provides an introduction to 
some performance optimization techniques used in embedded applications. 

 Finally, a contemplative summary of this chapter is given in Section  8.7 . And 
Section  8.8  contains an instructive collection of exercises on  Additional
Considerations for the Practitioner . 

 Some parts of this chapter have been adapted from Laplante  (2003) .  

   8.1    METRICS IN SOFTWARE ENGINEERING 

 Empirical software metrics are utilized for real - time systems development in 
several ways. Certain metrics can be used even during requirements engineer-
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ing to assist in resource and cost estimation. Another typical application for 
software metrics is for benchmarking. For example, if some organization has 
a collection of successfully completed real - time systems available, then com-
puting metrics for those systems yields a standard set of measurable charac-
teristics with which to compare future systems. Many metrics can also be used 
for testing in the sense of measuring desirable properties of the real - time 
software and setting specifi c limits on the bounds of those criteria. 

 Of course, metrics can also be used to track project progress. In fact, some 
companies reward employees based on the amount of software developed per 
day as measured by some of the metrics to be introduced shortly. Furthermore, 
software metrics can be used during the testing phase and for debugging pur-
poses to help focus on likely sources of errors. A pragmatic discussion on the 
broad fi eld of metrics and measuring in software engineering is available in 
Abran et al.  (2003) . 

   8.1.1    Lines of Source Code 

 The most obvious characteristic of software that can be measured is the 
number of lines of fi nished source code. Measured as thousands of lines of 
code (KLOC), the KLOC metric is often referred to as  delivered source 
instruction s ( DSI ) or  noncommented source - code statements  ( NCSS ). That is, 
a count of executable program instructions, excluding comment clauses, header 
fi les, formatting statements, macros, and anything that does not show up as 
executable code after compilation or cause allocation of memory. Another 
related metric is  source lines of code  ( SLOC ), the major difference being that 
a single source line of code may span several lines. For instance, an  if-then-
else  statement would be a single SLOC, but multiple delivered source 
instructions. 

 While the KLOC metric essentially measures the weight of a printout of 
the source code, thinking in these terms makes it likely that the usefulness of 
KLOC will be unjustifi ably dismissed as supercilious. But is it not likely that 
1000 lines of program code are going to have more errors than 100 lines of 
code? And would it not take longer to develop the latter than the former? 
Naturally, the answer is dependent on how  complex  the particular code is. 

 One of the main disadvantages of using lines of source code as a metric is 
that it can only be measured after  the code has been written. While it can be 
estimated beforehand and during software development based on knowledge 
from similar projects, this is far less accurate than measuring the already avail-
able code. Nevertheless, KLOC is a widely used metric, and in most cases is 
better than measuring nothing. Moreover, many other metrics are fundamen-
tally derived from lines of code. For example, a closely related metric is delta 
KLOC. The delta KLOC measures how KLOC changes over a fi xed period of 
time. Such a difference measure is useful, perhaps, in the sense that as a project 
nears the end of code development, delta KLOC would be expected to reduce 
correspondingly.  
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   8.1.2    Cyclomatic Complexity 

 A valid criticism of the KLOC metric is that it does not take into account the 
complexity of the software involved. For instance, 1000 lines of  printf  state-
ments probably have fewer initial defects than 100 lines of a real - time kernel. 

 To attempt to measure software complexity, cyclomatic complexity was 
introduced by McCabe to measure program fl ow - of - control (McCabe,  1976 ). 
This concept fi ts well with procedural programming, but not necessarily 
with object - oriented programming, though there are adaptations for use with 
the latter (Coppick and Cheatham,  1992 ). In any case, this metric has two 
primary uses:

   1.     To indicate escalating complexity in a module as it is coded, and, there-
fore, assist the programmers in determining the appropriate size of their 
modules.  

  2.     To determine the upper bound on the number of tests that must be 
designed and performed.    

 The cyclomatic complexity is based on determining the number of linearly 
independent paths in a program module, suggesting that the complexity 
increases with this number, while reliability decreases likewise. 

 To compute the metric, the following procedure is followed. Consider the 
fl ow graph of a program where the  nodes  represent program segments and 
 edges  represent independent paths. Let  e  be the number of edges and  n  be the 
number of nodes. Form the cyclomatic complexity,  C , as follows:

    C e n= − + 2.     (8.1)   

 This is the most generally accepted form for cyclomatic complexity. 
 To get a sense of the relationship between program fl ow for some basic 

code structures and cyclomatic complexity, refer to Figure  8.1 . Here, for 
example, a sequence of instructions has one edge, two nodes, and hence a 
complexity of  C     =    1. This is intuitively pleasing, as nothing could be less 
complex than a simple sequence. On the other hand, the particular  case  
structure shown in Figure  8.1  has six edges and fi ve nodes with  C     =    3. The 
higher value for  C  is consistent with the notion that a  case  statement with 
three alternative paths is somewhat more complex than a simple sequence of 
instructions.   
   

 Example: Cyclomatic Complexity of a Hard Real - Time Application 

 Consider a segment of program code extracted from the gyro compensation 
code for the inertial measurement system. The procedure calls between 
modules  a ,  b ,  c ,  d ,  e , and  f  are depicted in Figure  8.2 . Here  e     =    9,  n     =    6, and 
thus the cyclomatic complexity of  C     =    5.   
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 Computation of cyclomatic complexity could be done straightforwardly 
during compilation by analyzing the internal tree structure generated by the 
parser. However, commercial tools are available to perform this analysis 
conveniently.  

   8.1.3    Halstead ’ s Metrics 

 One of the drawbacks of cyclomatic complexity is that it measures complexity 
as a function of control fl ow. But complexity can also exist internally in the 
way the programming language is used. Halstead ’ s metrics (Halstead,  1977 ) 

       Figure 8.1.     Correspondence of language statements and fl ow graphs;  adapted from 
Pressman  (2000) .   

sequence if-then-else case

untilwhile

       Figure 8.2.     Flow graph for gyro compensation code of the inertial measurement system 
(Laplante,  2003 ).  

a

c

f

db

e

www.it-ebooks.info

http://www.it-ebooks.info/


422 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

measure the information content, or how intensively the programming lan-
guage is used; and the different metrics are computed as shown below:

   1.     Find  n  1 ; this is essentially the number of distinct, syntactic  begin - end  
pairs (or their equivalents), called  “ operators. ”   

  2.     Find  n  2 , the number of distinct statements (or  “ operands ” ). A statement 
is determined by the syntax of the programming language; for instance, 
a line terminated by a semicolon is a statement in C language.  

  3.     Count  N  1 , the total number of occurrences of  n  1  in the program.  
  4.     Count  N  2 , the total number of occurrences of  n  2  in the program.    

 From these basic statistics, the following metrics can now be computed. The 
program  vocabulary ,  n , is defi ned as

    n n n= +1 2.     (8.2)   

 The program  length ,  N , is defi ned as

    N N N= +1 2.     (8.3)   

 The program  volume ,  V , is defi ned as

    V N n= log .2     (8.4)   

 The  potential volume  of the program,  V   *  , is defi ned as

    V n n* log .= +( ) +( )2 22 2 2     (8.5)   

 The program  level ,  L , is defi ned as

    L V V= * .     (8.6)  

  where  L  is a measure of the level of abstraction of the program. It is believed 
that increasing this number will increase software reliability. Nonetheless, 
there exists no general proof of such a correlation. 

 Another Halstead metric measures the amount of mental effort required 
in the development of the code. The programming  effort ,  E , is defi ned as

    E V L= .     (8.7)   

 Again, decreasing the effort level is believed to increase reliability, as well as 
ease of implementation. In practice, the program length,  N , can be estimated 
easily, and hence is useful in cost and resource estimation. This length is also 
a measure of the  “ complexity ”  of the program in terms of language usage, and 
thus can be used to estimate defect rates, too. 
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 Halstead ’ s metrics, though dating back over three decades, are still widely 
used, and software tools are available to completely automate their determina-
tion. Besides, Halstead ’ s metrics can be applied both to program code and to 
requirements specifi cations, by adapting the defi nitions of  “ operator ”  and 
 “ operand ”  accordingly. In this way, comparative statistics can be generated 
from the software requirements specifi cation. Halstead ’ s metrics have also 
been used for related applications, such as identifying whether two programs 
are identical except for naming changes; something that is useful in plagiarism 
detection or software patent infringement.  

   8.1.4    Function Points 

 Function points were introduced in the late 1970s as an alternative to 
metrics based on the simple source line count (Seibt,  1987 ). The basis of 
function points is that as more powerful programming languages are devel-
oped, the number of source lines necessary to perform a given function 
decreases. Paradoxically, however, the blind cost/KLOC measure indicates 
a reduction in productivity, as the fi xed costs of programming remain largely 
unchanged. 

 One solution is to measure the functionality of software via the number of 
interfaces between modules and subsystems in programs or entire systems. A 
signifi cant advantage of the function point metric is that it can be calculated 
 before  any coding occurs based solely on the design description. 

 The following fi ve characteristics for each software module, subsystem, or 
system represent its function points:

   1.     Number of inputs ( I )  
  2.     Number of outputs ( O )  
  3.     Number of user inquiries ( Q )  
  4.     Number of fi les used ( F )  
  5.     Number of external interfaces ( X )    

 Next, consider empirical weighting factors for each characteristic that refl ect 
their relative diffi culty in implementation. For example, one set of weighting 
factors for a particular kind of system might yield the  function point  (  FP  ) 
formula:

    FP I O Q F X= + + + +4 4 5 10 7 .     (8.8)   

 The weights given in Equation  8.8  could be adjusted experientially to take into 
account factors, such as the particular application domain and software 
developers ’  experience. For instance, if  W i   are the weighting factors,  F j   are 
the  “ complexity adjustment factors, ”  and  A i   are the item counts, then  FP  is 
defi ned as:
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 Intuitively, the higher  FP , the more diffi cult the software system is to 
implement. 

 The complexity factor adjustments can be further adapted for different 
application domains, such as embedded and other real - time systems. To deter-
mine the complexity factor adjustments, a set of 14 standard questions are 
answered by the software engineer(s) with numerical responses from a scale 
from 0 to 5, where:

   0    =    No infl uence  
  1    =    Incidental  
  2    =    Moderate  
  3    =    Average  
  4    =    Signifi cant  
  5    =    Essential    

 For example, in the inertial measurement system suppose the engineering 
team was queried, and the following interrogatory and resulting answers to 
the questions were obtained:

   Q1.     Does the system require reliable backup and recovery?  
  A1.      “ Yes, this is a critical system; assign a 4. ”   
  Q2.     Are data communications required?  
  A2.      “ Yes, there is communication between various components of the 

system over the MIL – STD – 1553 serial data bus; therefore, assign a 5. ”   
  Q3.     Are there distributed processing functions?  
  A3.      “ Yes, assign a 5. ”   
  Q4.     Is performance critical?  
  A4.      “ Absolutely, this is a hard real - time system; hence, assign a 5. ”   
  Q5.     Will the system run in an existing, heavily utilized operational 

environment?  
  A5.      “ In this case, yes; assign a 5. ”   
  Q6.     Does the system require on - line data entry?  
  A6.      “ Yes, via multiple sensors; thus, assign a 4. ”   
  Q7.     Does the on - line data entry require the input transactions to be built 

over multiple screens or operations?  
  A7.      “ Yes it does; assign a 4. ”   
  Q8.     Are the master fi les updated on - line?  
  A8.      “ Yes they are; therefore, assign a 5. ”   
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  Q9.     Are the inputs, outputs, fi les, or inquiries complex?  
  A9.      “ Yes, they involve comparatively complex sensor inputs; assign a 4. ”   

  Q10.     Is the internal processing complex?  
  A10.      “ Clearly it is, the compensation and other algorithms are nontrivial; 

hence, assign a 4. ”   
  Q11.     Is the code designed to be reusable?  
  A11.      “ Yes, there are high upfront development costs and multiple applica-

tions have to be supported for this investment to pay off; assign a 4. ”   
  Q12.     Are the conversion and installation included in the design?  
  A12.      “ In this case, yes; thus, assign a 5. ”   
  Q13.     Is the system designed for multiple installations in different 

organizations?  
  A13.      “ Not organizations, but in different applications, and therefore this 

must be a highly fl exible system; assign a 5. ”   
  Q14.     Is the application designed to facilitate change and ease of use by the 

user?  
  A14.      “ Yes, absolutely; hence, assign a 5. ”     

 These quantifi ed answers are summarized in Table  8.1 . Then applying Equation 
 8.9  yields:

   FP A W A Wi i

i

i i

i

=
⎛
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⎞
⎠⎟

⋅ + ⋅ ⋅ + ⋅[ ]( ) =
⎛
⎝⎜

⎞
⎠⎟

⋅∑ ∑0 65 0 01 6 4 8 5 1 29. . . .     

  TABLE 8.1.    Quantifi ed Answers, A1 – A14, to the 
Complexity Factor Questionnaire for the Inertial 
Measurement System 

   Answer     0     1     2     3     4     5  

  A1                     ×       
  A2                         ×   
  A3                         ×   
  A4                         ×   
  A5                         ×   
  A6                     ×       
  A7                     ×       
  A8                         ×   
  A9                     ×       
  A10                     ×       
  A11                     ×       
  A12                         ×   
  A13                         ×   
  A14                         ×   
  Total #    0    0    0    0    6    8  
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 Now, suppose that it was determined from the Software Requirements 
Specifi cation that the item counts were as follows:

   A I1 5= =  

   A U2 7= =  

   A Q3 8= =  

   A F4 5= =  

   A X5 5= =   

 Using the weighting factors from Equation  8.8  and an additional one 
for  A  5 :

   W1 4=  

   W2 4=  

   W3 5=  

   W4 10=  

   W5 7=   

 Including these into Equation  8.9 , yields

   FP = ⋅ + ⋅ + ⋅ + ⋅ + ⋅( )⋅ ≈5 4 7 4 8 5 5 10 5 7 1 29 223. .   

 For the purposes of comparison, and as a project management tool, function 
points have been mapped to the relative lines of source code in particular 
programming languages (Jones,  1995 ). Such mappings are shown in Table  8.2 . 
For instance, it is intuitively acceptable that it would take many more lines 
( + 150%) of assembly language code to express a certain functionality than it 
would take when using a high - level language like C. In the case of the inertial 
measurement system, with  FP     =    223, it is expected that about 28.5 thousand 
lines of code would be needed to implement the functionality. In turn, it should 
take many less ( − 50%) to express that same functionality in a more abstract 
language such as C +  + . The same observations that apply to programming 
might also apply to maintenance, as well as to the reliability of software.   

  TABLE 8.2.    Programming Language and Lines of Code 
per Function Point ;  Adapted from (Jones,  1998 )   

   Programming Language     Lines of Code/Function Point  

  Assembly    320  
  C    128  
  C +  +     64  
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 Real - time applications such as the inertial measurement system are 
highly complex and hence they have many complexity factors rated at  “ 5, ”  
whereas in other kinds of systems, such as database applications, these factors 
would be much lower. This is an explicit statement about the diffi culty in 
developing and maintaining code for embedded real - time systems versus non-
embedded ones. 

 The function point metric was developed for use in business information 
processing, and not in embedded systems. Nevertheless, a special form of func-
tion points is used widely in real - time systems, especially in large - scale real - time 
databases, multimedia applications, and Internet support (see the following 
subsection). These systems are data driven and often behave like the large - scale 
transaction - based systems for which function points were originally developed. 

 The International Function Point Users Group ( http://www.ifpug.org/, last 
accessed August 23, 2011 ) maintains a Web database of weighting factors and 
function point values for a variety of application domains. These can be used 
for comparison.  

   8.1.5    Feature Points 

 Feature points are an extension of function points developed by Software 
Productivity Research Inc., in 1986. Feature points address the fact that the 
function point metric was developed for business information systems and 
hence is not particularly applicable to real - time systems, such as mobile com-
munications or industrial process control. The motivation is that these systems 
exhibit high levels of algorithmic complexity, but relatively sparse inputs and 
outputs. 

 The feature - point metric is computed in a similar manner to the function 
point, except that a new term for the number of algorithms,  A  6  with weighting 
factor  W  6 , is added to Equation  8.9 . Besides,  “  A  ”  for  “ algorithms ”  is added to 
Equation  8.8 . 

 For example, suppose that the item counts are the same as in Equation  8.8  
with  A     =    7, and the empirical weightings are correspondingly:

   W1 3=  

   W2 4=  

   W3 5=  

   W4 4=  

   W5 7=  

   W6 7=   

 Then the feature - point metric,  FP      +  , is
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    FP I O Q F X A+ = + + + + +3 4 5 4 7 7 .     (8.10)   

 As another example, consider the inertial measurement system. Using the 
same item counts as computed before, suppose that the item count for algo-
rithms,  A     =    10. Now using the same complexity adjustment factor,  FP      +   would 
be computed as follows:

   FP+ = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅( )⋅ ≈5 3 7 4 8 5 10 4 5 7 10 7 1 29 294. .   

 If the system were to be written in C language, it could be estimated that 
approximately 37.6 thousand lines of code would be needed (use Table  8.2  and 
substitute  FP   +      →     FP ), a clearly more pessimistic estimate than that computed 
earlier using the function point metric.  

   8.1.6    Metrics for Object - Oriented Software 

 While any of the previously discussed metrics can be used with object - oriented 
code, particularly with respect to the code within methods, other metrics are 
better suited for this setting (Coppick and Cheatham,  1992 ). For instance, some 
of the metrics that have been used include:

    •      A weighted count of methods per class  
   •      The depth of inheritance tree  
   •      The number of children in the inheritance tree  
   •      The coupling between object classes  
   •      The lack of cohesion in methods    

 As with any metrics, the key to obtaining benefi ts is consistency.  

   8.1.7    Criticism against Software Metrics 

 Many software engineers object to the use of empirical metrics in one or all 
of the ways that have been described. Several counterarguments to the use of 
metrics have been stated, for example, that they can be misused or that they 
are a costly and an unnecessary distraction. For instance, metrics related to 
the raw number of code lines imply that the more powerful the language, the 
less productive the programmer appears. Hence, obsessing with code produc-
tion based on lines of code can be seen as a meaningless endeavor. 

 Metrics can also be misused through carelessness, which can lead to bad 
decision making. Finally, metrics can be misused in the sense that they are 
abused to  “ prove a point. ”  For example, if a project manager wishes to assert 
that a particular member of the software team is  “ incompetent, ”  he could 
frivolously base his assertion on the lines of code produced per day without 
accounting for other factors at all. 
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 Another objection is that measuring the correlation effects of a single 
metric without clearly understanding the causality is dangerous. For instance, 
while there are numerous studies suggesting that lowering the cyclomatic 
complexity leads to more reliable software, there just is no objective way to 
know why. Obviously, the arguments about the complexity of well - written code 
versus  “ spaghetti code ”  apply, but there is just no way to show the causal 
relationship. Therefore, the opponents of metrics might argue that if in a study 
of several companies, it was shown that software written by engineers who 
always wore blue shirts had statistically signifi cant fewer defects in their code, 
companies should start requiring a dress code of blue shirts! This illustration 
is a hyperbole, but the point of correlation versus causality is made clear. While 
it is possible that in many cases these objections may be valid, software metrics 
can be either useful or harmful, depending on how they are used (or abused). 

 The objections raised about software metrics, however, suggest that best 
practices need to be used in conjunction with metrics. These include establish-
ing the purpose, scope, and scale of the metrics. In addition, any serious metrics 
program needs to be incorporated into the project management plan by setting 
solid measurement objectives, defi ning appropriate procedures, and perform-
ing measurements throughout the software life cycle. Besides, it is important 
to create a positive team culture where honest measurement and collection of 
data is encouraged and rewarded.   

   8.2    PREDICTIVE COST MODELING 

 Resource and cost estimation are imperative issues in any software develop-
ment project. One of the most widely used and appreciated resource estima-
tion tools is Boehm ’ s algorithmic COCOMO, fi rst introduced in 1981 (Boehm, 
 1981 ). COCOMO is an acronym for  Constructive Cost Model , and it is a pre-
dictive model. This predictive nature makes it possible to obtain meaningful 
resource estimates already early in the software development life cycle. There 
are three forms of the original COCOMO 81:  basic ,  intermediate , and  detailed , 
as well as the more recently released COCOMO II (Boehm et al.,  2000 ). 

   8.2.1    Basic  COCOMO  81 

 The basic COCOMO 81 is based on the simple KLOC metric (thousands of 
lines of code). In short, for a given piece of software, the development effort 
applied (in person months),  PM , to complete the software is a nonlinear func-
tion of  L , the KLOC measure, and two empirical parameters,  a  and  b , which 
will be explained shortly. The effort equation for the basic COCOMO 81 can 
thus be expressed as:

    PM a Lb= ⋅ ,     (8.11)  
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  where the parameters  a  and  b  are empirical functions of the type of software 
system to be developed, and they are determined from extensive data col-
lected from representative projects. For example, if the software system is 
 organic , that is, one that is not heavily embedded in the hardware, then the 
following parameter values are used:  a     =    2.4 and  b     =    1.05. On the other hand, 
if the system is considered  semidetached , that is, partially embedded, then these 
values should be used instead:  a     =    3.0 and  b     =    1.12. Finally, if the system is truly 
 embedded , that is, intimately tied to the underlying hardware (like the inertial 
measurement system), then the following parameters are used:  a     =    3.6 and 
 b     =    1.20. Note that the exponent  b  for the embedded alternative is the highest 
( b     =    1.20    >    1.12    >    1.05), leading to the largest effort to complete for an equal 
number of lines of code. The remarkable effect of software type on the person -
 month estimates for a few KLOC values is depicted in Figure  8.3 .   

 Recall that for the inertial measurement system, using feature points, 37.6 
thousand lines of C code were estimated. Nonetheless, if we use this estimate 
in Equation  8.11 , the  technical complexity  becomes actually double counted as 
the exponent 1.20 is based on essentially the same parameter set as the techni-
cal complexity factor 1.29 that was used earlier for calculating the feature 
points. Therefore, we have to scale down the feature points, 294/1.29    =    228, and 
use the corresponding estimate of 29.2 thousand lines of C code (see Table 
 8.2 ). Finally, an effort estimate is obtained using Equation  8.11 :

   PM = ⋅( ) ≈3 6 29 2 206 41 20. . . ..  person months   

 The basic COCOMO 81 also provides a formula for estimating the calendar 
time (in months) to develop the whole software,  DT , when having the corre-
sponding  PM  available. For this purpose, two other empirical parameters,  c  
and  d , are introduced. The parameter  c     =    2.5 is independent of the type of the 
software, while  d  has values 0.38, 0.35, and 0.32 for organic, semidetached, and 
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       Figure 8.3.     Person - month,  PM , estimates for different types of software as a function 
of the KLOC measure,  L     ∈    {2, 5, 10, 20, 40}.  
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embedded software, respectively. Now, the development time can be deter-
mined as:

    DT c PMd= ⋅ .     (8.12)   

 By continuing with the inertial measurement system example, we can next 
calculate the estimated number of months the project would take using 
Equation  8.12 :

   DT = ⋅( ) ≈2 5 206 4 13 80 32. . . ..  months   

 From the estimated  PM  and  DT  values, the number of software engineers 
required,  SE , can now be determined as follows:

    SE PM DT= .     (8.13)   

 Equation  8.13  gives for the inertial measurement system:  SE     =    206.4/13.8    ≈    15 
persons. Hence, 15 software engineers are needed to complete this demanding 
software project in about 14 calendar months (assuming 152 effective working 
hours per month). It should be emphasized, however, that the basic COCOMO 
is solely intended for making rough initial estimations of project costs and 
resources. Miyazaki and Mori evaluated COCOMO 81 with a set of real - world 
project data and concluded that the original COCOMO clearly overestimated 
the efforts required to develop software in their environment (Miyazaki and 
Mori,  1985 ).  

   8.2.2    Intermediate and Detailed  COCOMO  81 

 The intermediate and detailed COCOMO 81 dictates the kinds of adjustments 
used to improve the modeling accuracy. Consider the intermediate model, for 
instance. Once the effort estimate for the basic model is computed based on 
the appropriate parameters and number of lines of code, further adjustments 
can be made based on additional factors. In this case, for example, if the lines 
of code to be produced consist of design - modifi ed code, code - modifi ed code, 
and integration - modifi ed code rather than completely new code, a linear com-
bination of these relative percentages is used to create an adaptation -
 adjustment factor, as will be discussed below. 

 Adjustments are then made to  PM  based on two sets of factors, the adapta-
tion adjustment factor and the effort adjustment factor. The former is a 
measure of the kind and proportion of program code that is to be used in the 
system, namely, design modifi ed, code modifi ed, or integration modifi ed. And 
the adaptation - adjustment factor,  A , is given correspondingly:

    
A = − ⋅( ) − ⋅( ) −

⋅
100 0 4 0 3

0 3

. .

.

% design modified % code modified

% iintegration modified( ).
    (8.14)   
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 For totally new software components,  A     =    100, since there is no reused code. 
On the other hand, if all of the code is reused as  design modifi ed , then  A     =    60. 
The percentages of design - , code - , and integration - modifi ed code reused do 
not have to add up to 100 unless all of the code has been reused in some 
manner. For example, if 10% of the code is reused as design modifi ed, 15% is 
reused as code modifi ed and 20% as integration modifi ed, then A    =    100    −    
0.4    ·    10    −    0.3    ·    15    −    0.3    ·    20    =    85.5. 

 Next, an adjusted value for the number of code lines,  L  ′ , is obtained as:

    ′ = ⋅L L A 100.     (8.15)   

 You can see how as  A  varies, it refl ects the advantages of reuse in the effective 
adjusted lines of code count, for instance, if  A     =    90 in Equation  8.15 , then 
 L  ′     =     L     ·    0.9. This  L  ′  is now used in Equation  8.11  in place of the original  L . 

 A tuned version of the effort - adjustment factor can be made to the prior 
adjusted number of code lines,  L  ′ , based on a variety of case - dependent attri-
butes, including:

    •       Hardware  attributes, such as performance constraints  
   •       Personnel  attributes, such as applications experience  
   •       Product  attributes, such as the required reliability  
   •       Project  attributes, such as the CASE tools used    

 Each of these attributes is assigned a number (typical values from 0.8 to 1.5) 
depending on an assessment that rates the attributes on a relative scale. Then, 
a straightforward linear combination of the attribute numbers is formed based 
on the particular software type. This provides another adjustment factor, call 
it  E . Hence, the second adjustment leading to the effort - adjusted number of 
code lines,  L  ″ , is made based on the formula:

    ′′ = ⋅ ′L E L .     (8.16)   

 This fi nally yields to the enhanced effort equation:

    PM a L b′′ = ⋅ ′′( ) .     (8.17)   

 Furthermore, the detailed model differs from the intermediate model in that 
tailored effort - adjustment factors are used for each phase of the software life 
cycle. 

 COCOMO is widely recognized and respected as a project management 
tool. It is useful even if the background of the empirical model is not really 
understood. COCOMO software is commercially available, and easy - to - use 
resource/cost calculators can be found on the Web for free usage. 

 One drawback to COCOMO 81, however, is that it does not take into 
account the leveraging effect of various productivity tools. Moreover, the cost 
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model bases its estimation almost entirely on the number of lines of code, not 
on actual program attributes, which is something that feature points do. Feature 
points and function points, however, can be converted easily to lines of code 
using standard conversion tables, such as Table  8.2 .  

   8.2.3     COCOMO   II  

 COCOMO II is a major revision of COCOMO 81 that was introduced in 2000 
to deal with some of the original version ’ s obvious shortcomings (Boehm et 
al.,  2000 ). The newer model helps to accommodate more expressive program-
ming languages, as well as advanced software generation tools that tend to 
produce more code with essentially the same human effort. 

 In addition, in COCOMO II, some of the more important factors that con-
tribute to a project ’ s expected duration and cost are included as new scale 
drivers. These scale drivers are used to modify the exponent  b  in the funda-
mental effort equation:

 •      Architectural/risk resolution  
 •      Development fl exibility  
 •      Process maturity  
 •      Project novelty  
 •      Team cohesion    

 The scale drivers of project novelty and development fl exibility, for instance, 
describe many of the same attributes found in the adjustment factors of the 
original COCOMO 81. 

 It is beyond the scope of this real - time systems text to discuss COCOMO 
or its use in more detail. As with any metric or model, it must be used carefully 
and be based on insight and experience. Nevertheless, using such a well - proven 
cost model is certainly better than using none at all. 

 A recent overview of the main contributions on software cost and resource 
estimation over the past four decades is available in Boehm and Valerdi 
 (2008) . That article provides an insightful discussion on the evolution of 
COCOMO and other signifi cant models.   

   8.3    UNCERTAINTY IN REAL - TIME SYSTEMS 

 Over the past three decades, the focus of embedded systems engineering has 
evolved from simply meeting the performance goals to design for uncertainty . 
In this section, the diverse nature of uncertainty in real - time systems is exam-
ined. Our emphasis is on the identifi cation of uncertainty in software through 
 “ tell - tale ”  behaviors and  “ code smells. ”  Besides, practical techniques for man-
aging, mitigating, or even eliminating the uncertainty are given. 

www.it-ebooks.info

http://www.it-ebooks.info/


434 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

       Figure 8.4.     A real - time system with uncertainty can be viewed as having dimensions 
of time, space, and behavior, and some uncertainty margin in all these dimensions.  
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 This section is adapted from Laplante  (2004) . 

   8.3.1    The Three Dimensions of Uncertainty 

 Uncertainty exists in real - time systems along three principal dimensions:  time , 
 space , and  behavior  as illustrated in Figure  8.4 . If we try to reduce uncertainty 
in any one of these dimensions, at least one of the other two will suffer 
increased uncertainty. This empirical observation is analogous to the well -
 known Heisenberg Uncertainty Principle in quantum mechanics.   

    Defi nition: Heisenberg Uncertainty Principle 

 The precise position and momentum of a particle cannot be known simul-
taneously; trying to be more certain about one comes at the expense of 
increased uncertainty in the other. 

 By defi nition, real - time systems have a requirement of timeliness, and it is 
largely the unpredictability of response times that makes real - time systems so 
challenging to design and analyze. Quantifying the uncertainty of time is the 
focus of mainstream real - time systems research and is epitomized by the 
primary useful result of such research, the  rate - monotonic  ( RM ) theorem 
(discussed in Chapter  3 ). The RM theorem states that the optimal scheduling 
algorithm for a set of periodic preemptive priority tasks on a single processor 
is to assign the task priorities so that the higher the rate of execution, the 
higher the priority. Nonetheless, this theorem holds only when aperiodic/
sporadic tasks, mutual exclusion, and resource contention are excluded. When 
those realistic elements are included, the RM theorem breaks down and uncer-
tainty in response times begins to grow. 
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 Returning to Figure  8.4 , the space dimension deals with the physical 
resources that the real - time system manages, including its memory. Like 
Heisenberg uncertainty, trying to improve the certainty in one dimension 
comes at the cost of uncertainty in another. For example, trying to bring uncer-
tain behavior under control costs space (more memory or hardware) or com-
putation time. On the other hand, occasional  “ cheating ”  on timeliness perhaps 
by prematurely terminating some iterative calculation can lead to uncertain 
behavior.  

   8.3.2    Sources of Uncertainty 

 Let us look more closely at the illustration of Figure  8.4  and examine the 
potential sources of uncertainty, particularly along the axis of behavior. To do 
this, we view the real - time system as a state - based transformation of a set of 
inputs and current state into a new state and corresponding set of outputs. 
Each of these essential elements can incorporate uncertainty. For instance, 
uncertainty can be found in any of the inputs to the system. Similarly, the state 
of the system might be uncertain at any time, resulting in loss of control (but 
every control system must be stable all of the time). The transition from one 
state to another can also be nondeterministic, that is, uncertain. Moreover, the 
outputs to the operating environment are not always predictable in poorly 
designed or misused real - time systems. Finally, the real - time system must 
usually interact with an uncertain environment. 

 Environmental uncertainty can stem from many sources. For example, it 
can be caused by a chaotic  system under control  ( SUC ). Chaotic systems are 
those in which small changes in inputs lead to radically changed state behavior 
and outputs. Hence, chaotic systems present signifi cant challenges to the real -
 time systems engineer. Complicating the situation is the fact that corrupted 
outputs from the real - time system to the SUC can even cause a stable SUC 
to appear to be chaotic. The classic inverted pendulum or cart - and - pole control 
problems create environmental uncertainty through their inherent instability, 
for instance. 

 Another form of environmental uncertainty arises from carelessly defi ned, 
incomplete, or inconsistent software requirements. If such uncertainties are 
left unattended, they will lead to insidious uncertainty in the realized system. 

 In addition, a further kind of uncertainty arises from the physical environ-
ment, for example, due to single event upsets in space or various peculiarities 
of military battlefi eld conditions. Of course, controlling the physical environ-
ment is generally impossible. Therefore, any real - time system must be con-
structed to be suffi ciently tolerant (or robust) to environmental infl uences. 

 A kind of environmental uncertainty results also from the testing process. 
Testing should be used to try to control all sources of uncertainty and verify 
the coping mechanisms. However, testing itself is inherently uncertain. For 
instance, is the test coverage adequate, or is the test strategy applied the 
correct one? There is no way to know the answers for certain. In fact, just 
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because a real - time system has passed some test suite does not mean that the 
system would be 100% defect free. 

 Uncertainty of the data input into the real - time system is often due to 
malfunctioning devices, disturbances, noise, data acquisition errors, and so on. 
Some of the bad inputs, however, might be the result of problems with the 
operating environment and not the system under control. In any case, the 
real - time systems engineer must never trust the external inputs to the system —
 they need to be sanity checked, verifi ed, or fi ltered before use. 

 The outputs of the real - time system can also be corrupted by device mal-
functioning and data conversion errors, presenting uncertainty to the system 
under control. Besides, the real - time system could then receive corrupted 
inputs from the system under control, and this corruption is actually based on 
its own corrupted outputs. 

 At any time for a given set of inputs and current state, we should be able 
to predict the next state of the real - time system correctly. In uncertain situa-
tions, this is not always possible. For example, undesired jumping of the 
program counter due to such causes as single event upsets, pointer misuse, or 
 “ phantom ”  interrupts can lead to uncertainty of state. Since we cannot open 
up the  “ black box ”  and look inside, we can never be certain of the integrity of 
any state. 

 Behavioral uncertainty as a whole is a wide class of uncertainty that incor-
porates timing and scheduling problems, the uncertainty of component behav-
ior, and the uncertainty of the programming language being used. 

 Uncertainty in time arises from the fact that the time it takes for the system 
to make a transition from an input set and current state to the output set and 
new state is not necessarily deterministic. Here, we are faced with a dilemma: 
most task - scheduling problems are NP - complete or NP - hard, and thus not 
yielding to straightforward solutions. 

 Moreover, uncertainty of component behavior in off - the - shelf or legacy 
hardware/software is a reality that must frequently be addressed. There are 
techniques, however, that can help to reduce this form of uncertainty. For 
instance, if the source code is available, fault - injection could be used to examine 
the software component. In this experimental technique, deliberate faults are 
created in the software at critical points to see how the faults propagate 
throughout the code (Voas and McGraw,  1998 ). Other approaches would 
incorporate rigorous testing of the off - the - shelf or legacy components and not 
rely on the possibly available second - hand information. 

 Another form of behavioral uncertainty is caused by the use of program-
ming languages and their compilers. For example, in object - oriented languages, 
composition is preferred to inheritance. Yet the former yields more uncertain 
behavior and is diffi cult to test. In both the object - oriented and procedural 
conventions of programming, unbounded recursion, dead and unreachable 
code, unbounded  while  loops, and left - in debug statements, can all lead to 
uncertain behavior. Clearly, knowing how compiler and run - time support code 
behave is critical in controlling such uncertainty.  
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   8.3.3    Identifying Uncertainty 

 The nondeterministic behavior of real - time systems may be painfully visible. 
Bizarre outputs, hung systems, missed interrupts, and sporadic deadlocks are 
all symptoms of uncertainty. The problem is that it is not always clear if the 
uncertainty lies in the environment, input, output, state, or system behavior. 
One potential technique for identifying the source of the uncertainty is through 
code smells. A code smell is a term that refers to a somewhat subjective indica-
tor of poor design or coding style (M ä ntyl ä  et al.,  2004 ). More specifi cally, the 
term relates to observable signs that suggest the need for refactoring — a 
behavior preserving code transformation enacted to improve some feature of 
the software, which is evidenced by the code smell. 

 A traditional code smell that hints at behavioral uncertainty involves timing 
delays implemented as while  or other loops. These  software delays  rely on 
the computational cost of the loop construct plus the execution time of the 
body code to achieve a specifi c delay. Here, the problem is that if the underly-
ing computer architecture or characteristics of instruction execution change, 
then the delay length is inadvertently altered, leading to timing uncertainty. 
The obvious solution would be to use some reliable timing mechanism pro-
vided by the  real - time operating system  ( RTOS ). 

 Another sign of uncertainty is a  dubious constraint . This particular code 
smell involves response time constraints that have a questionable or nonat-
tributable origin. In some cases, real - time systems have specifi c deadlines that 
are based on nothing more than guessing or on some forgotten and since 
eliminated requirement. The refactoring is to discover the true reason for such 
a constraint. If the origin can be determined, then the constraint may be 
relaxable. 

 The  speculative generality  code smell relates to hooks and special cases, 
which are built into the code to handle things that are not currently required 
(it is uncertain that they are needed). Real - time systems should not contain 
any  “ what – if ”  code, since it can lead to testing anomalies and possibly unreach-
able code. 

 Furthermore, the  tell - tale comment  code smell involves comments that are 
excessive or tend to explicate the code beyond a reasonable level. Explicating 
comments are often an indicator of a serious problem. Comments that explic-
itly acknowledge uncertainty, such as  “ do not remove this piece of code, ”  or 
 “ if you remove this statement the code does not work, I do not know why ”  
(and we have seen these in real,  “ industrial - strength ”  code) are natural alarms 
for concern. These kinds of nonprofessional comments indicate that there are 
probably hidden timing problems. In any case, the refactoring involves rewrit-
ing the code so that such vague comments become unnecessary. 

 In addition to the above code smells, three typical smell indicators for 
object - oriented programming, that is,  large class ,  long parameter list , and 
duplicate code , were suggested for automatic code analysis in M ä ntyl ä  et al. 
 (2004) .  
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   8.3.4    Dealing with Uncertainty 

 Uncertainty in real - time software, if properly managed, can be reduced over 
time, but if left unattended will most likely grow. We have already explored 
the reduction of uncertainty through refactoring of code indicated by bad 
smells. There are other useful techniques, too. 

 Environmental uncertainty due to poor requirements could be managed by 
consistency checking and goals - based requirements analysis. In this context, 
goals are high - level objectives of business, organization, or system; and a 
requirement specifi es how a goal should be accomplished by the proposed 
real - time system. Other formal methods could be helpful, as well for the same 
purpose (Hinchey and Bowen,  1999 ). 

 For uncertain inputs, typical solutions include the use of averaging, median 
fi lters, Kalman fi lters, data fusion, as well as roll backing and use of recovery 
blocks. These general techniques can also be used to control the uncertainty 
of outputs. 

 In the case of state - based uncertainty, in addition to the refactorings already 
mentioned, model checking and black - box recorders can be helpful. Model 
checking is a formal method that uses fi nite state machines to verify the state 
behavior (Chandra et al.,  2002 ). A software black box, on the other hand, is a 
run - time tool that uses checkpointing to record functional transitions (Elbaum 
and Munson,  2000 ). The recorded transitions are used for postmission analysis 
to determine the likeliest sequence of execution that led to a particular failure. 

 Another form of execution time uncertainty may arise due to gradual build 
up of various truncation and round - off errors (the running software ages). 
These can be managed by stopping and restarting the system regularly. Such 
a blunt technique is called rejuvenation (Bernstein and Yuhas,  2005 ); however, 
it should be used cautiously. 

 Uncertainty is a pervasive and persistent quality of real - time systems. The 
total elimination of uncertainty is practically impossible, because of the 
complex nature of the systems under control as well as the uncertain operating 
environments (Littlewood,  1994 ). But rather than admit defeat, a proactive 
approach to mitigating uncertainty is needed. Such an approach starts with 
acknowledging uncertainty ’ s existence and then identifying its primary causes 
so that an effective mitigation strategy can be designed. Each mitigation strat-
egy should preferably be a custom - designed solution. Table  8.3  summarizes 
the different kinds of uncertainty in real - time systems, their typical signs, pos-
sible causes, as well as potential solutions to the underlying problem.     

   8.4    DESIGN FOR FAULT TOLERANCE 

 Fault tolerance in real - time systems is the tendency to continue functioning in 
the presence of hardware or software failures (Koren and Krishna,  2007 ). 
Sometimes, it may be necessary to reduce the quality of functioning to a 
minimum acceptable level due to a sensor failure, for instance. In real - time 
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  TABLE 8.3.    Summary of Kinds of Uncertainty in Real - Time Systems with Typical 
Signs, Possible Causes, and Potential Solutions   (Laplante,  2004 )   

   Kinds of 
Uncertainty

   Typical Sign(s)     Possible Cause(s)     Potential 
Solution(s)

  Environmental  
     System under 

control
  Bizarre inputs or 

outputs
  Nature of 

application; faulty 
hardware

  Use fault - tolerant 
design

     Operating 
environment

  Bizarre inputs or 
outputs

  Humidity, 
temperature, or 
electromagnetic
interferences

  Use fault - tolerant 
design and 
implementation
approaches

     Requirements    Sparse 
requirements; 
numerous  “ to be 
determined”   

  Inconsistent or 
incomplete
requirements

  Goal - based 
requirements
analysis; formal 
consistency 
checking

     Testing    System that passes 
tests fails in the 
fi eld  

  Poor testing regimen 
or incomplete 
coverage

  Improve testing 
process

     Input    Strange behavior; 
explicating
comments

  Unstable input 
sources; defective 
hardware

  Averaging, median 
fi lter, Kalman 
fi lter, data fusion, 
rollback and 
recovery blocks 

     Output    Strange behavior; 
explicating
comments

  Defective hardware; 
corrupted inputs 
from system 
under control  

  Averaging, median 
fi lter, Kalman 
fi lter, data fusion, 
rollback and 
recovery blocks 

     State    Strange behavior; 
explicating
comments

  Program counter 
jumping, pointer 
errors, phantom 
interrupts

  Model checking, 
software black 
boxes, interrupt 
service routines 
for all interrupts  

  Behavioral  
     Timing and 

schedulability
  Dubious 

constraints; 
missed deadlines; 
explicating
comments

  Speculative 
generality, delays 
as loops, or failed 
off - the - shelf 
components

  Model checking; 
use RTOS 
provided timing 
facilities; fault 
injection

     Language    Explicating 
comments

  Compiler - induced 
errors

  Verify the compiler; 
improve coding 
techniques

     Off - the - shelf 
components

  Missed deadlines; 
inexplicable
failure

  Poorly tested 
software or 
hardware; falsely 
advertised claims  

  Fault injection; 
software black 
boxes
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systems, fault tolerance includes also such design choices that transform hard 
real - time deadlines into softer ones. These are encountered in interrupt - driven 
systems, which can provide for detecting and reacting to a missed deadline. 

 Fault tolerance designed to upgrade the initial reliability in embedded 
systems can be classifi ed as either  spatial  or  temporal . Spatial fault - tolerance 
includes methods involving redundant hardware and/or software solutions, 
whereas temporal fault - tolerance involves miscellaneous techniques that allow 
for tolerating missed deadlines. Of these two, temporal fault tolerance is more 
diffi cult (often impossible) to achieve, since it requires careful algorithm design. 

   8.4.1    Spatial Fault - Tolerance 

 The reliability of real - time systems can usually be increased using some form of 
spatial fault - tolerance based on  redundant hardware . In one typical scheme, two 
or more pairs of redundant hardware devices provide inputs to the system. Each 
device compares its output to its companion. If the results are unequal, the pair 
declares itself in error, and their outputs are ignored. An alternative is to use a 
third device to determine which of the other two is correct. In either case, the 
unavoidable penalty is increased cost, space, and power requirements. 

 Various voting schemes (Bass et al.,  1997 ) can also be used in software to 
increase algorithm robustness. Often like inputs are processed from more than 
one source and reduced to some sort of best estimate of the actual value. For 
example, an aircraft ’ s position can be determined via information from satel-
lite positioning systems, inertial navigation data, and ground information. A 
composite of these complementary readings is then made using data fusion 
techniques (Varshney,  1997 ). 

 Furthermore, it is important to build redundancy solely in such parts of the 
real - time system, which are  known  to be signifi cant sources of catastrophic 
faults. It is just wasting money and resources to implement fault tolerance in 
parts that are not likely to have faults, although those faults, if they occurred, 
would be catastrophic. This issue is discussed in the following vignette. 

 Vignette: Fault - Tolerance But No Faults 

 Consider the elevator bank control system of Figure  3.17 . From that fi gure, 
it is easy to point out three areas, which are particularly susceptible to critical 
faults:

F1 .      Interface from the Hall - Call Buttons to Group Dispatcher; faults in 
this interface isolate some or all hall calls from call allocation.  

F2 .      Communications link between the Group Dispatcher and individual 
Elevator Controllers; faults in the serial link make it impossible to 
allocate registered hall calls to one or all elevators.  

F3 .      The Group Dispatcher itself; should the dispatcher computer fail, 
then the whole call - allocation process will terminate abruptly.    
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 Hence, in the worst scenario, these faults could lead to a catastrophic situ-
ation where no passengers are serviced by the elevator bank. Imagine a 
morning traffi c peak when a huge number of employees are entering a 40 -
 story offi ce building within an hour or so, and no elevators are servicing 
one of the three zones (low - , mid - , or high - rise)! 

 In lobbies with multiple elevators on two sides, the potential hall - call 
interface problem (F1) is handled routinely by including redundant sets of 
up and down buttons on both sides of the lobby. Moreover, these two sets 
are interfaced to the group dispatcher via independent I/O channels. If one 
of the interfaces becomes faulty, the other set of call buttons is still 
operational. 

 Following similar thinking without much further analysis, fault tolerance 
through redundancy was provided for the communications - link and group -
 dispatcher faults (F2 and F3), too. This enhancement is illustrated in Figure 
 8.5 , where a backup communications link as well as a backup group dis-
patcher are included (Ovaska,  1998 ). These redundant hardware/software 
extensions were carefully designed and implemented, and the successful 
real - time system was in production for several years. So, what is the point 
of this vignette?   

 Well, the term  “ fault - tolerance ”  consists of two essential parts: the  “ fault ”  
causing a failure and  “ tolerance ”  against its effects. While the elevator 
system of Figure  8.5  is tolerant against faults F1 – F3, the point here is that 
these faults were later recognized to be practically missing. The vast major-
ity of recorded hardware faults appeared in the I/O section interfacing to 
the external operating environment of the elevator controllers. On the 
other hand, computer faults and faults in the internal communications link 
had an insignifi cant probability of occurrence in this particular product. 
Thus, the backup components represented development, material, assembly, 
and testing expenses, but did not offer any explicit benefi ts. 

 Our conclusion is that before any fault - tolerance enhancements are 
planned, the application - dependent issues of fault  probability  and  severity  
should be assessed thoroughly and objectively. 

       Figure 8.5.     Fault - tolerant version of the elevator bank control system.  
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 Another way to increase fault tolerance is to use  software checkpoints  (Saglietti, 
 1990 ). In this scheme, intermediate results are written to memory at fi xed 
locations in program code for diagnostic purposes (see Fig.  8.6 ). These special 
locations, called checkpoints, can be used both during system verifi cation and 
during system operation. If the checkpoints are used only during testing, then 
this additional code is known as a test probe. On the other hand, test probes 
can introduce subtle timing problems for real - time systems.   

 Fault - tolerance can be further increased by using checkpoints in conjunc-
tion with predetermined reset points in software. These reset points mark 
 recovery blocks  in the real - time software. At the end of each recovery block, 
the corresponding checkpoints are tested for  “ reasonableness. ”  If the results 
are not reasonable, then processing resumes with a prior recovery block (see 
Fig.  8.7 ). The point, of course, is that some hardware device (or another process 
that is independent of the one in question) has provided faulty inputs to the 
block. By repeating the processing in the block, with presumably valid input 
data, the  “ soft ”  error will not be repeated.   

       Figure 8.7.     Recovery block implementation (Laplante,  2003 ).  
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       Figure 8.6.     Checkpoint implementation (Laplante,  2003 ).  
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 In the process block approach, each recovery block represents a redundant 
parallel process to the block being tested. Although this strategy increases 
system reliability, it can have a severe impact on real - time performance because 
of the overhead added by the checkpoint and repetition of the processing in 
a block.  

   8.4.2    Software Black Boxes 

 The software black box is related to checkpoints and is used in certain mission -
 critical systems to recover data to analyze the cause of disasters to prevent 
future ones. The objective of a software black box is to determine the sequence 
of events that led to the software failure for the purpose of identifying the 
faulty program code (Elbaum and Munson,  2000 ). The software black - box 
recorder is essentially a checkpoint that records and stores behavioral data 
during program execution while attempting to minimize any impact on that 
execution. 

 The execution of program functionalities results in a sequence of module 
transitions such that the real - time system can be described as modules and 
their interaction. When software is running, it passes control from one module 
to the next. Exchanging control from one module to another is considered a 
transition. Call graphs can be created from these transitions graphically using 
an N     ×     N  matrix, where  N  represents the number of modules in a system or 
subsystem. 

 When each module is called, each transition is recorded in a matrix, incre-
menting the associated element in a transition frequency matrix. From this,  a
posteriori  probability - of - transition matrix can be derived that records the 
likeliness that a transition will occur. The transition frequency and transition 
matrices indicate the number of observed transitions and the probability that 
some sequence is missing in these data. 

 Analysis can begin after the system has failed and the software black box 
has been recovered. The software black box decoder generates possible func-
tional scenarios based on the execution frequencies found in the transition 
matrix. The generation process attempts to map the modules in the execution 
sequence to specifi c functionalities, which allows for the isolation of the likely 
cause of failure.  

   8.4.3    N - Version Programming 

 In virtually any complex system, such a state can be entered where the system 
is rendered ineffective or locks up. This is usually due to some untested fl ow -
 of - control in the software for which there is no escape. That is to say that event 
determinism has been violated. 

 In order to reduce the likelihood of this sort of catastrophic error, redun-
dant processors are sometimes added to the real - time system. These proces-
sors are coded to the same specifi cations, but by different programming teams. 
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It is therefore unlikely that more than one of the systems could lock up under 
the same circumstances. Since each of the redundant systems usually resets a 
watchdog timer, it quickly becomes obvious when one of them is locked up, 
because it fails to reset its individual timer. The other processors in the system 
can then ignore this processor, and the overall system continues to function. 
This technique is called  N  - version programming (Teng and Pham,  2002 ), and 
it has been used successfully in a number of projects developing mission -
 critical systems, including the space shuttle ’ s general - purpose computer. 
Nevertheless, Parnas showed in the case history of Ontario Hydro that even 
independent programming teams might produce correlated results (Hoffman 
and Weiss,  2001 ). 

 The redundant processors can use a voting scheme to decide on outputs, or, 
more often, there are two processors, a master and a slave. The master proces-
sor is online and produces the actual outputs to the system under control, 
whereas the slave processor shadows the master offl ine. If the slave detects 
that the master has become hung up, then the slave takes over the mastership 
and goes on - line.  

   8.4.4    Built - in - Test Software 

  Built - in - test software  ( BITS ) can enhance fault - tolerance by providing online 
diagnostics data of the underlying hardware for further processing by the 
software. BITS is especially important in embedded systems. For instance, if 
an I/O channel is functioning incorrectly as determined by its onboard test 
circuitry, the software may be able to shut off that channel and redirect the 
I/O to another channel. Although BITS is an important part of embedded 
systems, it may add considerably to the worst - case time - loading analysis. This 
must be considered when selecting BITS and when interpreting the CPU 
utilization contributions that result from the additional software. 

 In a critical embedded system, the health of the CPU should be checked 
regularly. A set of carefully constructed tests can be performed to verify the 
effi cacy of its instruction set in all addressing modes. Such a comprehensive 
test suite is time consuming and thus should be relegated to background pro-
cessing. Interrupts should be disabled during each subtest to protect the data 
being used. 

 Nonetheless, there is a  “ catch - 22 ”  involved in using the CPU to test itself. 
If, for example, the CPU detects an error in its instruction set, can it be trusted? 
On the other hand, if the CPU does not detect an error that is actually present, 
then this, too, is a paradox. Such a contradiction should not be a reason for 
omitting the CPU instruction set test, because in any case, the detected error 
is due to some failure either in the test itself or in the underlying hardware. 

 All types of memory, including nonvolatile memories, can be corrupted via 
electrostatic discharge, power surging, vibration, or other physical means. This 
damage can manifest either as a permutation of data stored in a memory cell 
or as permanent damage to the cell. Corruption of both RAM and ROM by 
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randomly encountered charge particles is a particular problem in space. These 
single - event upsets do not usually happen on earth, because either the mag-
netosphere defl ects the offending particle, or the mean free path of the particle 
is not suffi cient to reach the surface of earth. 

 Damage to the contents of memory is called a  soft error , whereas damage 
to the cell itself is a  hard error . The embedded systems engineer is particularly 
interested in techniques that could detect an upset to a memory cell and then 
correct it. 

 The contents of ROM are often checked by comparing its original check-
sum to a newly calculated one. The original checksum, which is usually a simple 
(overfl owing) binary addition of all program - code memory locations, is com-
puted at link time and stored in a specifi c location in ROM. The new checksum 
can be recomputed in a slow cycle or background processing, and compared 
against the original checksum. Any deviation should be reported as a memory 
error. 

 Simple checksums are not a reliable form of error checking with large 
memories, since errors to an even number of locations can result in error 
cancellation. For instance, an error to bit 4 of two different memory locations 
may cancel out in the overall checksum, resulting in no error being detected. 
In addition, although an error may be reported, the location of the error in 
memory remains unknown. 

 A more reliable method for checking ROM - type memory uses a  cyclic 
redundancy code  ( CRC ). The CRC treats the contents of memory as a long 
stream of bits, and each of these bits as the binary coeffi cient of a message 
polynomial (Moon,  2005 ). A second binary polynomial of much lower order, 
(such as 16) called the generator polynomial, is divided (modulo - 2) into the 
message, producing a quotient and a remainder. Before dividing, the message 
polynomial is appended with a zero bit for every term (with a zero or unity 
coeffi cient) in the generator polynomial. The remainder from the modulo - 2 
division of the zero - padded message is the CRC check value, and the quotient 
is discarded. The widely applied CRC - 16 (CCITT) generator polynomial is

    X X X16 12 5 1+ + + ,     (8.18)  

  whereas the alternative CRC - 16 (ANSI) generator polynomial is

    X X X16 15 2 1+ + + .     (8.19)   

 These CRCs can detect all 1 - bit errors and virtually all multiple - bit errors. The 
source of the error, however, cannot be pinpointed. For example, suppose a 
ROM consists of 64 K of 16 - bit wide memory. The CRC - 16 of Equation  8.19  
is to be employed to check the validity of the memory contents. Here, the full 
memory contents represent a polynomial of order 65,536    ·    16    =    1,048,576 at 
most. Whether the polynomial starts from high or low memory does not matter 
as long as consistency is maintained. After appending the polynomial with 16 
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zeros due to the use of CRC - 16, the polynomial is at most of order 1,048,592. 
This so - called message polynomial is then divided by the generator polynomial 
X16     +     X15     +     X     2     +    1, producing a quotient, which is discarded, and the remain-
der, which is the desired CRC value to be saved. 

 Because of the volatile nature of RAM, simple checksums or CRCs are not 
viable. One way of protecting against errors to memory is to equip it with extra 
bits used to implement some Hamming code (Moon,  2005 ). Depending on the 
number of extra bits, known as the syndrome, errors to one or more bits can 
be detected and even corrected. Such effective coding schemes can be used 
with ROM, as well. 

 Integrated circuits that implement Hamming code  error detection and cor-
rection  ( EDC ) are available commercially. During a normal memory fetch or 
save, the data must pass through the EDC chip before going into or out of 
memory. Besides, the chip compares the data against the check bits and makes 
corrections if necessary. The chip also sets a readable fl ag, which indicates that 
either a single -  or multiple - bit error was detected. Realize, however, that the 
error is not corrected in memory during a read cycle, so if the same erroneous 
data is fetched again, it must be corrected again. When data is stored in 
memory, however, the correct check bits for the data are computed and stored 
along with the data, thereby fi xing any errors. This process is called RAM 
scrubbing (Mariani and Boschi,  2005 ). 

 In RAM scrubbing, the contents of a RAM location are simply read and 
written back. The error detection and correction occurs on the system bus, and 
the data to be corrected is reloaded into an intermediate register. Upon writing 
the data back to the memory location, the correct data and syndrome are 
stored. Thus, the error is corrected in memory, as well as on the bus. RAM 
scrubbing is used, for instance, in the Space Shuttle ’ s inertial measurement 
unit (Laplante,  1993 ). The obvious disadvantages of EDC are that additional 
memory is needed for the scheme (6 bits for every 16 bits), and an access - time 
penalty of about 50 ns per access is incurred if an error correction is made. 
Finally, multiple - bit errors cannot be corrected. 

 In the absence of EDC hardware — as is usual in most embedded systems —
 straightforward techniques can be used to verify the integrity of RAM - type 
memory. These tests are usually run upon initialization, but they could also be 
implemented in slow cycles if interrupts are appropriately disabled. It is typi-
cally desired to exercise the address and data buses as well as the memory 
cells. This is accomplished by writing and then reading back certain bit patterns 
to every memory location. The bit patterns are carefully selected so that any 
stuck - at faults, as well as possible cross talk between wires, can be detected. 
Bus wires do not always reside alongside by bit location, however, so that 
various crosstalk situations may arise. 

 In embedded systems, A/D converters, D/A converters, analog and digital 
multiplexers, digital I/O, and the like may need to be tested after every power -
 up and also continually. Such interface modules can have built - in watchdog 
timer circuitry to indicate that the device is still online. The software can check 
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for watchdog timer overfl ows and either reset the corresponding device or 
indicate a specifi c failure.  

   8.4.5    Spurious and Missed Interrupts 

 Extraneous and unwanted interrupts not due to time loading are called spuri-
ous (or  “ phantom ” ) interrupts. Such interrupts can destroy algorithmic integ-
rity and cause runtime stack overfl ows or system crashes. Spurious interrupts 
are caused by noisy hardware, power surges, electrostatic discharges, or single -
 event upsets. Missed interrupts can be caused in similar ways. In either case, 
hard real - time deadlines can be compromised, leading to system failure. It is 
the goal, therefore, to transform these hard errors into some kind of tolerable 
soft errors. 

 Spurious interrupts can be tolerated by using redundant interrupt hardware 
in conjunction with a voting scheme. Similarly, the device issuing the interrupt 
can issue a redundant check, such as using  direct memory access  ( DMA ) to 
send a confi rming fl ag. Upon receiving the interrupt, the handler routine 
checks the redundant fl ag. If the fl ag is set, the interrupt is legitimate. The 
handler should then clear the fl ag. If the fl ag is not set, the interrupt is bogus 
and the handler routine should exit quickly and in an orderly fashion. The 
additional overhead of checking the redundant fl ag is minimal relative to the 
benefi t derived. Of course, extra stack space should be allocated to allow for 
at least one spurious interrupt per cycle to avoid stack overfl ow. Stack overfl ow 
caused by repeated spurious interrupts is called a  “ death spiral. ”  

 Missed interrupts are more diffi cult to deal with. Software watchdog timers 
can be constructed that must be set or reset by the task in question. Tasks 
running at a higher priority or at a faster rate can check these memory loca-
tions to ensure that they are being accessed properly. If not, the dead task can 
be restarted or an error indicated. The surest method for sustaining integrity 
in the face of missed interrupts is through the design of robust algorithms, but 
that wide topic is beyond the scope of this text.   

   8.5    SOFTWARE TESTING AND SYSTEMS INTEGRATION 

 There is more than a subtle difference between the common terms bug, defect, 
fault, and failure. Use of  “ bug ”  is, in fact, discouraged, since it somehow implies 
that an error crept into the program through no one ’ s action, which is, of course, 
not true. The preferred term for an error in requirement, design, or program 
code is either  “ error ”  or  “ defect. ”  Furthermore, the manifestation of a defect 
during the operation of the software system is called a fault. And a fault that 
causes the software system to fail to meet one of its requirements is a failure. 

 Verifi cation and validation of the software are crucial phases of the devel-
opment process. Verifi cation determines whether the outcomes of a given 
phase of the software development process fulfi ll the requirements established 
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during the previous phase. Thus, verifi cation answers the question,  “ Am I 
building the software as specifi ed? ”  

 Validation, on the other hand, determines the correctness of the fi nal soft-
ware with respect to the user ’ s explicit needs and requirements. Hence, valida-
tion answers the question,  “ Am I building the right software? ”  

 Testing is the execution of a program or partial program with known inputs 
(excitations) and outputs (responses) that are both predicted and observed 
for the purpose of fi nding faults or deviations from the requirements. 

 Although effective testing is supposed to fl ush out errors, this is just one of 
its purposes. The other is to increase trust in the software system. Perhaps once, 
software testing was thought of as intended to remove all  errors as will be seen 
in the following vignette. But testing can only detect the presence of errors, 
not the absence of them; therefore,  it can never be known when all errors have 
been detected . Instead, testing must increase faith in the system, even though 
it still may contain undetected faults, by ensuring that the software meets its 
requirements. This objective places emphasis on solid design techniques and 
a well - developed requirements document. Moreover, a formal test plan must 
be created that provides criteria used in deciding whether the system has satis-
fi ed the requirements. 

 Vignette: Remove All Errors or Get Fired! 

 A state - of - the - art embedded control system was delivered to a beta cus-
tomer. Due to schedule problems, the software was not thoroughly tested, 
and almost daily, a new error was found by the users of the embedded system. 
Understandably, the customer was unhappy. One evening, the regional 
manager who had sold the system to that customer called the software 
engineer in charge. The regional manager wanted to know  “ when the  last  
error would be corrected. ”  And the software engineer answered truthfully 
 “ I do not know and nobody will ever know. ”  This blunt answer made the 
regional manager so upset that he immediately called to the vice president 
of engineering and requested him to fi re such an impudent engineer. 

 Fortunately, the rate of detected errors began to decline steeply, and, in 
a few weeks, the customer stopped complaining. Hence, the  faith  in the new 
software had reached a satisfactory level — although the last error was prob-
ably never detected. In addition, the intrepid software engineer was not fi red, 
but he surely learned to put more effort on testing in his future projects. 

 An in - depth treatment of software testing is available in Patton  (2006) . 
Moreover, fi ve thought - invoking views on software testing and industry needs 
were provided by Glass et al.  (2006) . 

   8.5.1    Testing Techniques 

 There is a wide range of testing techniques for unit -  and system - level testing, 
as well as for integration testing. Some techniques may be interchangeable, 
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while others are not. Any one of these testing techniques can be either insuf-
fi cient or not computationally feasible for real - time systems. Therefore, some 
combination of multiple techniques is usually employed. Recently, commercial 
and open - source user - guided test case generators have emerged. These tools, 
such as XUnit (Meszaros,  2007 ), can greatly facilitate many of the testing 
strategies to be discussed shortly. 

 Several methods can be used to test individual modules or code units. These 
techniques can be used by the unit author or by an independent test team to 
exercise each code unit in the system. The same techniques can also be applied 
to subsystems, that is, collections of modules related to the same function. 

 In  black box testing , only inputs and outputs of the code unit are considered; 
how the outputs are generated based on a particular set of inputs is totally 
ignored. Such a technique, being independent of the implementation of the 
module, can be applied to any number of modules with the same functionality. 
But this technique does not provide any insight into the programmer ’ s skills 
in implementing the module. Consequently, dead or unreachable code cannot 
be detected. 

 For each module, a number of test cases need to be generated. This number 
depends on the number of inputs, the functionality of the module, and so forth. 
If a module fails to pass a single module - level test, then the detected error 
must be repaired, and all previous module - level test cases are rerun to prevent 
the repair from causing other errors. 

 Some widely used black - box testing techniques include:

 •      Exhaustive testing  
 •      Boundary - value testing  
 •      Random test - case generation  
 •      Worst - case testing    

 An important aspect of using black - box testing techniques is that clearly 
defi ned interfaces to the software modules are required. This places additional 
emphasis on the application of Parnas partitioning principles (discussed in 
Chapter  6 ) to module design. 

 Brute - force or  exhaustive testing  involves presenting each code unit with 
every possible input combination. Exhaustive testing works well in the case of 
a small number of inputs, each with a limited input range, for example, a code 
unit that evaluates a small number of Boolean inputs. A major problem with 
exhaustive testing, however, is the combinatorial explosion in the number of 
test cases. For instance, for the program code that will deal with raw acceler-
ometer data, altogether 2 16     ·    2 16     ·    2 16     =    2 48  test cases would be required (three 
16 - bit acceleration components,  ax ,  ay  and  az ), which is not reasonable. 

 Corner - case or  boundary - value testing  solves the problem of combinatorial 
explosion by testing just a tiny subset of the input combinations identifi ed as 
meaningful  “ boundaries ”  of the input space. For example, consider a code unit 
with fi ve different inputs, each of which is a 16 - bit signed integer. Approaching 
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the testing of this code unit using exhaustive testing would require 2 16     ·    2 16     ·    2 16     ·    
216     ·    2 16     =    2 80  test cases. However, if the test inputs are restricted to every combina-
tion of the minimum, maximum, and mean values for each input, then the test 
set would consist of 3 5     =    243 test cases, which is a reasonable number. A test set 
of this size can be handled easily with automatic test case generation. 

Random test case generation , or statistically based testing, can be used for 
both unit -  and system - level testing. This kind of testing involves subjecting the 
code unit to numerous randomly generated test cases over some period of 
time. The purpose of this approach is to simulate execution of the software 
under virtually realistic conditions. 

 The randomly generated test cases are based on determining the underlying 
statistics of the expected inputs. Such basic statistics are usually collected by 
expert users of similar systems, or, if none exist, by educated guessing. The 
theory is that system reliability will be enhanced if prolonged usage of the 
software system can be simulated in a controlled environment. The major 
drawback of such a technique is that the underlying probability distribution 
functions for the input variables may be unavailable or incorrect. Besides, 
randomly generated test cases are likely to miss special conditions with low 
probability of occurrence. 

 Pathological - case or  worst - case testing  deals with those test scenarios that 
might be considered highly unusual or even unlikely. It is often the case that 
these exceptional cases are exactly those for which the code is likely to be 
poorly designed, and therefore, to fail. For instance, in the inertial measure-
ment system, while it might be highly unlikely that the system will achieve the 
maximum acceleration that can be represented in a 16 - bit scaled number, this 
worst case still needs to be tested. 

 Of course, there are many other forms of black - box testing, including equiv-
alence class testing, all - pairs testing, and decision table based testing (Jorgensen, 
 2008 ). 

 An obvious disadvantage of black - box testing is that it does not recognize 
unreachable or dead code. In addition, it may not test all of the fl ow paths in 
the module. Another way to look at this is that black - box testing only tests what 
is expected to happen, not what was not intended. Clear - box, glass - box, or  white -
 box testing  techniques can be used to deal with this problem. The fundamental 
difference between black -  and white - box testing is illustrated in Figure  8.8 .   

 Whereas black - box tests are data driven, white - box tests are logic driven, 
that is, they are designed to exercise all paths in the code unit. For example, 
in the nuclear plant monitoring system, all error paths would need to be tested, 
including those pathological situations that deal with simultaneous or multiple 
failures. 

 White - box testing also has the advantage that it can discover those code 
paths that cannot be executed. Such unreachable code is undesirable because 
it is likely a sign that the underlying logic is incorrect, because it wastes 
memory space, and since it might inadvertently be executed in the case of the 
corruption of the CPU ’ s program counter. 
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  Code inspections  or group walkthroughs are a kind of white - box testing in 
which code is inspected line - by - line by a group of experienced programmers. 
Carefully organized and conducted walkthroughs have been shown to be 
much more effective than traditional testing techniques. 

 In code inspections, the author of some collection of software modules 
presents each line of code to a competent review group, which can detect 
errors as well as discover ways for improving the implementation. This audit 
also provides possible control of the coding standards. Finally, unreachable 
code can be discovered, too. 

  Formal program proving  is another kind of white - box testing using formal 
methods in which the code is treated as a theorem and some form of calculus 
is used to prove that the program is correct. 

 A program is said to be  partially correct  if it produces the correct output 
for each input when it terminates. It is said to be  correct  if it is partially correct 
and it always terminates. Hence, to verify a program is correct, partial correct-
ness must be demonstrated fi rst, and then it must be demonstrated that the 
program terminates. 

 To illustrate formal program verifi cation, consider the following example. 
It is casual since some of the rigorous mathematics are omitted for ease of 
understanding. 
   

       Figure 8.8.     Black -  and white - box views of a software module for the tester.  

Inputs Inputs

Outputs Outputs

“Black-Box View” “White-Box View”

?

 Example: Formal Program Verifi cation 

 Consider a function to compute the power  a b  , where  a  is a fl oating - point 
number and  b  is a nonnegative integer (type and range checking are omitted 
from the verifi cation, since it is expected that these are performed by the 
run - time library).  
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 In its rigorous form, formal verifi cation requires a higher level of mathematical 
sophistication and is appropriate, generally, only for limited, mission - critical 
situations because of the intensity of analysis activity. 

 Furthermore, a testing process that complements object - oriented design 
and programming can signifi cantly increase the programmer ’ s productivity, 
software quality, as well as reuse potential. There are three principal issues in 
 testing object - oriented software :

   1.     Testing the base class  
  2.     Testing external code that uses a base class  
  3.     Dealing with inheritance and dynamic binding    

 Without inheritance, testing object - oriented code is not very different from 
simply testing abstract data types. Each object has some data structure, such 
as an array, and a set of member functions to operate. There are also member 
functions to operate on the object. These member functions are tested like any 
other function using black - box or white - box techniques. 

 In a good object - oriented design, there should be a well - defi ned inheritance 
structure. Therefore, most of the tests from the base class can be used for 
testing the derived class, and only a small amount of retesting of the derived 
class is required. On the other hand, if the inheritance structure is bad, for 

 fl oat power(fl oat real, unsigned b) 
 { 
    if (b =  = 0) 
          return 1; 
    else 
          return a * power(a,b - 1); / *  recursion  * / 
 }  

 In a real - time sense, it is important to show that this program always ter-
minates, that is, unbounded recursion does not occur. To show this, note that 
 b  is a loop invariant, and that  b  is a monotonically decremented integer. 
Hence,  b  will eventually become  0 , which is the explicit termination condition. 

 Next, to demonstrate partial correctness, note that
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 Recognizing that the program under verifi cation is called  b  times (recur-
sively) through the  else  condition and only once through the  if  condition, 
yields the equality shown. 

 Hence, the program is correct. 
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instance, if there is inheritance of implementation (where code is used from 
the base class), then additional testing will be necessary. Hence, the price of 
using inheritance poorly is having to retest all of the inherited code. Finally, 
dynamic binding requires that all cases have to be tested for each binding 
possibility. 

 Effective testing is guided by information about likely sources of error. The 
combination of polymorphism, inheritance, and encapsulation is unique to 
object - oriented languages, presenting such opportunities for an error that do 
not exist in procedural programming languages. Here, the main rule is that if 
a class is used in a new context, then it should be tested as if it were new. 

 Further guidelines for testing object - oriented software are available in 
McGregor and Sykes  (2001) . 

Test - fi rst coding  (or test - driven design) is a code production approach nor-
mally associated with eXtreme Programming (English,  2002 ). In test - fi rst 
coding, the test cases are designed by the software engineer who will eventu-
ally write the code. The advantage of this approach is that it forces the software 
engineer to think about the code in a different way that involves focusing on 
 “ breaking down ”  the software. Those who use this technique report that, while 
it is sometimes diffi cult to change their way of thinking, once the test cases 
have been designed, it is actually easier to write the program code, and debug-
ging becomes much easier because the unit - level test cases have already been 
written. Test - fi rst coding is not really a testing technique, it is a design and 
analysis approach, and it does not obviate the need for testing. 

 As it turns out, cyclomatic complexity measures the number of linearly 
independent paths through the code, and hence, provides an indication of the 
minimum number of test cases needed to exercise every code path. To deter-
mine the linearly independent paths, McCabe developed an algorithmic pro-
cedure, called the  baseline method , to determine a set of basis paths (Emergy 
and Mitchell,  1989 ). 

 First, a clever construction is followed to force the complexity graph to look 
like a vector space by defi ning the notions of scalar multiplication and addition 
along paths. Then basis vectors for this space are determined. The method 
proceeds with the selection of a baseline path, which should correspond to 
some  “ ordinary ”  case of program execution along one of the basis vector paths. 
McCabe advises choosing a path with as many decision nodes as possible. Next, 
the baseline path is retraced, and in turn, each decision is reversed, that is, 
when a node of outdegree of greater than two is reached, a different path must 
be taken. Continuing in this way until all possibilities are exhausted, it gener-
ates a set of paths representing the entire test set (Jorgensen,  2008 ). For 
example, consider Figure  8.2 . In this case, the cyclomatic complexity was com-
puted to be 5, indicating that there are fi ve linearly independent test cases. 
Tracing through the graph, the fi rst path is  adcf . And following McCabe ’ s 
procedure yields the other four paths acf ,  abef ,  abeb , and  abea . 

 Function and feature points can also be used to determine the minimum 
number of test cases needed for adequate coverage. The International Function 
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Point Users Group ( http://www.ifpug.org/ ) indicates that there is a strong 
relationship between the number of test cases, software defects, and function 
points. Accordingly, the number of acceptance test cases can be estimated by 
multiplying the number of function points by 1.2, which is the factor suggested 
by McCabe. For instance, if a project consists of 200 function points, then 240 
test cases would be needed. 

 An experimental framework for comparing software testing techniques 
from an industrial perspective was proposed by Eldh et al.  (2006) .  

   8.5.2    Debugging Approaches 

 In real - time systems, testing methods often affect the systems that they test. 
When this is considered harmful, nonintrusive testing should be used. For 
example, when bypassing code during debugging, do not use conditional 
branching. Conditional branching affects timing and can introduce subtle 
timing problems. Conditional compilation, on the other hand, is more appro-
priate in these instances. In conditional compilation, selected code is included 
only if a particular compiler directive is set, and hence it does not affect timing 
in the production version. 

 Programs can be affected by syntactic or logic errors. Syntactic or syntax 
errors arise from the failure to satisfy the rules of the programming language. 
A good compiler will always detect syntax errors, although the way that it 
reports an error often can be misleading. For instance, in a C program a missing 
}  may not be detected until many lines after it should have appeared. Besides, 
some compilers only report vaguely  “ syntax error ”  rather than, for example, 
 “ missing  } . ”  

 In logic errors, the program code adheres to the rules of the language, but 
the algorithm that is implemented is somehow wrong. Logic errors are more 
diffi cult to diagnose because the compiler cannot detect them. Nevertheless, 
a few basic rules may help you to fi nd and eliminate logic errors:

 •      Document the program carefully and appropriately. Each nontrivial line 
of code should include an explanatory comment. In the course of com-
menting, logic errors may be detected.  

 •      Where a symbolic debugger is available, use steps, traces, breakpoints, 
skips, and so on to isolate the logic error.  

 •      Use automated testing where possible. Open - source test generators are 
available, for instance, the XUnit family (Meszaros,  2007 ), which includes 
JUnit for Java and CUnit for C ++ . These tools help generate test cases 
and are used for ongoing unit and regression testing of components or 
classes.  

 •      In the case of a plain command - line environment, such as Unix/Linux, use 
print statements to output intermediate results at checkpoints in the code. 
This may help detect logic errors.  
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 •      In case of an error, comment out necessary portions of the code until the 
program compiles and runs. Add in the commented - out code, one feature 
at a time, checking to see that the program still compiles and runs. When 
the program either does not compile or runs incorrectly, the last code 
increment is involved in the error.    

 Finding and eliminating errors effectively in real - time systems is as much art 
as it is science, and the software engineer develops these intuitive skills gradu-
ally over time with practice. In many cases, code audits or walkthroughs can 
be particularly helpful in fi nding logic errors. 

 Source - level debuggers are software tools that provide the ability to step 
through code at either an assembly or high - level language level. They are 
extremely useful in module - level testing. However, they are less useful in 
system - level debugging, because the real - time aspect of the system is neces-
sarily affected or even disabled. 

 Debuggers can be obtained as part of compiler support packages or in 
conjunction with logic analyzers. For example,  sdb  is a generic name for a 
symbolic debugger associated with Unix and Linux.  sdb  allows the software 
engineer to single step through the source language code and view the results 
of each step. 

 In order to use the symbolic debugger, the source code must be compiled 
with a particular option set. This has the effect of including special run - time 
code that interacts with the debugger. Once the code has been compiled for 
debugging, then it can be executed  “ normally. ”  For instance, in the Unix/Linux 
environment, the program can be started normally from the  sdb  debugger at 
any point by typing certain commands at the command prompt. Nonetheless, 
it is often more useful to single step through the source code. Lines of code 
are displayed and executed one at a time by using the step command. If the 
executed statement is an output statement, it will output to the screen accord-
ingly. If the statement is an input statement, it will await user input. All other 
statements execute as usually. At any point in the single - stepping process, 
individual variables can be examined or set. There are many other features of 
sdb , such as breakpoint setting, which are common in all debuggers. In more 
sophisticated operating environments, a graphical user interface is provided, 
but essentially, these tools provide the same functionality. 

 Very often when debugging a new program, the Unix operating system will 
abort execution and indicate that a core dump has occurred. This is a signal 
that some fault has occurred. A core dump creates a rather large fi le named 
core , which is often removed before proceeding with the debugging. But 
core  contains some valuable debugging information, especially when used in 
conjunction with sdb . For example,  core  contains the last line of the program 
that was executed and the contents of the function - call stack at the time of 
the fault.  sdb  can be used to single step up to the point of the core dump to 
identify its cause. Later on, breakpoints can be used to quickly come up to this 
particular line of code. 
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 A logical approach to debugging both software and hardware is presented 
by Agans  (2002) , where he suggests the nine  “ bug - fi nding rules, ”  R1 – R9, for 
the practitioner:

R1.    “ Understand the system. ”   
R2.    “ Make it fail. ”   
R3.    “ Quit thinking and look. ”   
R4.      “ Divide and conquer. ”   
R5.    “ Change one thing at a time. ”   
R6.    “ Keep an audit trail. ”   
R7.    “ Check the plug. ”   
R8.    “ Get a fresh view. ”   
R9.    “ If you didn ’ t fi x it, it ain ’ t fi xed. ”     

 These general rules provide a useful checklist for anybody involved with 
debugging.  

   8.5.3    System - Level Testing 

 Once individual modules have been tested, then all subsystems and the entire 
system need to be tested. In larger systems, the process can be broken down 
into a series of subsystem tests, and then a test of the complete system. 

 System testing treats the software system as a black box so that one or more 
of the black - box testing techniques can be applied. System - level testing occurs 
after all modules pass their unit test. At this point, the coding team hands the 
software over to the testing team for validation. If an error occurs during 
system - level testing, the error must fi rst be repaired. Then every test case 
involving the changed module must be rerun, and all previous system - level 
tests must be passed in succession. The collection of system test cases is com-
monly called a system test suite. 

Burn - in testing  is a type of system - level testing that seeks to fl ush out those 
failures appearing early in the life of the real - time system, and thus to improve 
the reliability of the delivered software product. System - level testing may be 
followed by alpha testing, which is a type of validation consisting of internal 
distribution and exercise of the software. This testing is followed by beta 
testing, where preliminary versions of validated software are distributed to 
friendly customers, who test the software under actual use. Later in the life 
cycle of the software, whenever corrections or enhancements are added, 
regression testing is mandatory. Figure  8.9  shows the various phases of a 
typical testing hierarchy.   

Regression testing , which can also be performed at the module level, is used 
to validate the modifi ed software against the old set of test cases that has 
already been passed. Any new test case needed for the enhancements are then 
added to the test suite, and the software is validated as if it were a new product. 
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Regression testing is also an integral part of integration testing as new modules 
are added to the tested subsystem. 

 The principal tenet of  cleanroom software development  is that given suffi -
cient time and with care, error - free software can be written. Cleanroom soft-
ware development relies heavily on group walkthroughs, code inspections, and 
formal program verifi cation. It is taken for granted that software specifi cations 
exist that are suffi cient to completely describe the system. In this approach, 
the development team itself is not allowed to test any code as it is being 
developed. Rather, syntax checkers, group walkthroughs, code inspections, and 
formal verifi cations are used to ensure code integrity. Statistically based testing 
is then applied at various stages of software implementation by a separate test 
team. This technique produces documentation and program code that are 
more reliable and maintainable, as well as easier to test than other develop-
ment methods. 

 The program is developed by slowly  “ growing ”  features into the code, start-
ing with some baseline of functionality. At each milestone, an independent test 
team checks the code against a set of randomly generated test cases based on 
a set of statistics describing the frequency of use for each feature specifi ed in 
the requirements. This group tests the code incrementally at predetermined 
milestones, and either accepts or returns it to the development team for cor-
rection. Once a functional milestone has been reached, the development team 
adds to the  “ clean ”  code, using the same techniques as before. Thus, like an 
onion skin, new layers of functionality are added to the software system until 
it completely satisfi es the requirements. 

 In another type of testing,  stress testing , the software system is subjected to 
a large disturbance in the inputs (for instance, a large burst of interrupts), fol-
lowed by smaller disturbances spread out over a longer period of time. One 

       Figure 8.9.     Hierarchical bottom - up sequence of software testing phases.  
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objective of this kind of testing is to see how the system fails, either gracefully 
or catastrophically. 

 Stress testing can also be useful in dealing with particular cases and condi-
tions where the system is under heavy load. For example, in testing for memory 
or processor utilization in conjunction with other application and operating 
system resources, stress testing can be used to determine whether performance 
is acceptable. An effective way to stress test, for instance, is to generate a 
confi gurable number of tasks in a test program and subject the software to 
them. Running such tests for long periods of time also has the benefi t of check-
ing for possible memory leaks (such as stack overfl ows). 

 One of the challenges in testing real - time systems is dealing with  partially
implemented systems . Many of the problems that arise are similar to those 
found in dealing with prototype hardware. There are straightforward strategies 
involving creating stubs and special drivers to deal with missing components 
at the interface. Commercial and open - source test generators can be helpful 
in these cases. But the strategies involved for testing real - time systems are 
nontrivial. 

 Lastly, the  test plan  should follow the requirement to document item by 
item, providing criteria that are used to judge whether the required item has 
been met. A set of test cases is then written, which is used to measure the 
criteria set out in the test plan. Writing such test cases can be diffi cult when a 
complicated user interface is part of the requirements. The test plan includes 
criteria for testing the real - time software on a module - by - module or unit level, 
as well as on subsystem and system levels.  

   8.5.4    Systems Integration 

 Integration is the process of combining partial functionality to form the com-
plete system functionality. Because real - time systems are usually embedded, 
the integration process involves both multiple software units and hardware. 
Each of these parts potentially has been developed by different teams or 
individuals within the project organization. Although it is presumed that the 
parts have been rigorously tested and verifi ed separately, the overall behavior 
of the embedded system, and conformance to most of the software require-
ments, cannot be tested until the system is wholly integrated. Software integra-
tion is further complicated when both software and hardware are new. In such 
situations, it may be hard to identify whether a particular fault is caused by a 
software or hardware error. 

 The software integration phase has the most uncertain schedule and is typi-
cally the cause of project cost overruns. Moreover, the stage has been set for 
failure or success at this phase, by the specifi cation, design, implementation, 
and testing practices used throughout the software development life cycle. 
Hence, by the time of software integration, it may be very diffi cult to identify 
and fi x problems. Indeed, many modern programming practices were devised 
to ensure arrival at this stage with the fewest errors in the source code. For 
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example, lightweight agile methodologies, such as eXtreme Programming, tend 
to reduce these kinds of problems (English,  2002 ). 

 Fitting the pieces of the software system together from its individual com-
ponents is a tricky process, especially for embedded systems. Parameter mis-
matching, variable name mistyping, and calling sequence errors are some of 
the typical problems encountered during system integration. 

 The system unifi cation process consists of linking together the tested soft-
ware modules drawn in an orderly fashion from the source - code library. 
During the linking process, errors are likely to occur that relate to unresolved 
external symbols, memory assignment violations, page link errors, and the like. 
These problems must, of course, be resolved. Once resolved, the loadable code 
or load module, can be downloaded from the development environment to 
the target platform. This is achieved in a variety of ways, depending on the 
system architecture. In any case, once the load module has been created and 
loaded into the target platform, testing of timing as well as hardware/software 
interaction can begin. 

 Final system testing of embedded systems can be a truly demanding process, 
often requiring weeks. During system validation, a careful test log must be 
kept, indicating the test case number, results, and disposition. Table  8.4  is a 
sample of such a test log for the elevator control system. If a system test fails, 
it is imperative, once the problem has been identifi ed and presumably cor-
rected, that all affected tests be rerun. These include:

 •      All module - level test cases for any module that has been changed    
 •      All related subsystem - level test cases  
 •      All system - level test cases    

 Even though the module - level test cases and previous (sub)system - level test 
cases have been passed, it is imperative that these be rerun to ensure that no 
side effects have been introduced during error repair. 

 As mentioned before, it is not always easy to identify sources of error during 
a system test. Fortunately, a number of hardware and software tools are avail-
able to assist in the validation of embedded systems. Versatile testing tools 
pave the way for ultimate success — especially in deeply embedded systems. 

 An  oscilloscope  is not regarded as a software - debugging tool, but it is useful 
in embedded software environments. Oscilloscopes can be used for validating 

  TABLE 8.4.    Sample Test Log for Elevator Control System 

   Test Number     Reference 
Requirements Number  

   Test Name     Status     Date     Tester  

  MO27    3.4.1    Attendant service    Pass    11/3/10    S.J.O.  
  MO28    3.4.2    Independent service    Pass    11/4/10    P.A.L.  
  MO29    3.4.3    Fireman service    Fail    11/4/10    S.J.O.  
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interrupt integrity, discrete signal issuance and receipt, and for monitoring 
clocks. 

 The  logic analyzer  is an important tool for debugging embedded software. 
It can be used to capture data or events, to measure individual instruction 
times, or to time sections of code. Moreover, the availability of programmable 
logic analyzers with integrated debugging environments has further enhanced 
the capabilities of the systems integrator. 

 Advanced logic analyzers include built - in disassemblers for effective debug-
ging, as well as performance analysis and even code profi ling features. These 
integrated environments make the identifi cation of performance bottlenecks 
particularly convenient. 

 No matter how elaborate, all logic analyzers have the same basic functional-
ity. This is shown in Figure  8.10 . The logic analyzer is connected to the system 
under test by connecting probes that sit directly on the address and data buses. 
A clock probe connects to the memory - access synchronization clock. Upon 
each memory access, the corresponding address and data are captured by the 
logic analyzer and stored in buffers for transfer to the logic analyzer ’ s main 
memory, from which they can be processed for display. Using the logic ana-
lyzer, the software engineer can capture specifi c memory locations and data 
for the purposes of timing or for verifying execution of a specifi c code segment. 
The logic analyzer can be used to time accurately an individual machine -
 language instruction, segments of code, or an entire task.   

 During module - level debugging and systems integration of embedded 
software/hardware, the abilities to single - step the CPU, set the program 
counter, and insert into and read from memory is extremely important. These 
capabilities in conjunction with the symbolic debugger are keys to successful 

       Figure 8.10.     A logic analyzer connected to the  system under test  ( SUT ).  
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integration of real - time systems. In an embedded environment, however, this 
capability is provided by an   in - circuit emulator   ( ICE ). In - circuit emulation uses 
special hardware in conjunction with software to emulate the target CPU 
while providing the aforementioned debugger features. Typically, the ICE 
plugs into the chip carrier or board slot normally occupied by the CPU. In 
addition, external wires may connect to an emulation system. Access to the 
emulator is provided directly or via a workstation. 

 In - circuit emulators are useful for single - stepping through critical portions 
of code. In - circuit emulators are not typically useful in timing tests, however, 
because subtle timing changes can be introduced by the emulator hardware. 

 When integrating and debugging embedded systems, complementary  soft-
ware simulators  are often needed to stand in for hardware or inputs that do 
not exist or that are not readily available, for instance, to generate simulated 
accelerometer or gyro readings where real ones are unavailable at the time. 
The author of the simulator program has a task that is by no means easy, since 
the software must be written to mimic exactly the hardware specifi cation, 
especially in timing characteristics. Moreover, the simulator must be thor-
oughly tested. Nevertheless, many real - time systems have been successfully 
validated and integrated with software simulators, only to fail when connected 
to the actual hardware environment. 

 A deliberate approach must be used when performing systems integration 
to ensure system integrity. Failure to do so can lead to cost escalation and 
frustration. Software integration approaches are largely based on experience 
and insight. The following represents a viable strategy for software 
integration. 

 In any real - time operating system (RTOS), it is important to ensure that all 
tasks in the system are being scheduled and dispatched properly. Thus, the fi rst 
goal in integrating the embedded system is to ensure that each task is running 
at its prescribed rate, and that context is saved and restored correctly. This is 
done without performing any application functions within those tasks; the 
application functions are added later. 

 As discussed before, a logic analyzer is particularly useful in verifying cycle 
rates by setting the triggers on the starting location of each of the tasks 
involved. During debugging, it is most helpful to establish the fact that cyclic 
processes are being called at the appropriate rates. Until the system cycles 
properly, the application code associated with each of the tasks should not be 
added. The success of this method depends on the fact that  one change at a 
time  is made to the system so that when the system becomes corrupted, the 
problem can be isolated with a reasonable effort. 

 The overall approach is depicted in Figure  8.11 , and it involves establishing 
a baseline of plain RTOS components (no application functions). This ensures 
that timer interrupts are being handled properly, and that all cycles are running 
at their prescribed rates, without worry about interference from application 
code. Once the baseline is successfully established, small sections of applica-
tion code are added and the cycle rates verifi ed. If an error is detected, it is 
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corrected temporarily (to save time) when possible. If the correction (or 
 “ patch ” ) succeeds in restoring the cycle rates properly, then more code is 
added. This ensures that the real - time system is grown incrementally, with an 
appropriate baseline at each stage of the integration. Such an approach rep-
resents a smoothly phased integration process with regression testing after 
each phase.    

   8.5.5    Testing Patterns and Exploratory Testing 

 This discussion is adapted from Laplante  (2009) . 
 There are various traditionally organized patterns (or problem – solution 

pairs) for testing software. But all of the available software testing pattern 
catalogues are language specifi c (e.g., Thomas et al.,  2004 ) or focused on unit 
testing (e.g., Meszaros,  2007 ), and we know of no testing pattern languages 
that specifi cally focus on the problem of testing real - time systems. What is 
needed is a set of general - purpose patterns for testing mission critical, real -
 time systems postintegration. In this regard, exploratory testing is of great 
value. Exploratory testing seeks to uncover the various sources of uncertainty 

       Figure 8.11.     A straightforward integration strategy (Laplante,  2003 ).  
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described in Section  8.3  and helps to organize a set of abstract testing para-
digms that can greatly assist in developing large - scale test cases. 

 First described by Kaner, exploratory testing is a guided , ad hoc  technique 
that incorporates simultaneous learning, test design, and test execution (Kaner, 
 1988 ). Although almost exclusively applied to GUI (graphical user interface) 
testing in commercial applications, exploratory testing is the kind of testing 
that is often conducted in embedded systems to augment traditional, scripted 
testing approaches. 

 Traditional software and systems testing involves techniques that rely on 
scripted, or context - based testing. That is, for each test, the test engineer 
defi nes a particular initial state for the system (including the environment 
state), a set of inputs to the system, and a set of expected outputs for the test. 
In exploratory testing, however, testing is conducted in an almost ad hoc 
manner; the tester simply  uses  the system in certain ways, and then records 
any anomalies that he encounters. Exploratory testing is  “ almost ad hoc ”  
because the usage is actually guided by a behavior pattern driven by a particu-
lar posture that is adopted by the tester. 

 Consider the following tourism metaphor: scripted - based testing involves a 
traveler who follows a planned itinerary. Exploratory testing involves a trav-
eler who uses his own instincts and personal agenda to guide his explorations. 
Continuing with the metaphor, we may have many types of traveler personali-
ties, and these personalities infl uence the journey of each traveler. Whittaker 
describes many such journeys in his book (Whittaker,  2009 ). For instance, he 
notes that in big cities, the local people avoid tourist traps. The software 
analogy is the set of features avoided by expert users. In the  “ Historical 
District Tour, ”  then, testers deliberately explore those features that the experts 
would avoid. In the  “ Hotel District Tour, ”  testers test the functionality of the 
code that is running behind the scenes when the software is ostensibly at rest. 
Although Whittaker enumerates a number of tours that would be appropriate 
for security testing or embedded systems (the  “ Saboteur ’ s Tour ”  and  “ Seedy 
District Tour; ”  think about the implications), there is ample room for other 
tours specifi cally related to embedded and other real - time systems. 

 One way to develop a set of useful exploratory tests for real - time systems 
is to consider the sources of systems uncertainty (Bach,  2004 ), and then create 
specifi c tours that uncover these uncertainties. These explorations can be con-
verted into use, and misuse cases for the purpose of operationalizing the tests, 
and for regression testing. Consider the following examples. 

 Example: Environmental Explorations 

 Environmental explorations simulate uncertainty in the environment in 
which the system is to be operating. These uncertainties may emanate from 
operating system anomalies, as in the Mars Pathfi nder Mission, or from 
operational domain disturbances, such as a power surge or a violent storm. 
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 Example: Language Explorations 

 Many compilers produce code in ways that appear to be nonlinear. For 
example, removing a single line of source code can fundamentally change 

 Example: Behavioral Explorations 

 There is a broad class of timing and scheduling problems that are the hall-
mark of real - time systems. But these kinds of problems are very commonly 
tested and diagnosed using traditional scripted, context - driven testing, so 
no new exploratory tests are offered at this time. 

 Example: State Explorations 

 Internal faults, such as jumping program counter, due to a number of pos-
sible scenarios, can lead to uncertainty of program state that is diffi cult to 
diagnose, and nearly impossible to recover from. Because these kinds of 
failures lead to erratic, almost drunken behavior, we call these explorations 
 “ Fear and Loathing in Las Vegas Tours ”  (after the famed counter - culture 
book by Hunter Thompson). 

 Example: Output Explorations 

 A software control system can deliver grossly or subtly defective output to 
the system under control, causing the system response to be perturbed 
further. The aberrant feedback loop can eventually cause failure in the 
control system. A set of exploration tests, called  “ Magic Mystery Tours ”  
(after the Beatles ’  album of the same name), need to simulate every variant 
of this scenario. 

 Example: Input Explorations 

 Input uncertainties, such as spurious or missed interrupts, anomalous data, 
and deliberately poisoned data, can lead to a cascading series of failures 
that overload the system. Typically, an abandonment of the single fault 
assumption is needed to overwhelm any built - in fault - tolerance mecha-
nisms. Such tests are called  “ Murphy ’ s Tour, ”  because anything that could 
go wrong is made to go wrong. 

Hence, there needs to be a family of explorations that uncovers these types 
of problems. Let us call these kinds of explorations a  “ Bad Weather Tour. ”  
To facilitate such explorations, simulations need to be created that can 
model any kind of adverse operating environment condition that can be 
imagined. Experience can serve as a guide in these situations. 
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 Though never given these colorful names, Laplante and his colleagues used 
these explorations extensively in testing various embedded systems for avion-
ics applications, including the Space Shuttle Inertial Measurement Unit, satel-
lite systems, and other navigation systems. Work is ongoing to classify and 
socialize these exploratory tests for other kinds of real - time systems.   

   8.6    PERFORMANCE OPTIMIZATION TECHNIQUES 

 Identifying wasteful computation is a preliminary step in reducing code execu-
tion time, and hence, the CPU utilization factor. Many traditional approaches 
employed in compiler optimization (see Chapter  4 ) can be applied for this 
purpose, but various other methods have evolved that are specifi cally oriented 
toward embedded systems. A small sample of common performance optimiza-
tion techniques is discussed in the following three subsections. 

 Moreover, all real - time processing should be done, in principle, at the 
slowest rate that can be tolerated . Checking a discrete temperature for a large 
lecture hall at faster than 1 second may be wasteful, for room temperature 
cannot change quickly owing to thermal inertia. In the nuclear power plant, 
on the other hand, dedicated sensors are used to monitor the core temperature 
continuously and issue a high - priority service request if an over - temperature 
is detected. 

   8.6.1    Scaled Numbers for Faster Execution 

 In virtually all computers, integer operations are faster than fl oating - point 
ones. This fact can be exploited by converting fl oating - point algorithms into 
scaled integer algorithms. In the so - called scaled numbers, the  least signifi cant 

 Example: Commercial Off - the - Shelf Explorations 

 These explorations seek to uncover problems in software furnished by third 
parties, such as commercial vendors, or open source software. Traditional 
testing of these components needs to be done. Because  “ trust but verify ”  is 
the hallmark of this testing, we call these  “ Reagan ’ s Tours ”  (with respect to 
nuclear arms verifi cation, President Ronald Reagan declared that it was 
best to  “ trust, but verify ” ). 

the compiler output thereafter. The effects of these changes can lead to 
insidious timing problems and undesirable side effects. Therefore, a set of 
explorations are needed to test the compiler and other systems programs 
involved in the production of the executable code (debuggers, linkers, 
loaders, and so forth). A series of exploratory tests, called  “ Shakeout Tours ”  
(after the term used for a debugging fi rst voyage for some transportation 
craft), are needed to uncover these potential problems. 
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       Figure 8.12.     A 16 - bit BAM word.  

180 90 45 22.5 . . .. . . 0.005493164

MSB LSB

bit  ( LSB ) of an integer variable is assigned a real - number scale factor. Scaled 
numbers can be added and subtracted together as well as multiplied and 
divided by a constant — but not by another scaled number. The results are then 
converted to fl oating point only at the last computing step, thus saving process-
ing time. 
   

 Example: Scaled Acceleration Samples 

 Suppose an analog - to - digital converter is converting accelerometer data. 
If the least signifi cant bit of the two ’ s complement 16 - bit integer has 
value  a     =    0.0001   m/s 2 , then any acceleration can be represented up to 
the maximum value of (2 15     −    1)    ·    0.0001   m/s 2     =    3.2767   m/s 2 . The 16 - bit 
number 0000 0000 0000 1101, for instance, represents an acceleration 
of 13    ·    0.0001   m/s 2     =    0.0013   m/s 2 . 

 A common practice is to convert an integer number  x  into its fl oating - point 
equivalent by  x     ·     a  and then proceed to use it in calculations directly with other 
converted numbers; for example,  d     =     x     ·     a     −     y     ·     a , where  y     ·     a  is a similarly 
converted fl oating - point number. Instead, the calculation could be performed 
in integer form fi rst and then converted to fl oating point:  d     =    ( x     −     y )    ·     a  — this 
would undoubtedly save some time. 

 For algorithms involving numerous additions and subtractions of like data, 
scaled numbers can introduce signifi cant time savings. Note, however, that 
multiplication and division by another scaled number cannot be performed on 
a scaled number, as those operations would change the scale factor. Besides, 
accuracy is generally sacrifi ced by excessive use of scaled numbers. Therefore, 
a careful error analysis is needed when using scaled numbers for implementing 
complicated or numerically sensitive algorithms. 

 Another type of scaled number is based on the property that adding 180  °   
to any angle is analogous to taking its two ’ s complement. This technique, called 
 binary angular measure  ( BAM ) works as follows. Consider the LSB of an  n  - bit 
word to be 2  − (   n    − 1)     ·    180 °  with the  most signifi cant bit  ( MSB ) of 180  °  . The range 
of any angle  θ  represented this way is 0 °     ≤     θ     ≤    360 °     −    2  − (   n    − 1)     ·    180 ° . A 16 - bit 
BAM word is shown in Figure  8.12 . For better accuracy, BAM can be extended 
to multiple words. Each  n  - bit word has a maximum value of:

    2 2 180 3601−( )⋅ ° = ° −− −( )n LSB,     (8.20)  
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  TABLE 8.5.    A Generic Function Look - Up Table Containing 
Both the Function and Its Derivative 

    x       f ( x )      f   ′ ( x )  

   x  0      f  ( x  0 )     f   ′ ( x  0 )  
   x  0     +     Δ  x      f ( x  0     +     Δ  x )     f  ′  ( x  0     +     Δ  x )  
   x  0     +    2 Δ  x      f ( x  0     +    2 Δ  x )     f  ′  ( x  0     +    2 Δ  x )  
   �      �      �   
   x  0     +    ( n     −    1) Δ  x      f ( x  0     +    ( n     −    1) Δ  x )     f   ′ ( x  0     +    ( n     −    1) Δ  x )  

  with granularity

    2 1801− −( ) ⋅ ° =n LSB.     (8.21)     

 Now, consider the 16 - bit BAM word: 

 0000 0000 1010 0110 

 It corresponds to the angle 166    ·    2  − 15     ·    180 °     ≈    0.9119 ° . 
 BAM words can be added and subtracted together, as well as multiplied 

and divided by constants as if they were unsigned integers, and converted at 
the last stage of the algorithm to produce fl oating - point results. It is easy to 
show that the overfl ow condition for BAM numbers presents no problem as 
the angle simply wraps around to 0   °   . BAM is frequently used in navigation 
software, robotic control, and in conjunction with digitizing imaging devices.  

   8.6.2    Look - Up Tables for Functions 

 A further variation of the scaled - number concept uses a stored table of pre-
calculated function values at fi xed intervals. Such a table, called a look - up table 
(Bateman and Yates,  1988 ), allows for the computation of continuous functions 
using mostly fi xed - point arithmetic. 

 Let  f ( x ) be a continuous real - valued function and let  Δ  x  be the interval size. 
Suppose it is desired to store  n  values of  f ( x ) over the range  x     ∈    [ x  0 , 
 x  0     +    ( n     −    1)    ·     Δ  x ] in an array of scaled integers. Corresponding values for the 
derivative,  f   ′ ( x ), may also be stored in the table for faster interpolation as will 
be shown below. The choice of  Δ  x  represents a trade - off between the size of 
the table and the desired resolution of the function. A generic look - up table 
is given in Table  8.5 . Such a table can be used for the interpolation of   f x̂( ), 
where   x x x x< < +ˆ Δ , by the well - known interpolation formula:

    f x f x x x
f x x f x

x

x

ˆ ˆ( ) = ( ) + −( )⋅
+( ) − ( )

→

Δ
Δ

ΔDerivative when 0� ��� ����

.     (8.22)     

 This calculation is done using integer instructions except for the fi nal 
multiplication by the factor   x̂ x x−( ) Δ  and conversion to fl oating point. The 
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accuracy of Equation  8.22  improves obviously when  Δ  x     →    0. If  f   ′ ( x ) is also 
stored in the look - up table, then the interpolation formula reduces to:

    f x f x x x f xˆ ˆ .( ) = ( ) + −( )⋅ ′( )     (8.23)   

 This clearly improves the execution time of the interpolation algorithm 
(increasing memory space is traded with decreasing execution time). 

 The main advantage in using look - up tables, of course, is speed. If a table 
value is found directly and no interpolation is needed, then the approach is 
much faster than any corresponding series expansion. 

 Look - up tables are widely used in the implementation of continuous func-
tions, such as the sine, cosine, and tangent functions, as well as their inverses. 
Because trigonometric functions are used frequently, for example, in conjunc-
tion with the  discrete Fourier transform  ( DFT ) and  discrete cosine transform  
( DCT ), look - up tables can provide considerable speed - up in real - time signal 
and image processing applications. 

 In some real - time applications, partial results can be given in order to meet 
a critical deadline. In cases where software routines are needed to provide 
mathematical support, complex algorithms are often employed to produce the 
desired calculation. For instance, a Taylor - series expansion (perhaps using a 
look - up table for function derivatives) could be terminated prematurely, at a 
loss of accuracy, but with improved real - time performance. Techniques involv-
ing early truncation of a series expansion in order to meet deadlines are called 
imprecise computation. Imprecise computation may be diffi cult to apply, 
however, because it is not usually easy to determine the processing that can 
be discarded and its overall effects.  

   8.6.3    Real - Time Device Drivers 

 In general, a real - time device driver is a piece of system software that forms 
a high - level interface between the hardware platform and application soft-
ware, and may use the functionality of the real - time operating system (RTOS) 
to accomplish this task effectively. It has three main purposes, which all have 
a more or less explicit connection to real - time performance:

   1.     To provide an effi cient and reliable interface to hardware devices, and 
achieve minimum input/output overhead by carefully designed and 
implemented driver functions.  

  2.     To hide the device - specifi c details from application programmers, and 
hence improve the programmers ’  productivity.  

  3.     To isolate a particular hardware platform and devices from the applica-
tion software, and thus enhance the portability and reusability of software.    

 A device - driver simplifi es the use of real - time devices, such as peripheral 
interface adapters, data acquisition hardware, wireless network interfaces, and 
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so forth. While the use of peripheral interface adapters is straightforward, the 
programming of communications network adapters usually goes beyond the 
scope of engineers developing software for some embedded application. 
Hence, the device drivers for sophisticated real - time devices are often acquired 
from the manufacturer of the hardware device, who knows all the functional 
details of the particular hardware device. Moreover, a device driver may be 
operating system specifi c. 

 Real - time device drivers manage a variety of important functions, which 
include (see Fig.  8.13 ):

    •      Initialization of the device    
   •      Logical (possibly standard) boundary to the application software  
   •      Physical interfacing to the particular device hardware  
   •      Resource arbitration and sharing  
   •      Chip - level command/control sequences  
   •      Interrupt servicing  
   •      Exception handling    

 In addition, virtual device drivers can be used to emulate the functionality of 
specifi c hardware devices during the process of software testing when the real 
devices are not yet available. Such a virtual driver mimics the behavior of some 

       Figure 8.13.     Typical functions of a real - time device driver that is interacting closely 
with the RTOS.  
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physical device, and thus provides a realistic environment for testing real - time 
software. 

 Serti ć  et al. discussed the use of UML for designing a device driver for a 
real - time Linux environment (Serti ć  et al.,  2003 ). Both static and run - time 
models of the device - driver ’ s behavior were developed, including a model of 
the interrupt handler. Furthermore, the implemented device driver was veri-
fi ed to be computationally effi cient and reliable, and it is used in a data -
 communications application. The proposed design approach is applicable to 
other device drivers, as well. 

 To conclude, any real - time device driver is usually such a critical unit of 
software that the effort used to optimize its performance can be easily 
justifi ed.   

   8.7    SUMMARY 

 After several solid chapters on the design and analysis of real - time systems, 
this integrative chapter provided a rich composition of additional consider-
ations for the practitioner. Actually, one characteristic that makes the fi eld of 
real - time systems engineering so fascinating is the multi - dimensionality of the 
whole fi eld; there are, indeed, many attractive areas to become specialized 
with. And nobody can likely claim to master them all. This also means that a 
competitive development team needs members with partially similar and par-
tially different educational focuses, who could then complement each other 
and form a dynamic group that is more than a sum of its members. 

 The hidden or passive role of software metrics and associated cost modeling 
techniques is going to enhance to be enhanced even in smaller organizations, 
since the cost - consciousness and need for careful project planning are continu-
ously increasing. This trend is advanced by the growing role (and size) of 
software in embedded systems, as well as the globalizing nature of software 
development projects. For instance, future smartphones will be increasingly 
 “ software products, ”  and even mid - size companies will likely have interna-
tional software development teams. 

 Uncertainty management has always been an important topic within 
embedded systems engineering. Nonetheless, this importance is getting new 
fl avor when autonomous systems, ubiquitous computing, and massively dis-
tributed wireless solutions are growing in production volumes. They will surely 
create fresh challenges for the embedded software developer, too. Such uncer-
tainty challenges are largely related to the issues of software reliability and 
fault tolerance. Hence, there is a need for a senior - level course on  “ uncertainty 
management and fault tolerance in wireless distributed systems. ”  Such a 
software - biased  course could be targeted for both computer - engineering and 
computer - science students. 

 The demand for high system reliability is extending steadily from high - end 
real - time systems toward low - end ones. In the foreseeable future, govern-
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ments, societies, organizations, and individuals will all be increasingly depen-
dent on real - time computing. This somewhat  “ blue - eyed ”  dependency could 
be seen as a threat, and thus it calls for fault - tolerant solutions. 

 Software testing is another area that has a signifi cant position in the success 
of future embedded systems. This signifi cance arises from the growing number 
and global distribution of embedded products, as well as from the growing size 
of embedded software. To keep the time - to - market measure acceptable and 
simultaneously ensure that the software maintenance phase will be satisfac-
tory, cost - wise, it is crucial to increase the use of automatic test case generators, 
automatic testing environments, as well as design for testability. In addition, 
carefully developed virtual hardware platforms together with virtual device 
drivers are necessary to improve the confi dence level of early testing phases. 

 Due to the continuing validity of the Moore ’ s law, the instruction through-
put of embedded processors is increasing at a remarkable rate. This obviously 
reduces the need for traditional performance optimization approaches in all 
but the most time - critical or expense - sensitive applications. On the other hand, 
the emerging use of multi - core processors in embedded applications for 
achieving true concurrency  of multiple tasks calls for novel performance opti-
mization techniques. Therefore, the area of performance optimization is in the 
process of stepping into something rather unknown. 

 Finally, in spite of all the architectural advancements, it is not likely that the 
availability of hardware - based fl oating - point support is going to increase in 
medium -  and low - end embedded platforms. This keeps the importance of 
scaled numbers, look - up tables, and other traditional performance optimiza-
tion techniques at a steady level.  

  8.8     EXERCISES 

8.1.    Research the use of the cyclomatic complexity metric in real - time 
systems by performing a thorough Web search. How would you conclude 
your fi ndings?   

8.2.    Recalculate the cyclomatic complexity metric for the  if-then-else , 
while , and  until  structures depicted in Figure  8.1 .   

8.3.    Recalculate the  FP  (function point) metric for the inertial measurement 
system using a set of weightings that assumes that signifi cant off - the -
 shelf software (say 70%) is to be used. Make assumptions about which 
factors will be most infl uenced by the off - the - shelf software. How many 
lines of C ++  code do you estimate you will need?   

8.4.    Do the same as Exercise 8.3, except recalculate now the  FP+  (feature 
point) metric. How many lines of C ++  code do you estimate will be 
needed?   
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8.5.    In  N  - version programming, the different programming teams code inde-
pendently from the same set of specifi cations. Discuss the possible dis-
advantages of this approach.   

8.6.    Describe the effect (if any) of the BITS and reliability schemes (a) – (d), 
without appropriately disabling interrupts. How should interrupts be 
disabled?

(a)     CPU instruction set test  
(b)     CRC calculation for ROM  
(c)     RAM pattern tests  
(d)     RAM scrubbing      

8.7.    Suppose a real - time computer system has 16 - bit data and address buses. 
What test patterns are necessary and suffi cient to test the address and 
data lines, as well as the RAM cells?   

8.8.    Write a module in the programming language of your choice that gener-
ates a CRC check value for a range of 16 - bit memory. The modules 
should take as input the starting and ending addresses of the range, and 
output the 16 - bit check value. Use either CRC - 16 (CCITT) or CRC - 16 
(ANSI) as your generator polynomial.   

8.9.    A software module is to take as inputs four signed 16 - bit integers and 
produce two outputs, the sum and average. How many test cases would 
be needed for an exhaustive testing scheme? How many would be 
needed if just the minimum, maximum, and average values for each input 
were to be used?   

8.10.    How much could testing and test case/suite generation be automated in 
practice? What are the roadblocks to automating a test suite? In pro-
gramming languages like Java?   

8.11.    For the example systems discussed throughout this book:

(a)     Airline reservation system  
(b)     Elevator control system  
(c)     Inertial measurement system  
(d)     Nuclear monitoring system    

 which testing methods would you prefer and why?   

8.12.    An elevator bank monitoring system shows the clock time in hours 
and minutes on multiple displays. The time is generated by a program-
mable 16 - bit timer, which uses a 50 - kHz clock signal for calculating 
seconds. These seconds are then accumulated to minutes and further to 
hours by software. However, the users of monitors were initially com-
plaining that the clock time is advancing or lagging up to 7 minutes in a 
month. 
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 A fi eld engineer made a survey of the problem and noticed that the 
magnitude of advance or lag remains practically constant on each site, 
but is dependent on the individual monitoring computer. Based on these 
observations, a solution for the annoying problem was developed and 
taken in use in the fi nal testing stage before the complete monitoring 
system leaves the elevator factory. 

 What kind of approach would you take with this problem if no hard-
ware modifi cations were allowed? Hint: the monitoring computer has 
free parameter space in a Flash memory that can be accessed by a service 
tool.   

8.13.    Create a compact look - up table (fl oating - point numbers with three 
decimal places) for the tangent function in increments of 1  °  . Be sure to 
take advantage of symmetry.   

8.14.    Suppose  x  is a 16 - bit BAM word representing the angle 225  °  , and  y  is 
another 16 - bit BAM word representing 157.5  °  . Using binary arithmetic, 
show that x     +     y     =    22.5  °  .   

8.15.    What are the advantages and disadvantages of writing a BAM object 
class in an object - oriented language like C ++ ?      
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     Forecasting is always a risky endeavor, as we have frequently observed, for 
example, when trying to plan our outdoor activities relying on professional 
weather forecasts that eventually turn out to be incorrect — it is raining heavily 
although it was supposed to be sunny. Technology forecasting is especially 
diffi cult, particularly if we try to forecast too far into the future. Nevertheless, 
different kinds of technology forecasts are created by business consultants, 
research engineers, and scientists. These forecasts are typically used for sup-
porting decision - making processes and for strategic planning purposes. The 
fundamental methodologies behind forecasting are the use of analogies, 
extrapolation, and modeling, as well as their various combinations (Makridakis 
et al.,  1998 ). Conversely, vision creation on the development of some technol-
ogy is a speculative  form of technology forecasting that might rely on the 
established forecasting methodologies but is strongly supported by human 
intuition — even imagination. Such technology visions are sometimes used in 
place of actual forecasts or in parallel to complement them, since forecasts do 
anyhow contain uncertainty. 

 In this chapter, we provide  selective visions  of the evolution and advance-
ment of real - time systems. The time span of our visions is up to year 2040; 
hence, some of the visions are necessarily  “ blue - sky ”  visions, while others are 
more  “ feet - on - the - ground ”  type. But what is the motivation behind this 
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chapter? Well, our primary intent is to create a stimulating basis for class 
debates, panel discussions, literature search assignments, and so forth, which 
could be used as a fi nal stage of a university course on  Real- Time Systems 
Design . Besides, these visions are helpful for the practitioner who needs to gain 
understanding of prospective real - time technologies. It may be easy to disagree 
with some of our visions, but it is certainly educational to fi nd specifi c argu-
ments and reasoning to support the disagreement as objectively as possible. 
The visions we present are derived from our collective insight informed by the 
most current literature on real - time systems technologies. It must be empha-
sized, however, that the literature cited in this chapter is a subjectively collected 
sample — not the byproduct of any comprehensive literature survey. Our insight, 
on the other hand, has matured during the exciting three decades that we have 
been involved with real - time systems, particularly the embedded ones. 

 At a recent European Futurist Conference, some leading futurologists 
expressed their prognoses (or visions) for year 2020. Below is a condensed list 
of such prognoses, which have an obvious connection to future real - time 
systems (Talwar and Pearson,  2010 ):

 •       “ Augmented reality will be much more mature and a familiar part of our 
lives. ”   

 •       “ Our interaction with machines will inevitably need to become more 
 ‘ natural ’  through the dramatic increase in the use of indirect channels of 
communication — making machines sensitive to biometric data [and ges-
tures] from which emotional and contextual information can be derived. ”   

 •       “ 10 Terabits of computer memory (roughly the equivalent of the memory 
space in a single human brain) will probably cost just $1000. ”   

 •       “ At the end of each day, I spend 20 minutes reviewing and annotating the 
downloads from my personal data chips that captured every conversation 
I had and every image I saw. ”     

 We believe that all of these envisioned futures should be reality by 2020. 
 While the previous visions were expressed by futurologists, the  SICE  ( The 

Society of Instrument and Control Engineers , Japan) Trans - Division Technology 
Committee on Embedded Systems has created a roadmap of embedded 
control systems (Funabashi et al.,  2009 ). Their roadmap covers the years 2015, 
2025, and 2035, and includes the following principal milestones:

 •      2015: Distributed embedded control systems with multi - core processors 
and advanced networks.  

 •      2015: Practical modeling methods from function specifi cation to 
implementation.  

 •      2015: Automatic verifi cation methods for control software.  
 •      2015: Collaboration among enterprises by model - based development 

methods.  
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 •      2025: Automatic generation of small - scale control software from high -
 level specifi cations.  

 •      2025: Remote maintenance of control software.  
 •      2035: Automatic software generation from high - level specifi cations for 

networked embedded systems.  
 •      2035: Evolution and self - organizing mechanisms for developing new 

products.    

 In addition, Funabashi et al. defi ned the term  “ ubiquitous intelligence ”  as an 
approach toward post  - embedded systems, which consists of embedded control 
systems that are networked with each other and also to computing clouds 
(Funabashi et al.,  2009 ). 

 The prognoses of the selected group of international futurologists as well 
as the thoughtful milestones of the Japanese roadmap provide guidance for 
our future visions on real - time systems, as will be seen shortly. 

 Our visions on real - time systems have fi ve dimensions (which, however, are 
not fully orthogonal): real - time hardware, real - time operating systems, real -
 time programming languages, real - time systems engineering, and real - time 
applications. And these distinct vision elements are presented in Sections 
 9.1  –  9.5 , respectively. Moreover, Section  9.6  summarizes the chapter and 
Section  9.7  provides a collection of future - vision exercises for class usage. We 
weave a common thread throughout the chapter by building explicit connec-
tions between consecutive sections. Thus, this chapter is more than a collection 
of individual visions on real - time systems — it is an integrated whole that will 
hopefully leave the perceptive reader with much to consider. 

 Furthermore, as any vision of long - term technology development contains 
more or less uncertainty, it is suggested that the instructor and students would 
create their individual confi dence pentacles  for the fi ve vision elements of 
Sections  9.1  –  9.5  (Exercise 9.6). A vision confi dence pentacle has an axis for 
every vision element, and each axis corresponds to the evaluator ’ s confi dence 
on the contents of the particular section:  “ 1 ”  represents full confi dence and 
 “ 0 ”  no confi dence at all (Sick and Ovaska,  2007 ). Figure  9.1  illustrates such a 
confi dence pentacle with arbitrary confi dence values. The likely differences 
between the instructor ’ s and students ’  pentacles could form a fruitful basis for 
classroom discussions.    

   9.1    VISION: REAL - TIME HARDWARE 

 The exponential progress of integrated circuit technology has followed Moore ’ s 
law for more than four decades. In 1965, Gordon Moore predicted that the 
density of transistors doubles every 2 years. And today, we can have several 
millions of transistors on a single processor chip. Moore ’ s law can be expressed 
mathematically as (Powell,  2008 ):
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    ˆ .N N y y
2 1

22 2 1= −( )[ ]     (9.1)  

  where  N  1  is the known number of transistors in year  y  1 , and   N̂2 is the predicted 
number of transistors in year  y  2 . To give some perspective for our visions 
on real - time hardware, let us calculate   N̂2 for years 2020, 2030, and 2040, and 
use a normalized value for the initial number of transistors in 2011, that is 
 N  1     =    1. The corresponding values for   N̂2 are  ≈ 23,  ≈ 724, and  ≈ 23171, respec-
tively. These numbers will signifi cantly scale up the current  “ several millions ”  
of transistors, if Moore ’ s law continues to be valid. On the other hand, Powell 
estimated that the physical quantum limit to Moore ’ s law would be reached 
in 2036 (Powell,  2008 ) — but that distant year is close to the end of our vision-
ing period. 

 A principal concern with the future billion - transistor integrated circuits is 
their high power consumption leading to severe heat problems (Gea -
 Banacloche and Kish,  2005 ). This creates obvious needs to optimize the clock 
frequency (and operating voltage) in every block of an integrated processor 
system, because the power consumption is linearly proportional to the applied 
clock frequency. Hence, different functional blocks will run at different rates, 
which are no more than  “ adequate ”  for the particular function. 

 Error - tolerant computing is seen as another (but rather  “ revolutionary ” ) 
approach that could relieve the power consumption problem in future proces-
sor chips (Lammers,  2010 ). It is based on relaxed thinking that most internal 
errors that occur during the instruction execution process will be corrected 
(power is consumed) but small errors could be ignored (power is saved). This 
somewhat probabilistic approach would necessarily drive computing results 
away from determinism; and that is something we cannot tolerate in hard and 
fi rm real - time systems. Nonetheless, in certain soft real - time systems, such as 
massive graphics processing, it could be acceptable. Augmented/virtual reality, 
as well as mobile data - logging applications, are potential users of error - tolerant 
computing. 

       Figure 9.1.     An example of the vision confi dence pentacle.  
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 Although embedded processors have never been on the leading edge with 
respect to the number of transistors on a single chip, there will be enormous 
opportunities to innovate new embedded processor systems as long as Moore ’ s 
law continues to be valid. These opportunities will be discussed below as our 
hardware visions. 

   9.1.1    Heterogeneous Soft Multi - Cores 

 In 2004, Paul Otellini, the President and CEO of Intel, announced that his 
company would dedicate  “ all of our future product designs to multi - core envi-
ronments ”  (Patterson,  2010 ). Although Intel is no longer a major player in the 
embedded processor fi eld, this shaking announcement was a global starting 
point for a new era in embedded processor research and development, as well. 
Since that, a few commercial and many experimental multi - core architectures 
have emerged for embedded systems use (Levy and Conte,  2009 ). 

 Multi - core processor architectures offer the possibility for  true concurrency
in executing multiple tasks (with equal priorities) in a real - time system. In 
principle, every individual task could run on its own CPU core and thus have 
all the processing capacity of that core available. However, if the CPU cores 
on a single chip were equal, this would lead to very ineffi cient use of comput-
ing resources (and excessive power consumption). Since some software tasks 
are computationally light while others are heavier, and some have a long 
execution cycle while others have a shorter one, it would be advantageous to 
have a multi - core processor with an application - specifi c set of  heterogeneous
CPU cores that could be assigned to individual tasks and run at various voltage 
settings based on their explicit needs (Hashemi and Ghiasi,  2010 ). 

 But there are diverse hard real - time applications, and, hence, also diverse 
needs for the composition of a heterogeneous multi - core chip. For instance, 
one eight - task application could need a multi - core chip with four 8 - bit RISC 
microcontroller cores, two 32 - bit RISC cores, and two 16 - bit digital signal 
processor cores. Moreover, another four - task system could require just three 
8 - bit RISC microcontroller cores and one 24 - bit digital signal processor core. 
Naturally, it would not be feasible to have a large variety of heterogeneous 
multi - core chips available as  standard  components. 

 The traditional solution to this  “ variety problem ”  is an  application - specifi c 
integrated circuit  ( ASIC ), which could be used for implementing heteroge-
neous multi - core architectures tailored for a specifi c application. Nonetheless, 
the expensive design and manufacturing processes, as well as long turnaround 
times, make ASICs undesired for most applications. Fortunately, large  fi eld -
 programmable gate array s ( FPGA s) provide an attractive implementation 
alternative for heterogeneous multi - core processors. It is clearly visible that 
programmable (or reconfi gurable) substrates are replacing the dedicated 
ASICs rather fast in a broad range of applications (Hashemi and Ghiasi,  2010 ), 
and with the continuously increasing number of logic elements, FPGAs can 
be used for implementing heterogeneous soft  multi - cores. The individual soft 
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CPU cores are implemented cost - effectively utilizing basic FPGA logic ele-
ments only, instead of using any special higher - level elements (except memory 
blocks) (Elkateeb and Mandepanda,  2009 ); this guides the different FPGA 
manufacturers toward standardization. 

 A  heterogeneous soft multi - core  ( HSMC ) architecture for embedded appli-
cations is depicted in Figure  9.2 . The single FPGA circuit contains six CPU 
cores, a high - speed communications channel between the cores (or  “ network -
 on - chip ” ), core - specifi c  external interface unit  ( EIU ), as well as core - local 
memories. Moreover, the clock frequencies of individual CPU cores are opti-
mized for the exact needs of the task executed; this leads to simple reduction 
of power consumption. While the dedicated processor designs are directly 
composed of transistors, logic gates, and standard cells, the future  “ soft com-
ponents ”  in reconfi gurable platforms are such high - level functions as CPU 
cores, inter - core communications channels, memories, and so on — the level of 
abstraction will step up remarkably keeping the design effort manageable. In 
hard real - time embedded applications, the number of required CPU cores (or 
parallel tasks) is typically no more than 10 – 15.   

 In mission - critical applications (such as the Mars Exploration Rover in Fig. 
 1.6 ), reconfi gurable soft - core systems could even be self - repairing as discussed 
in Laplante  (2005) . The semi - automatic design and confi guring process of 
future HSMC compositions will be discussed in Section  9.3 .  

       Figure 9.2.     A heterogeneous soft multi - core architecture for future embedded systems 
(only Core 1 is shown with internal details for clarity).  
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   9.1.2    Architectural Issues with Individual Soft Cores 

 After proposing a composition of multiple heterogeneous soft cores as an 
application - specifi c platform for embedded hard real - time systems, we next 
discuss the architectural issues related to the individual soft cores within the 
composition. 

 It is generally known that instruction queues/pipelines and instruction/data 
caches create challenges for the analysis of real - time systems since they make 
it diffi cult to estimate the upper and lower bounds of execution times for 
individual tasks. A main problem is that straightforward combinations of 
module - level execution time measurements — the usual manner in which per-
formance analysis is conducted — may lead to overly pessimistic worst - case 
execution time estimates for the whole task (Wilhelm et al.,  2009 ). And these 
problems are not only related to the diffi culty of performance analysis, but 
both pipelines and caches cause uncertainty to response times; hence, real - time 
punctuality becomes deteriorated. 

 In hard real - time systems with heterogeneous soft multi - cores, it is possible 
to eliminate cache memories and have a fl at memory architecture instead. This 
is feasible because every task runs on its own CPU core, and the clock fre-
quency of the core does not usually need to be at the limits of the underlying 
FPGA hardware; the CPU – memory latency gap does not exist in such an 
environment. This architectural feature makes the individual soft - core blocks 
simpler, since no cache controller is needed. Furthermore, as every CPU core 
has a private memory, there is no memory - interleaving latency either in this 
multi - core platform. 

 Pipelines, superpipelines, superscalar architectural features, and out - of -
 order execution are all used to improve the instruction throughput of modern 
processors. While they do improve the average execution time of instructions, 
they also introduce a remarkable uncertainty to worst - case execution times. 
Therefore, following the recommendations of Wilhelm et al. (Wilhelm et al., 
 2009 ), we prefer a short (3 – 5 stages) compositional pipeline that makes the 
timing analysis straightforward. As they point out, with fully timing composi-
tional architectures, the analysis can safely follow local worst - case paths only. 

 Finally, the soft CPU cores have RISC - like instruction sets without any 
speculative features, register - rich data paths, memory - mapped input/output 
(I/O), and Harvard architecture. And it should be adequate to have confi gu-
rable soft cores with a few performance levels available for each relevant 
FPGA platform, such as:

 •      8 - bit low - performance RISC  
 •      16 - bit medium - performance RISC  
 •      32 - bit high - performance RISC  
 •      16 - bit digital signal processor  
 •      32 - bit digital signal processor    
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 These soft - core blocks can be confi gured fl exibly with respect to the avail-
ability of fl oating - point arithmetic, amount and type of memory, and the avail-
able external interface units.  

   9.1.3    More Advanced Fieldbus Networks and Simpler Distributed Nodes 

 In the early years of real - time systems, automation and control computing in 
large - scale plants (Kamiya,  2004 ) was centralized: a single computer unit col-
lected measurements, executed elementary signal processing and control algo-
rithms, and delivered commands for actuators, as well as references for local 
analog controllers. This required signifi cant amounts of parallel wiring in indus-
trial environments (chemical factories, paper mills, electric power plants, etc.) 
with high levels of electromagnetic interferences. And the wiring was particu-
larly problematic when analog signals were transferred for lengthy distances. As 
we know, these problems were tackled effectively by implementing distributed 
control systems, which use fi eldbus networks for wiring - effi cient connections 
between individual measurement units, controllers, actuators, and monitors. 

 Furthermore, the distributed control approach is not just for saving wiring 
expenses and space, but it provides an opportunity to implement  machine 
intelligence  in the distributed units. Nevertheless, there is also another driver 
for distributing intelligence around the whole control system — to make it pos-
sible to manage hard real - time constraints in such a cooperative environment, 
where the shared communications network creates considerable uncertainties 
for node - to - node message delivery times. This is still the situation with most 
fi eldbus systems. 

 In the future, the fi eldbus networks will become much faster due to the 
increasing use of optical cabling instead of copper wires. Besides, messages 
will be delivered in chunks of only a few bytes with light - weight simplifi ed 
protocols. This makes it possible to reduce the latencies and their uncertainties 
when delivering time - critical messages. With these advanced networks, it is 
possible to move some of the distributed intelligence  “ back ”  to the  central
computing unit  that is normally handling the supervisory control tasks. The 
motivation behind such a move is to simplify the numerous distributed nodes 
and thus make their remote maintenance and updating easier. 

 The powerful central computing unit is further connected to a  computing
cloud  (Luo,  2010 ) over the Internet. This cloud - computing infrastructure is 
relying on a regional data center that provides on - demand services for the 
plant supervision center, local service crews, product maintenance groups, 
research and development teams, operative management, and so forth. The 
required raw data is collected from the distributed units per need basis, but 
all postprocessing, fault prognosis and diagnosis, optimization of process 
parameters, as well as service - specifi c user interfaces, are provided by the 
servers of the computing cloud. And all this information and derived knowl-
edge could even be accessed by smartphones using a web browser or possible 
augmented reality features. 
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 Figure  9.3  illustrates a distributed control architecture for large - scale plants, 
which is based on simple distributed nodes, advanced fi eldbus networks, a 
central computing unit, Internet connection, and a computing cloud. This dual -
 level architecture is also applicable besides industrial plants. The hard real -
 time functions are processed strictly within the fi eldbus framework, while the 
soft real - time services are provided by the cloud. In addition, both of these 
entities may handle fi rm real - time tasks — depending on the nature of the 
particular application.   

 As a general comment, before taking any complex control architecture in 
use, it is important to perform a careful sensitivity analysis to ensure the 
robustness of the new architecture to changes (Racu et al.,  2008 ). Sensitivity 
analysis is necessary to identify how well the new architecture can accommo-
date updates and later modifi cations, for instance.   

   9.2    VISION: REAL - TIME OPERATING SYSTEMS 

 Since currently available multi - core processors are not feasible for multitask-
ing use in hard real - time applications with strict mission or safety concerns 

       Figure 9.3.     A distributed control architecture for future large - scale plants.  

Computing Cloud

User 3User 1

User 4User 2

Internet

Central
Computing Unit

Node a

Node b

Node c

Node d

Node A

Node B

Node C

Node D

Local Control of
Subsystem I

Local Control of
Subsystem II

Advanced
Fieldbuses

Supervisory
Control and

Node Support

Hard RT

Soft RT

www.it-ebooks.info

http://www.it-ebooks.info/


486 FUTURE VISIONS ON REAL-TIME SYSTEMS 

(Wolf et al.,  2010 ), we proposed the straightforward architecture of heteroge-
neous soft multi - cores — which is highly deterministic — earlier in this chapter. 
Next, we will outline a plain real - time operating system for that reconfi gurable 
environment. The service - oriented operating system is very simple, because it 
does not need to perform any intra - core or inter - core scheduling/dispatching, 
as will be seen below. 

   9.2.1    One Coordinating System Task and Multiple 
Isolated Application Tasks 

 The HSMC architecture provides a dedicated CPU core for every task that 
runs in isolation. Actually, this approach could be interpreted as a distributed 
multi - processor system on a single chip. Hence, the needed RTOS functional-
ity is focused merely on reliable synchronization and intertask communication. 
These critical services are executed within a single system task that interacts 
with the application tasks through the high - speed communications channel 
depicted in Figure  9.2 . All application tasks handle their local scheduling and 
dispatching themselves. In this context, scheduling/dispatching means the 
timely activation of application programs due to local hardware interrupts and 
system events related to synchronization or intertask communication. When 
an application program is waiting for some hardware interrupt or a specifi c 
system event, a background program (non real - time) is running and executing 
built - in self - tests for the hardware platform — this is a natural alternative to 
simple idling. Thus, every CPU core contains a foreground – background system. 

 Synchronization is performed using  mutex locks  or other forms of sema-
phores for protecting critical resources, such as shared data - acquisition chan-
nels and external communications networks. Application tasks request mutexes 
from the system task, which allocates them when available. If the desired 
mutex is not immediately available for the requesting task, the task puts itself 
to a wait state, and when the system task fi nally provides an event correspond-
ing to the availability of the mutex, the waiting application task will be con-
tinued. And eventually, the mutex lock will be released for other application 
tasks. The system task handles simultaneous requests from application tasks 
using a priority or round - robin scheme, or some combination of them (depend-
ing on the application). Moreover, when common resources are accessed, a 
time - bounded handling is guaranteed by the system task; the usage time of 
every shared resource is limited to a particular duration. Hence, the worst - case 
execution time analysis is always possible. No such condition as priority inver-
sion will ever occur, since true task concurrency is practiced with independent 
cores. 

 Intertask communication is carried out using task - local message buffers, 
which are  “ connected to each other ”  by the system task. That is, if Task 1 wants 
to send a message to Task 2, it fi lls its local message buffer and informs the 
system task that there is a message for Task 2. Next, the contents of the 
message buffer are transferred over the high - speed communications channel 
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to the  message center  of the system task. Finally, after Task 2 has informed the 
system task that it is waiting for a message from Task 1, the system task deliv-
ers the message buffer to Task 2. In addition, the system task sends a  “ message 
delivered ”  notifi cation to Task 1. If some message is not requested by the 
addressed destination task within a specifi ed time period, an  “ undelivered 
message ”  warning will be sent to the source task. Besides, if an expected 
message is not made available by the associated source task within another 
specifi ed time period, an  “ unavailable message ”  warning will be sent to the 
destination task. It is also possible to broadcast messages simultaneously to 
multiple tasks using the same principle, as illustrated in Figure  9.4 .   

 In addition to the synchronization and intertask communication services, 
the system task may provide also other utility services, such as an accurate 
real - time clock and calendar. 

 This simple real - time operating system and the straightforward processor 
architecture together are responses to the increasing complexity of hard real -
 time systems. The deterministic and easily manageable computing platform 
makes it possible for research and development teams to concentrate more 
effectively on the design of applications, as will be discussed in Section  9.4 .  

   9.2.2    Small, Platform Independent Virtual Machines 

 Let us leave the special HSMC architecture for a while and take a look at a 
more traditional approach. Recent architectural/hardware advances have pro-
duced a number of experimental small embedded processors with more pro-
cessing power and memory and lower power than previous generations, and all 
this with a relatively small footprint. But modern virtual machine support for 

       Figure 9.4.     An example of coordinated message broadcasting from Task 1 to Tasks 2 – 4.  
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these environments may still require too much memory. For example, the ROM 
size for Java Standard Edition for Embedded Systems is approximately 30   M 
bytes, and the . NET   “ Compact Framework ”  is around 5   M bytes. Nevertheless, 
for small embedded environments, a virtual machine with a ROM size in the 
256 K - byte range would be desirable to fi t into the smallest devices. 

 Even when a virtual machine that is small enough is developed, the archi-
tecture of a typical real - time system is not designed to manage the load of a 
virtual machine. Hence, a new architectural paradigm for a small microcon-
troller platform is needed that can support both real - time processing and a 
virtual machine (Davis,  2011 ). In addition, an appropriate microkernel archi-
tecture that can run on the virtual machine will need to be developed.   

   9.3    VISION: REAL - TIME PROGRAMMING LANGUAGES 

 Over the past few decades, specialized real - time programming languages have 
been introduced every now and then, but they have not obtained any main-
stream role in embedded software development. The embedded systems indus-
try is rather satisfi ed with the currently available procedural and object - oriented 
languages. So, why would the situation change in the visionable future? 

 There are two principal needs that cannot be fulfi lled properly with the 
existing programming languages under the ongoing transition to multi - core 
platforms:

   1.     The need to improve the  productivity  of programmers  
  2.     The need to continue to have  platform - independent  code    

 The fi rst need is related to the general trends that the complexity of embedded 
systems is growing steadily, and the product development cycles are becoming 
shorter. And the latter one is a consequence of the emergence and evolution 
of diverse multi - core architectures. How could we develop software for a 
specifi c multi - core processor that would be portable to another multi - core or 
even a single - core environment? This is a particularly critical question if the 
embedded software has a long life; there is not yet architectural convergence 
in the multi - core processor fi eld, and the processors that will be available by 
the end of this decade will be different from existing ones. Therefore, industrial 
companies that have taken multi - core platforms for their embedded products 
(so far, soft or fi rm real - time systems only) are currently using the multi - cores 
as multiple single - cores to reduce their dependency on the particular parallel 
architecture. Besides, by following such a conservative approach, there is not 
any need to have a special multi - core operating system either. Our heteroge-
neous soft multi - core approach that was introduced in Sections  9.1  and  9.2  can 
be seen as an extension of such a pragmatic principle. 

 When the semiconductor industry switched from making processors run 
faster to putting more of them on a single chip, no clear notion was given how 
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such devices would, in general, be programmed (Patterson,  2010 ); hence, to 
get rid of a hardware bottleneck, a programming bottleneck was essentially 
introduced. The programmers of multi - core processors are facing the classical 
parallel programming challenges, such as sequential dependencies, load bal-
ancing, memory sharing, and synchronization. In a recent Workshop of 
Computer Architecture Research Directions, two recognized scientists, David 
August and Keshav Pingali, had a moderated debate around the fundamental 
question  “ Do applications programmers need to write explicitly parallel pro-
grams? ”  (Arvind et al.,  2010 ). After a lively debate, no ultimate agreement was 
concluded for the explicit  versus  implicit  issue — both of the parallel program-
ming models have their pros and cons, but the implicit approach is obviously 
preferable. Furthermore, as the productivity of programmers and the shortage 
of skilled programmers are current problems in the expanding fi eld of embed-
ded systems development (even without considering needs for parallel pro-
gramming experts), it is practical to favor the implicit parallel programming 
model. In implicit parallel programming, it is the responsibility of the 
compiler — not the programmer — to identify and utilize the opportunities for 
parallelism. And that should be the way how embedded software is pro-
grammed in the multi - core era. The new architectures should not make the 
practitioner ’ s programming task any harder or destroy the portability of code 
between different platforms. 

   9.3.1    The  UML  ++  as a Future  “ Programming Language ”  

 To make the programming process more effi cient, it is necessary to raise the 
level of abstraction above the current programming languages. Thus, we 
propose that the traditional programming languages would  “ merge ”  with the 
universal modeling language (UML) and form the UML++ . This imaginary 
name was selected both to distinguish the future modeling and programming 
language from the current UML and to emphasize that it has evolved, indeed, 
from the UML. The UML – UML ++  relationship has an analogy to the C – C ++
association. UML forms a sound basis for a  “ parallel programming language, ”  
since its objects are considered as parallel entities, and a single object entity 
exhibits itself as a concurrent activity. Such a step - up in the level of program-
mer ’ s abstraction will mean that code generation has to become automatic, 
and, hence, programmers will shift their efforts from code writing to the design 
of real - time systems. And with the heterogeneous soft multi - core architecture, 
the outcome is the design of real - time  systems  — not just real - time software —
 because there is the necessity to compose and confi gure the application -
 specifi c processor as well. All this is done using the UML ++ , which needs to 
have strict formalism in the full subset of diagrams that are intended for
 specifying hard real - time systems. Thus, the UML ++  Design Engine is able to 
map the high - level behavioral description of a real - time system semi -
 automatically to the multiple soft cores of the heterogeneous processor plat-
form, which is synthesized as a set of confi gurable CPU cores with varying 
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levels of performance and functionality. In addition, the program code is gen-
erated automatically for each of the soft cores from the UML +  +  descriptions. 
This procedure is sketched in Figure  9.5 .   

 But currently, UML 2.0 is considered overly complex and diffi cult to learn/
use among many practitioners; would that not hinder the acceptance of 
UML +  + ? Not necessarily, if the  basic  UML notation is made familiar to 
 “ everybody ”  already in middle and high schools and throughout their college 
education. This could be feasible, since the graphic notation techniques used 
in math, science, and engineering courses could be replaced consistently with 
the basic UML notation in associated textbooks (currently, diverse block and 
fl ow diagrams are used depending on the context). Spinellis called this approach 
 “ UML everywhere, ”  and he pointed out  “ after a short learning period, we ’ ll 
all be able to concentrate on how our diagrams can best convey our ideas, 
rather than on inventing new notations ”  (Spinellis,  2010 ). In this way, the effort 
in taking the advanced UML +  +  in use by future practitioners could be 
moderate. 

 To conclude, the unambiguous behavioral modeling part of UML +  +  would 
be the future  “ real - time programming language ”  (and much more) for HSMC 
architectures. An initial step toward that direction was taken in Arpinen et al. 
( 2006 ). However, before all the required features are well established and in 
mainstream use within the embedded systems community, we are close to the 
year 2040. This lengthy adoption period is understandable when we take into 
account the methodology - wise conservative nature of embedded systems 

       Figure 9.5.     The procedure of generating an application - specifi c HSMC platform and 
the corresponding program code for the individual soft cores using the UML +  +  design 
engine.  
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industry. And while it is easy to argue that such an automatic code generation 
scheme is ineffi cient, we can safely respond that the continuing validity of 
Moore ’ s law will override such considerations in our visioning period. This 
straightforward reasoning has an analogy to the painful but successful transi-
tions from the assembly language to procedural languages and further from 
procedural languages to object - oriented ones in hard real - time systems.   

   9.4    VISION: REAL - TIME SYSTEMS ENGINEERING 

 Formal methods have always given hope that better ways of building reliable 
real - time systems easier, faster, and cheaper could be found. But this promise 
has never really been fulfi lled, largely because of diffi culties in modeling tem-
poral behavior. 

 Currently, there are problems in using formal methods as the panacea for 
real - time systems design and analysis. There is no standard methodology — in 
fact, there seem to be too many formal methods available. There also seems 
to be a dearth of real success stories in building successful real - time systems 
exclusively using formal methods. And when these success stories are reported, 
they are hailed as some kind of exceptional case. If formal methods really are 
the answer, then reports of their successful use in real - time systems should not 
be news — they should be commonplace. 

 Software engineering pioneer David Parnas recently made this case and 
decried the current state of applied formal methods.  “ It is our job to improve 
these methods, not sell them. Good methods, properly explained, sell them-
selves. Our present methods don ’ t sell beyond the fi rst trial ”  (Parnas,  2010 ). 
Parnas goes on to argue for a different paradigm for the use of formal methods 
and for simplicity and more universality in notation. 

 In the previous section, we proposed the UML ++ , which is a next - generation 
modeling language to be used for the design and implementation of real - time 
software for single -  and (heterogeneous) multi - core environments. The formal 
UML++  model of an embedded system is platform independent, since all 
platform dependencies are hidden inside the UML++ Design Engine  depicted 
in Figure  9.5 . These platform dependencies are related both to the application -
 specifi c multi - core composition, as well as to the actual FPGA circuit in use. 
It should be emphasized that the software design and implementation activi-
ties are highly inseparable within the UML ++  framework; thus, the fi nal 
UML++  model is constructed iteratively, and the incremental process is sup-
ported by high - level simulation tools for verifying the model increments as 
they appear. This model verifi cation is performed semi - automatically. 

   9.4.1    Automatic Verifi cation of Software 

 The software for the HSMC platform is generated automatically from the 
UML++  model (see Fig.  9.5 ). In parallel with such a major computation effort, 
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also the necessary test cases and associated test suites are generated. 
Furthermore, the embedded software is verifi ed automatically at three differ-
ent levels:

   1.     Object Level :      Each object within a single CPU core.  
  2.     Core Level :      Each CPU core within the multi - core processor.  
  3.     System Level :      All CPU cores together.    

 To be able to carry out adequate tests for the levels 2 and 3 of real - time soft-
ware, a versatile library of confi gurable simulation programs is needed for 
providing the essential application environment. The biggest challenges toward 
fully automatic  software verifi cation are related to these simulated application 
environments; it is apparent that they have to be generated semi - automatically 
throughout our visioning period.  

   9.4.2    Conservative Requirements Engineering 

 The role of requirements engineering must be emphasized, since it is of 
growing importance to develop the  “ right product ”  at the  “ right time ”  for truly 
global markets with tough competition and shortening life cycles. Depending 
on the type of the product to be developed, the requirements engineering 
process can either be incremental and closely integrated to the UML ++  design/
implementation phase or be a separate phase that is completed before the 
UML++  modeling begins at all. The former approach has clear similarities to 
agile methodologies, while the latter one is supporting a sequential life cycle 
model. And both of these are defi nitely needed, because there are various 
types of embedded products, as well as development environments with dif-
ferent characteristics to manage. 

 While the design/implementation is carried out entirely using the single 
UML++  tool, the requirements engineering activities continue to be supported 
by multiple tools. This is due to the diversity of stakeholders. They are not 
going to have a  “ common language ”  during this visioning period; the method-
ological gap between marketing and engineering people remains too wide.  

   9.4.3    Distance Collaboration in Software Projects 

 In the future, embedded software development projects will be distributed 
increasingly in multiple physical locations, which may reside even in different 
continents. This is due to the globalization boom that has made the large cor-
porations and also smaller companies distribute their research and develop-
ment (R & D) units. The parent organization can be located in Europe or the 
United States, but there may be local R & D groups in countries such as Brazil, 
China, and India. 

 To establish a solid foundation for effective cooperation between the geo-
graphically distributed groups, it is necessary to have common modeling tools 
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in use within the whole project team. A model - centered approach to software 
engineering collaboration is benefi cial due to its structuring effects (Whitehead, 
 2007 ). 

 Today, e - mail and certain web - based applications are used routinely in most 
development projects as the preferred means for inter - group communication. 
The amount of physical travel by real - time software engineers is continuously 
decreasing; it is time - consuming, expensive, and environmentally unsound. 
Nonetheless, based on our international R & D experience, a well - prepared 
physical meeting of a project team cannot be fully substituted by current 
video - conferencing techniques. The state of video conferencing is still too 
primitive, and the divisive  “ they - and - us ”  arrangement disturbs natural 
interaction. 

 Whitehead presented a relevant roadmap on collaboration in software 
engineering (Whitehead,  2007 ). He indicated that the future communications 
and presence technologies will offer novel opportunities for fading the physi-
cal distances between cooperating engineering groups. Particularly, the advanc-
ing virtual reality environments of 3D games (and virtual environments like 
Second Life) could provide a reasonable virtual environment for design 
reviews, regular project meetings, and even for daily coffee breaks. In that way, 
the cohesion of the entire project team would improve and the harmful  “ they -
 and - us ”  thinking could diminish. 

 It is expected that the innovative game industry will develop such virtual -  or 
augmented - reality environments during this visioning period that could also 
provide a  “ quantum leap ”  for natural and effective interaction between dis-
tributed software engineering groups.  

   9.4.4    Drag - and - Drop Systems 

 Components for building real - time systems abound in open - source reposito-
ries, and many of these are quite robust and are currently being used in 
industrial - strength real - time systems. But for the most critical applications, 
new engineering paradigms are needed to allow for easy identifi cation, valida-
tion, verifi cation and assembly of these components from a number of sources 
(e.g., open source, commercial off - the - shelf, and in - house reuse). 

 We envision a new generation of drag - and - drop component - based software 
engineering tools and associated capability to support round - tripping engi-
neering (forward and reverse engineering from specifi cation to code). 
Progenitors of these kinds of systems abound, but none has the kind of robust-
ness and provable correctness that is needed for the most critical applications.   

   9.5    VISION: REAL - TIME APPLICATIONS 

 Since the beginning of the embedded systems era, numerous embedded appli-
cations have been introduced; many of them have survived over years and 
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have an established position in our lives, while others have quietly disap-
peared. The introduction of new embedded applications will undoubtedly 
continue during the visioning period — and beyond that. In this section, we 
discuss some future embedded applications that could have a considerable 
impact in our personal lives and the society around us. 

 Large numbers of small, communicating real - time computers found in 
smartphones, wearable clothing, appliances, vending machines, and so forth 
promise to transform the way human beings interact with their environment. 
We are only moments away from the following scenarios:

 •      Embedded microcontrollers in your clothes communicate with the 
washing machine in order to set up the appropriate wash cycles.  

 •      Sensors reading perspiration and body temperature adjust the environ-
ment in your home or car.  

 •      Your refrigerator and smart pantry can take inventory of the contents and 
prepare a shopping list for you based on your dietary preferences, recently 
prepared meals, and upcoming holidays.    

 All of the envisioned advances of Sections  9.1  –  9.4  will enable new families of 
applications that promise amazing functionality. Understandably, we can 
discuss only a small sample of these possibilities. 

   9.5.1    Local Networks of Collaborating Real - Time Systems 

 Local communications networks involving collaborating real - time systems are 
needed for advanced smart homes and smart buildings. In addition to numer-
ous conveniences (e.g., environmental control), there are many safety and 
security applications for the elderly, disabled, or very young in a smart home. 
For example, such a system could track if a resident has wandered outside of 
a safe zone or has been immobile for too long. Connecting the system with 
vital sign and other status monitoring equipment can provide important infor-
mation for tracking and maintaining the health and wellness of any inhabitant 
of a private home or public facility, such as a hospital, school, or retirement 
facility. 

 There is a rich variety of entertainment and comfort applications, too. For 
instance, virtual wall art and music and climate control that adapt to the tastes 
and desires of the most proximate individual in the room of our home. As a 
matter of fact, Bill Gates envisioned these applications of RFID technology 
in his own home and then realized them (Gates,  1995 ). These same adaptations 
could next be implemented in various public spaces, such as schools, libraries, 
and hospitals. And the same advancements that will be found in smart homes 
can scale up to smart buildings that interact with internal components (e.g., 
elevators, HVAC, and lighting), users, and the environment (Snoonian,  2003 ). 

 Robots present the ultimate challenge for real - time systems engineers 
because they are a blend of image processing, artifi cial intelligence, and elec-
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tromechanical systems all communicating over a fi eldbus network. But we can 
expect to see more, and robot - based applications in industrial and residential 
settings with a likelihood of realistic, humanoid robots becoming common-
place by 2040. Even today, many homes worldwide have an autonomous 
robotic vacuum cleaner, which is able to navigate a living space while vacuum-
ing the fl oor and rugs.  

   9.5.2    Wide Networks of Collaborating Real - Time Systems 

 Perhaps the most exciting applications for real - time systems involve large 
numbers of collaborating systems over a wide area. Typical applications involve 
intelligent transportation systems, the smart grid, and coordinated infrastruc-
ture systems. 

 Intelligent transportation systems are those in which individual vehicles 
interact with each other and traffi c monitoring and controlling equipment, 
emergency vehicles, pedestrians, and other real - time components (Ma et al., 
 2009 ). 

 A smart grid, on the other hand, is  “ an automated, widely distributed energy 
delivery network [that is] characterized by a two - way fl ow of electricity and 
information and will be capable of monitoring everything from power plants 
to customer preferences to individual appliances. It incorporates into the grid 
the benefi ts of distributed computing and communications to deliver real - time 
information and enable the near - instantaneous balance of supply and demand 
at the device level ”  (U.S. Department of Energy, Offi ce of Electricity Delivery 
and Energy Reliability,  2008 ). 

 Furthermore, secure systems for infrastructure, such as power grid, water 
processing, telecommunications systems, and so forth, interact to identify 
complex threat vectors, such as  cyberpandemics . A cyberpandemic is a  “ massive 
disruption of computing services that can trigger second -  and third - order 
failures or malfunctions in computing and non - computing systems worldwide ”  
(Laplante et al.,  2009 ). 

 All of these systems currently exist in rudimentary forms, but fully capable, 
robust, and fault - tolerant solutions will be available within the next two 
decades. All kinds of interesting problems are presented by these systems for 
real - time engineers. However, many of these problems are scaled up versions 
of the kinds of challenges that we have studied throughout this text.  

   9.5.3    Biometric Identifi cation Device with Remote Access 

 Another interesting class of applications is based on a novel biometric iden-
tifi cation (Ricanek et al.,  2010 ) device with remote access (BIDRA). BIDRA 
is an intelligent device that virtually everybody could own and have continu-
ally available, or maybe it will be integrated with the future smartphone. It is 
able to perform reliable and robust biometric identifi cation of its genuine 
owner, and the identifi cation procedure is repeated aperiodically to make sure 
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that the person who holds the BIDRA device is really its owner and nobody 
else. Moreover, BIDRA can interact securely with its near environment as 
well as be accessed over the Internet using a wireless communications 
interface. 

 These principal features make BIDRA a solution to multiple problems, 
which are somehow related to secure identifi cation of individuals. Today, we 
all have multiple high - strength passwords that make it possible for us to use 
various systems and services with different levels of privacy and security. But 
anybody could use those systems/services with our identity if he just had our 
password. And, unfortunately, this scenario is happening all the time, because 
there is always a possibility of gaining access to somebody else ’ s password by 
illegal or at least questionable means. BIDRA could conveniently be used in 
place of all passwords, and the  advanced biometric identifi cation technique
would guarantee a high level of personal security. So, the annoying problem 
of passwords becomes solved. 

 Furthermore, BIDRA could be used for confi guring different environments 
automatically to match the personal preferences of the corresponding indi-
vidual. For example, when the individual enters his automobile that may also 
be used by other family members, the automobile recognizes him sitting 
behind the steering wheel and adjusts the steering wheel, driver ’ s seat, mirrors, 
interior temperature, and preferred radio channels according to the predefi ned 
preferences obtained from BIDRA. BIDRA would also serve as a general key 
to multiple electronic locks (home, offi ce, automobile, etc.) — no other keys are 
needed anymore. 

 In addition, BIDRA could be used for effortless automobile parking in a 
public parking garage. A remote BIDRA reader recognizes that an automo-
bile that is driven by Person X is entering the parking hall and records the 
arrival time. Later on, when the automobile driven by the same individual exits 
the garage, the remote reader records the departure time. No on - site payment 
is needed in such a default case, but the payment would be charged directly 
from the bank account, which number is provided by BIDRA. 

 Automatic overspeed detection is used increasingly on highways and streets 
in many countries. There is typically an inductive sensor under the road surface 
that is used for measuring the speed of passing vehicles, and a rugged camera 
that takes a digital image of every overspeeding vehicle. Eventually, some 
manual processing is needed before a penalty invoice is mailed to the owner 
of the vehicle. BIDRA could greatly simplify the process of overspeed  “ ticket-
ing. ”  In place of those expensive roadside cameras, only a simple BIDRA 
reader with wireless Internet access is needed. When a vehicle passes such a 
reader and an overspeed is detected, the penalty invoice can automatically be 
e - mailed to the address provided by the BIDRA of the driver, or even charged 
directly from the driver ’ s bank account. In some countries, certain fi nes are 
dependent on the driver ’ s annual income, which is also known by BIDRA. 
Besides, no vehicle can be taken in use without a valid driver ’ s license, and 
this information is stored in BIDRA, as well. 
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 This free visioning process could be continued further, but the examples 
already presented show the huge potential that BIDRA would offer. But what 
would happen if a BIDRA device were lost? No worry, every BIDRA contains 
a satellite navigation receiver that is used to determine BIDRA ’ s location with 
a high accuracy. And it is possible to access a lost BIDRA device through a 
wireless Internet connection to fi nd out the precise coordinates where it cur-
rently resides. In principle, it would also be possible to track every BIDRA 
device all the time by some authorized person or organization — if just allowed.  

   9.5.4    Are There Any Threats behind High - Speed 
Wireless Communications? 

 The term  “ wireless ”  was mentioned three times in the short BIDRA introduc-
tion, and it appears that our  digitized society  is going toward faster and faster 
wireless networks.  “ Wireless is handy and wireless is everywhere, ”  but there 
may be serious threats behind such thinking. 

 Since the beginning of the cell phone era, there has been a debate whether 
the transmitted high frequencies or microwaves can cause brain cancer. 
Nonetheless, there is no scientifi c proof that cell phones would be dangerous 
for their users ’  health. On the other hand, there is ongoing discussion on the 
possible effects of cell phones and base stations of wireless communications 
systems to humans ’  hormonal excretion. Disturbances in specifi c hormonal 
excretion can lead, for instance, to depression or alcoholism. Moreover, there 
are at least suspicions that high - speed wireless communications systems can 
disrupt the navigation abilities of certain insects, such as honeybees. 

 Persistent long - term research is needed to confi rm or reject those and other 
similar hypotheses related to the biological effects of wireless communications 
(Valberg et al.,  2007 ). In parallel with such research efforts, however, the used 
microwave frequencies are continually increasing as higher data rates are 
achieved for wireless Internet use. 

 If the biological threats turn out to be true, that would have a signifi cant 
infl uence to the future real - time systems, too. Another, purely technical concern 
is that the public frequency bands (which require no explicit operator licenses) 
will become overly crowded due to the excessive use of wireless sensor net-
works in future embedded applications.   

   9.6    SUMMARY 

Future Visions on Real - Time Systems  is a truly challenging topic that could be 
presented in numerous different ways, depending on the chosen viewpoint. 
Instead of aiming to provide a comprehensive treatment of this wide topic, we 
decided to focus on a carefully selected sample of specifi c subjects that could 
form an educational basis for class discussions and related assignments at the 
end of a practical course on real - time systems. 
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 The continuing development of hardware technologies maintains a solid 
basis for the advancement of real - time systems. Large and reconfi gurable (but 
cost - effective) FPGA platforms, together with the proposed heterogeneous 
soft multi - core architecture, make it possible to implement hard real - time 
systems with true task concurrency. The possibility of assigning an individual 
CPU core for each software task makes the overall software structure straight-
forward and hence easier to maintain. And this is important, since the size of 
applications software is going to grow considerably in future embedded systems. 

 Moreover, the role of real - time operating systems is somewhat different in 
HSMC environments than in traditional multitasking, because every software 
task runs in isolation on its private CPU core. No centralized scheduling/
dispatching is needed, but the RTOS is mainly providing punctual synchroni-
zation and intertask communication services for cooperating tasks. This deter-
ministic scheme is much simpler than those multi - core operating systems that 
handle both intra - core and inter - core scheduling/dispatching, as well as 
dynamic load balancing. 

 Furthermore, the programming of HSMC processors is carried out at a 
higher level of abstraction than provided by the existing procedural and 
object - oriented languages. We call the new  “ real - time programming language ”  
UML++ . However, the UML ++  is not just a programming language, but an 
evolved entity of the present UML with enhanced levels of formality and real -
 time support. The incrementally designed and verifi ed behavioral models are 
used by the UML ++  Design Engine both for automatic composition of the 
application - specifi c HSMC platform and for automatic code generation. 

 It is no more practical to test the future applications software manually, but 
automatic test case and test suite generation is followed by automatic test 
execution. With the HSMC platform, the embedded software is tested auto-
matically at three hierarchical levels: object level, core level, and system level. 

 Effective collaboration between software engineers is going to be an 
increasingly important issue in embedded software development. This is due 
to the growing complexity of real - time software and the globalization of soft-
ware development activities. To make the inter - group collaboration more 
natural and effi cient, it could be possible to use the future virtual -  and 
augmented - reality environments of 3D games as collaboration environments 
between geographically distributed software engineering groups. 

 One of the principal problems of the digitalizing society is how to identify 
the users of various systems/services reliably but conveniently. Currently 
employed password schemes are approaching the end of their utility for 
obvious reasons. Hence, we proposed the biometric identifi cation device with 
remote access to be used in virtually all future applications where secure 
identifi cation of individuals is needed. It uses a robust biometric technique for 
identifying the genuine owner of the BIDRA. A few potential applications of 
the BIDRA were envisioned and discussed. It is likely that such an identifi ca-
tion device with fl exible wireless communications and self - locating abilities 
will become available before the end of our visioning period. 
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 Future applications of real - time systems are exciting, but most of the chal-
lenges facing the realization of these systems are the same problems that have 
faced real - time systems engineers for more than 50 years. While many solu-
tions to old problems can be scaled up, new complexities are introduced as 
the capabilities of systems improve over time. Besides, applications develop-
ment will create new theoretical problems to be solved and require new and 
better software engineering techniques so that the applications can be effec-
tively realized. 

 A new edition of a textbook is like a new spring in nature.  

  9.7     EXERCISES 

9.1.  Find at least three advantages and three disadvantages of the HSMC 
architecture (see Fig.  9.2 ). Based on those fi ndings, evaluate your confi -
dence (scale 0 – 1) on this particular hardware vision. By which decade, if 
ever, would you think that such an approach would be practical and in 
wide use?  

Class assignment :     Compare the answers of individual students and create 
a collective answer for the class.      

9.2.   What are the benefi ts, if any, that a computing cloud (see Fig.  9.3 ) could 
offer for a distributed control system of large - scale plants compared with 
traditional solutions to similar requirements?  

Class discussion :      Is it feasible to combine Internet - based cloud comput-
ing with such a distributed control system having hard and fi rm real - time 
constraints?      

9.3.   How could the physical communications channel, used in Figure  9.4  
for transferring messages between different CPU cores, be implemented 
in practice? What are the pros and cons of those alternative 
implementations?

Class discussion :      Could the physical communications channel become a 
bottleneck for the synchronization and intertask communication services 
offered by the system task?      

9.4.  What are the main challenges — or even obstacles — behind the suggested 
design and implementation procedure of Figure  9.5 ? Based on the identi-
fi ed challenges, evaluate your confi dence (scale 0 – 1) on that particular 
vision.  

Class assignment :      Compare the answers of individual students and create 
jointly a single collective answer of the whole class.      

9.5.  The proposed BIDRA device seems to offer a vast variety of application 
opportunities. List fi ve possible applications of BIDRA that are not 
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mentioned in the text. Which practical issues could hinder the develop-
ment or wide spreading of BIDRA?  

Class debate :      The instructor moderates a prepared debate between two 
teams. First, the class is divided to three teams; one of the teams is favor-
ing the BIDRA concept, one is against it, and one team is evaluating the 
presented arguments. What are the objective conclusions of the evalua-
tion team?      

9.6.   Based on your personal vision confi dence pentacle (see Fig.  9.1 ), identify 
the strongest and weakest vision element (or dimension) expressed in this 
chapter. Take the possible multiple visions within a single vision element 
as a whole when drawing the pentacle.  

Class assignment :     Compare the pentacles of individual students and 
create jointly a single collective pentacle of the entire class.      

9.7.  What are the three most important visions on real - time systems that are 
missing from this chapter? Explain why those visions are of particular 
importance.  

Class discussion :      Evaluate the additional visions of individual students 
and create the class ’  top 3 of additional visions (possibly by voting).      

9.8.  Virtual machines, such as the  Java Virtual Machine  ( JVM ), can make the 
applications software easily portable to diverse hardware platforms. 
Would it be feasible to consider a similar virtual machine model also for 
the HSMC architecture (see Figs.  9.2  and  9.5 ), which is intended for hard 
real - time systems? What advantages and disadvantages would such a 
scheme offer in this case?  

Class discussion :     What are the main challenges in developing and imple-
menting small and temporally predictable virtual machines for embedded 
applications?         
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   Many of these terms have been adapted from P. A. Laplante (Editor - in - Chief), 
The Dictionary of Computer Science ,  Engineering ,  and Technology . Boca 
Raton, FL: CRC Press, 2001. 

Abstract class:        A superclass that has no direct instances.  
Abstract data type:        A programming language construct where a user defi nes 

his own data type along with the requisite operation that can be applied 
to it.  

Accept operation:        Operation on a mailbox that is similar to the pend opera-
tion, except that if no data are available, the task returns immediately from 
the call with a condition code rather than suspending.  

Access time:        The interval between when data are requested from the memory 
cell and when they are actually available on the bus (read operation). 
Analogously applicable with the write operation.  

Accumulator:        A special - purpose register used with arithmetic and logic 
instructions in certain processor architectures.  

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.
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Actual parameter:        The named variable passed to a procedure or subroutine.  
Adaptive programming:        A lightweight programming methodology that offers 

a series of frameworks to apply adaptive principles and encourage collabo-
ration to obtain easily evolvable code.  

Address bus:        The collection of parallel wires needed to address individual 
memory cells.  

Agile programming:        A lightweight programming methodology that is divided 
into four principal activities — planning, designing, coding, and testing — all 
performed iteratively.  

Algorithm:        A systematic and precise, step - by - step procedure for solving a 
certain problem or accomplishing a task, for instance, converting a particu-
lar kind of input data to a particular kind of output data. An algorithm can 
be executed by a computer.  

Alpha testing:        A type of validation consisting of internal distribution and 
exercise of the developed software.  

ALU:   See  arithmetic logic unit.  
Analog - to - digital conversion:        The process of sampling and converting analog 

(continuous amplitude and time) signals into digital (discrete amplitude 
and time) ones.  

Anonymous variable:        A hidden variable created by the compiler to facilitate 
call - by - value parameter passing.  

Application program:        Program to perform tasks and solve problems related 
to some specifi c application.  

Argument:        An address or data that is passed to a procedure or function 
call as a typical way of communicating across procedure/function 
boundaries.  

 Arithmetic Logic Unit  ( ALU ):        CPU ’ s internal unit that performs arithmetic 
and logic operations.  

Arithmetic operation:        Anyone of the following operations: addition, subtrac-
tion, multiplication, and division.  

Artifact:        Any by - product of the software development process including 
program code and documentation.  

Assembler:        A computer program that translates an assembly code text fi le to 
an object fi le suitable for linking.  

Assembly code:        A program written in assembly language.  
Assembly language:        The set of symbolic (mnemonic) equivalents to the 

machine language instruction set.  
Asynchronous event:        An event that is not synchronous to the applied clock 

signal.  
Atomic instruction:        An instruction that cannot be interrupted.  
Attribute:        A named property of a class that describes a value held by each 

object of the class.  
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Attribute multiplicity:        The possible number of values for an object – attribute 
combination.   

Background:        Noninterrupt - driven tasks in foreground/background systems.  

BAM:   See  binary angular measure.  

Bathtub curve:        A graph describing the phenomenon that in hardware com-
ponents most errors occur either very early or very late in the lifecycle of 
the component. Similar thinking is applicable to software as well.  

Benchmark:        Standard tests that are used to compare the performance of 
computers, processors, circuits, or algorithms.  

Beta testing:        A type of system test where preliminary versions of validated 
software are distributed to friendly customers, who test the new software 
under actual use.  

 Binary Angular Measure  ( BAM ):        An  n  - bit scaled number where the least 
signifi cant bit is 2 − (n− 1)     ·    180 ° .  

Binary semaphore:        A semaphore that can take on one of two possible 
values.  

BITS:   See  built - in - test software.  

Black - box testing:        A testing methodology where only the inputs and outputs 
of the software unit are considered. How the outputs are generated inside 
the unit is ignored.  

Blocked:        The condition experienced by tasks that are waiting for the occur-
rence of some event.  

Branch instruction:        An instruction used to modify the instruction execution 
sequence of the CPU. The transfer of control to another sequence of instruc-
tions may be unconditional or conditional based on the result of a previous 
instruction.  

Branch prediction:        A mechanism in advanced CPUs used to predict the 
outcome of conditional branch instructions prior to their execution.  

Breakpoint:        An instruction address at which a debugger is instructed to 
suspend the execution of a program. Or a critical point in a program, at 
which execution can be conditionally stopped to allow examination if the 
program variables contain the correct values and/or other manipulation of 
data.  

Breakpoint instruction:        A debugging instruction provided through hardware 
support in most processors. When a program hits a breakpoint, specifi ed 
actions occur that save the state of the program, and then switch to another 
program that allows the user to examine the stored state.  

Broadcast communication:        In statecharts, a technique that allows for transi-
tions to occur in more than one orthogonal system simultaneously.  

Buffer:        A temporary data storage area used to interface between, for example, 
a fast device and a slower task servicing that device.  
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  Built - in - Test Software  ( BITS ):        Special software used to perform self - testing. 
Online BITS assures testing concurrently with normal operation, while 
offl ine BITS suspends normal operation.  

Burn - in testing:        Testing technique that seeks to fl ush out those failures that 
appear early in the life cycle of the part and thus improve the reliability of 
the delivered product.  

Burst period:        The time over which data are being passed into a buffer.  

Bus:        The set of parallel wires that connect the CPU and main memory. The 
bus is used to transfer memory addresses and exchange data between the 
CPU and main memory in binary - encoded form. The width of the bus is 
determined by the number of bits or wires provided for the binary code. 
Usually, the address and data wires are referred to as the address bus and 
data bus, respectively.  

Bus arbitration:        The process of ensuring that only one device at a time can 
place data on the bus.  

Bus contention:        Condition in which two or more devices attempt to gain 
control of the bus simultaneously.  

Bus cycle:        A complete memory read or write operation; from addressing to 
successful data delivery.  

Bus grant:        A signal provided by the DMA controller to a device, indicating 
that is has exclusive rights to the bus.  

Bus timeout:        A condition whereby a device making a DMA request does not 
receive a bus grant before some specifi ed time.  

Busy wait:        In polled - loop systems, the process of testing the fl ag without 
success.   

Cache:   See  memory caching.  

Cache hit ratio:        The percentage of memory accesses in which a requested 
instruction or data are actually in the cache memory.  

Call - by - address:   See  call - by - reference.  

Call - by - reference:        Parameter passing mechanism in which the address of the 
parameter is passed by the calling routine to the called procedure so that 
it can be altered there.  Also  known as call - by - address.  

Call - by - value:        Parameter passing mechanism in which the value of the actual 
parameter in the subroutine or function call is copied into the procedure ’ s 
formal parameter.  

Calling tree:   See  structure chart.  

CAN:        A fi eldbus network used widely in automotive and machine automation 
applications.  

Capability:        An object that contains both a pointer to another object and a set 
of access permissions that specify the modes of access permitted to the 
associated object from a process that holds the capability.  
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CASE:        Computer - aided software engineering.  

Catastrophic error:        An error that renders the system useless or has severe 
consequences.  

  Central Processing Unit  ( CPU ):        In a computer, it provides fetching, decoding, 
and executing machine - language instructions, reading operands from the 
main memory, and writing results to the main memory.  

CFD:   See  control fl ow diagram.  

Chain reaction:        In statecharts, a group of sequential events where the  n th 
event is triggered by the ( n     −    1)th event.  

Checkpoint:        The instant in the history of execution at which a consistent 
version of the system ’ s state is saved so that if a later event causes potential 
diffi culties, the system can be restarted from the state that had been saved 
at the checkpoint.  

Checksum:        A value used to determine if a block of data has changed. The 
checksum is formed by adding all of the data values in the block together. 
After that, the checksum is usually inserted to the end of the data block.  

Circular queue:   See  ring buffer.  

CISC:   See  complex instruction set computer.  

Class:        A group of objects with similar attributes, behavior, and relationships 
to other objects.  

Class defi nitions:        Object declarations along with the methods associated with 
them.  

Clear - box testing:   See  white - box testing.  

COCOMO:        A constructive cost model developed by Boehm, which is one of 
the most widely used resource estimation tools.  

Code inspection:   See  group walkthrough.  

Coding:        The process of programming, generating program code in a specifi c 
language. Or the process of translating data from some representation form 
into a different one by using a set of rules or tables.  

Collision:        Condition in which one device already has control of the bus when 
another obtains access. Also, simultaneous use of a critical resource.  

Compaction:        The process of compressing fragmented memory so that it is no 
longer fragmented but continuous.  

Compiler:        A program that translates a high - level language program into an 
executable machine - language program or other lower - level form, such as 
assembly language.  

 Complex Instruction Set Computer  ( CISC ):        Processor architecture character-
ized by a large, microcoded instruction set with numerous addressing 
modes.  

Computational intelligence:   See  soft computing.  
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Compute - bound:        Computations in which the number of operations is large in 
comparison with the number of executed I/O instructions.  

Computer simulation:        Execution of computer programs that allows one to 
model the important aspects of the behavior of the specifi c system under 
study.  

Concrete class:        A class that can have direct instances.  
Condition code register:        CPU ’ s internal register used to implement a condi-

tional transfer, such as a conditional branch instruction.  
Conditional instruction:        An instruction that performs its function only if a 

certain condition is met.  
Conditional transfer:        A change of the program counter based on the result of 

a test.  
Confi guration:        Operation in which a set of parameters is imposed for defi ning 

the operating conditions or mode.  
Constant folding:        A code optimization technique that involves precomputing 

constants at compile time.  
Context:        The minimum information that is needed in order to save a currently 

executing task so that it can be resumed.  
Context switching:        The process of saving and restoring suffi cient information 

for a real - time task so that it can be resumed after being interrupted.  
Contiguous fi le allocation:        The process of forcing all allocated fi le sectors to 

follow one another on the hard disk or other mass memory.  
Continuous random variable:        A random variable with a continuous sample 

space.  
 Control Flow Diagram  ( CFD ):        A real - time extension to data fl ow diagrams 

that shows the fl ow of control signals through the system.  
Control specifi cations:        In data fl ow diagrams, a fi nite state machine in dia-

grammatic or tabular representation.  
 Control Unit  ( CU ):        CPU ’ s internal device that synchronizes the entire fetch –

 execute cycle.  
Cooperative multitasking system:        A scheme in which two or more tasks are 

divided into states or phases, determined by a fi nite state machine. Calls to 
a central dispatcher are made after each phase is complete.  

Coprocessor:        A second specialized CPU used to extend the machine 
language instruction set of the main CPU. For instance, a fl oating - point 
coprocessor.  

Coroutine system:   See  cooperative multitasking system.  
Correctness:        A property in which the software does not deviate from the 

requirements specifi cation. Sometimes used synonymously with reliability, 
but correctness requires a stricter adherence to the requirements.  

Correlated data:   See  time - relative data.  
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Counting semaphore:        A semaphore than can take on two or more values.  Also
called a general semaphore.  

CPU:   See  central processing unit.  
CPU utilization:        A measure of the percentage of nonidle processing.  
CRC:   See  cyclic redundancy code.  
Critical region:        Code segment that interacts with a serially reusable resource.  
Crystal:        A lightweight programming methodology that empowers the devel-

opment team to defi ne the development process and refi ne it in subsequent 
iterations until it is stable.  

CU:   See  control unit.  
Cycle stealing:        A situation in which an ongoing DMA access precludes the 

CPU from accessing the bus.  
 Cyclic Redundancy Code  ( CRC ):        A mathematical method for checking the 

correctness of memory contents or received data, which is superior to a 
simple checksum.  

Cycling:        The process whereby all tasks are being appropriately scheduled, 
although no actual processing is occurring.  

Cyclomatic complexity:        A measure of a software complexity devised by 
McCabe.   

Daemon:        A device server that does not run explicitly, but rather lies dormant 
waiting for specifi c condition(s) to occur.  

Dangerous allocation:        Any memory allocation that can preclude system 
determinism.  

Data bus:        Bus used to carry data between the various components in the 
computer system.  

Data dependency:        The normal situation in which the data that an instruction 
uses or produces depends upon the data used or produced by other instruc-
tions such that the instructions must be executed in a specifi c order to 
obtain the correct results.  

 Data Flow Diagram  ( DFD ):        A structured analysis tool for modeling software 
systems.  

Data structure:        A particular way of organizing a group of data, usually opti-
mized for effi cient storage, fast search, fast retrieval, and/or fast 
modifi cation.  

Data - oriented methodology:        An application development methodology that 
considers data as the main focus of activities.  

Dead code:   See  unreachable code.  
Deadlock:        A catastrophic situation that can arise when tasks are competing 

for the same set of two or more serially reusable resources.  Also  called a 
deadly embrace.  

Deadly embrace:   See  deadlock.  
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Death spiral:        Stack overfl ow caused by repeated spurious interrupts.  

Debug:        To fi nd and remove errors from hardware or software.  

Debug port:        The facility to switch the processor from run mode into probe 
mode to access its debug and general registers.  

Debugger:        A program that allows interactive analysis of a running program 
by allowing the user to pause execution of the running program and examine 
its variables and path of execution at any point. Or a program that aids in 
debugging.  

Debugging:        Locating and correcting errors in a hardware circuit or a com-
puter program. Or determining the exact nature and location of a program 
error and fi xing the error.  

Decode:        The process of isolating the opcode fi eld of a machine language 
instruction and determining the corresponding address in CPU ’ s 
micromemory.  

Default:        The value or status that is assumed unless otherwise specifi ed.  

Defect:        The preferred term for an error in a requirement, design, or code.  See
also fault and failure.  

Demand page system:        Technique where program segments are permitted to 
be loaded in noncontiguous memory, as they are requested in fi xed - size 
chunks.  

Density:        In computer memory, the number of bits per unit area.  

Dependability:        System feature that combines such concepts as reliability, 
safety, maintainability, performance, and testability.  

De - referencing:        The process in which the actual locations of the parameters 
that are passed using call - by - value are determined.  

Deterministic system:        A system where for each possible state and each set of 
inputs, a unique set of outputs and next state of the system can always be 
determined.  

  Digital Signal Processor  ( DSP ):        An application - specifi c processor that is tai-
lored for the specifi c needs of digital signal processing algorithms.  

Digital - to - analog conversion:        The process of converting digital (discrete 
amplitude and time) signals into analog (continuous amplitude and time) 
ones.  

 Direct Memory Access  ( DMA ):        A scheme in which access to the computer ’ s 
memory bus is afforded temporarily to other devices in the system without 
the intervention of the CPU.  

Direct mode instruction:        Instruction in which the operand is the data con-
tained at the address specifi ed in the address fi eld of the instruction.  

Disassembler:        A computer program that can take an executable image (a 
stream of machine - language instructions) and convert it back into assembly 
code.  
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Discrete signals:        Logic lines used to control devices.  
Discriminator:        An enumerated attribute that indicates which aspect of an 

object is being abstracted by a particular generalization.  
Dispatcher:        The part of the real - time kernel that performs the necessary 

bookkeeping to start a task.  
Distributed computing:        An environment in which multiple computers are 

networked together, and the resources from more than one computer are 
available to a user or application.  

Distributed real - time systems:        A collection of interconnected, self - contained 
processors.  

DMA:   See  direct memory access.  
DMA controller:        Device that performs bus arbitration.  
Dormant state:        In the  task - control block  ( TCB ) model, the state of a task that 

is unavailable to the operating system.  
Double buffering:        A technique using two swappable buffers where one is 

fi lled while the data in the other is being used.  
Double - indirect mode:        A memory addressing scheme similar to indirect 

mode, but with another level of indirection.  
DRAM:        Dynamic random - access memory.  See  also dynamic memory.  
DSI:        Delivered source instructions.  See  KLOC.  
DSP:        Digital signal processing.  Also  digital signal processor.  
Dynamic memory:        Random - access memory that uses a capacitor to store 

logic ones and zeros, and that must be refreshed periodically to restore the 
charge lost due to capacitive discharge.  

Dynamic priority system:        A multitasking system in which the priorities to 
tasks can change. Contrast with fi xed priority system.  

 Dynamic Systems Development Method  ( DSDM ):        A lightweight program-
ming methodology conceived as a methodology for rapid application 
development. DSDM relies on a set of principles that include empowered 
teams, frequent deliverables, incremental development, and integrated 
testing.   

Effort:        One of Halstead ’ s metrics (see Chapter  8 ).  
Embedded software:        Real - time software that is part of an embedded system. 

Embedded software integrates an operating system with specifi c drivers 
and application software.  

Embedded system:        A real - time computing machine contained in a device 
whose purpose is not to be a computer. For example, the computers in 
automobiles and household appliances are all embedded computers.  

Emulator:        The fi rmware that simulates a given machine architecture. Also a 
device, computer program, or system that accepts the same inputs and 
produces the same outputs as a given system.  
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Encapsulation:        Property of a program that describes the complete integration 
of data with a legal process relating to the data.  

  Entity Relationship Diagram  ( ERD ):        A diagram that describes the important 
entities in a system and the ways in which they are interrelated.  

Enumeration:        A list of permitted values.  

Environment:        A set of objects outside the system whose attributes affect and 
is affected by the behavior of the system.  

Event:        Any occurrence that results in a change in the state of a real - time 
system.  

Event determinism:        When the next states and outputs of the system are 
known for each set of inputs that trigger events.  

Event fl ag:        Synchronization mechanism provided by certain programming 
languages.  

Exception:        An error or other special condition that arises during program 
execution.  

Exception handler:        Code used to process exceptions.  

Execute:        Process of sequencing through the steps in micromemory or hard-
wired state machine corresponding to a particular machine language 
instruction.  

Executing state:        In the task control block model, the state of a task that is 
currently running.  

Executive:   See  kernel.  

External fragmentation:        When main memory becomes checkered with unused 
but available partitions.  

 eXtreme Programming  ( XP ):        A lightweight programming methodology 
based on 12 practices including pair programming, test fi rst coding, 
having the customer on site, and frequent refactoring. eXtreme program-
ming is, perhaps, the most prescriptive of the lightweight (agile) 
methodologies.   

Failed system:        A system that cannot satisfy one or more of the requirements 
listed in the formal system specifi cation.  

Failure:        Manifestation of an error at system level. It relates to execution of 
wrong actions, nonexecution of correct actions, severe performance degra-
dation, and so forth.  

Failure function:        An analytical or empirical function describing the probabil-
ity that a system fails at time t .  

Fault:        The appearance of a defect during the operation of a software system.  

Fault prevention:        Any technique or process that attempts to eliminate the 
possibility of having a failure occur in a hardware device or software 
routine.  
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Fault tolerance:        Correct execution of a specifi ed function in a system, pro-
vided by redundancy, despite existing faults. The redundancy provides the 
information needed to negate the effects of faults.  

Feature - driven development:        A lightweight model - driven, short - iteration 
process built around the feature, a unit of work that has meaning for the 
client and developer and is small enough to be completed quickly.  

Feature points:        An extension of function points to cope with systems having 
a high level of algorithmic complexity. This software metric is also suitable 
for embedded environments.  

Fetch:        The process of retrieving a machine language instruction from main 
memory and placing it in the instruction register.  

Fetch – execute cycle:        The process of continuously fetching and executing 
machine language instructions from the main memory.  

 Field Programmable Gate Array  ( FPGA ):        A digital integrated circuit, which 
is designed so that it can be confi gured (or  “ programmed ” ) for specifi c 
applications after manufacturing.  

Fieldbus:        A communications network intended for automation and control 
applications.  

File fragmentation:        Analogous to memory fragmentation, but occurring 
within fi les, with the same associated problems.  

 Finite State Automaton  ( FSA ):   See  fi nite state machine.  

 Finite State Machine  ( FSM ):        A mathematical model of a machine consisting 
of a set of inputs, a set of states, and a transition function that describes the 
next state given the current state and an input event.  Also  known as fi nite 
state automaton and state diagram.  

Firing:        In Petri nets or in certain multiprocessor architectures, when a process 
performs its prescribed function.  

Firm real - time system:        A real - time system that can fail to meet a few dead-
lines without system failure.  

Firmware:        Small system programs, which are used to control specifi c hardware 
devices. Firmware is stored in a nonvolatile memory that is usually 
unalterable.  

Fixed priority system:        A multitasking system in which the task priorities 
cannot be changed. Contrast with dynamic priority system.  

Fixed - rate system:        A system in which interrupts occur only at fi xed rates.  

Floating - point number:        A term describing the computer ’ s representation of a 
real - valued number.  

Flowchart:        A traditional graphic representation of an algorithm or a 
program in using named functional blocks, decision evaluators, and I/O 
symbols interconnected by directional arrows that indicate the fl ow of 
processing.  
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Flush:        In pipelined CPU architectures, the act of emptying the instruction 
pipeline when branching occurs.  

Foreground:        A collection of interrupt - driven or real - time tasks in foreground/
background systems.  

Formal parameter:        The dummy variable used in the description of a proce-
dure or subroutine.  

Forward error recovery:        A technique of continuing processing by skipping a 
few faulty states (applicable to some real - time systems in which occasional 
missed or wrong responses are tolerable).  

FPGA:   See  fi eld programmable gate array.  
Framework:        A skeletal structure of a program that requires further 

elaboration.  
FSA:        Finite state automaton.  See  fi nite state machine.  
FSM:   See  fi nite state machine.  
Function points:        A widely used software metric in nonembedded environ-

ments. Function points measure the number of interfaces between modules 
and subsystems in programs or systems.  

Function test:        A check for correct device operation generally by truth table 
verifi cation.  

Functional decomposition:        The division of tasks into modules according to 
their functionality.  

Functional requirements:        Those system features that can be directly verifi ed 
by executing the program.   

Garbage:        An object or a set of objects that can no longer be accessed, typically 
because all pointers that direct accesses to the object or set have been 
eliminated.  

Garbage collector:        A software run - time system component that periodically 
scans dynamically allocated storage and reclaims allocated storage that is 
no longer in use.  

General register:        CPU ’ s internal memory that is addressable in the address 
fi eld of certain machine - language instructions.  

General semaphore:   See  counting semaphore.  
Generalization:        The relationship between a class and one or more variations 

of that class.  
Generator polynomial:        The modulo - 2 divisor of the message polynomial in 

CRC.  
Global variable:        Any variable that is within the scope of all modules of the 

software system.  
Group walkthrough:        A kind of white - box testing in which a number of persons 

inspect the code line - by - line with the unit author.   
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Hamming code:        An effective coding technique used to detect and correct 
errors in computer memory.  

Hard error:        Physical (unrepairable) damage to a memory cell.  
Hard real - time system:        A real - time system in which missing even one dead-

line results in system failure.  
Hazard:        A momentary output error that occurs in a logic circuit because of 

input signal propagation along different delay paths in the circuit.  
Heterogeneous:        Having dissimilar hardware/software components in a system.  
Host:        A computer that is the one responsible for performing a certain com-

putation or function.  
Hybrid system:        A system in which interrupts occur both at fi xed rates and 

sporadically.   
ICE:   See  in - circuit emulator.  
Immediate - mode instruction:        An instruction in which the operand is an 

integer - valued number.  
Implied - mode instruction:        An instruction involving one or more specifi c 

memory locations or registers that are implicitly defi ned in the operation 
performed by the instruction.  

Imprecise computation:        Techniques involving early termination of an itera-
tive computation in order to meet deadlines.  

 In - Circuit Emulator  ( ICE ):        A device that replaces the processor and provides 
the functions of the processor plus various testing and debugging 
functions.  

Incrementality:        A software development approach in which progressively 
larger increments of the desired product are developed.  

Indirect - mode instruction:        Instruction where the operand fi eld is a memory 
location containing the address of the address of the operand.  

Induction variable:        A variable in a loop that is incremented or decremented 
by some constant.  

Information hiding:        A program design principle that makes available to a 
function just the data it needs — everything else is hidden.  

Inheritance:        In object orientation, the possibility for different data types to 
share the same code.  

Initialize:        To place a hardware system in a known state, for instance, at power -
 up. Or to store the correct initial data in a data item, for example, fi lling an 
array with zero values before it is used.  

Input space:        The set of all possible input combinations to a system.  
Instance:        An occurrence of a class.  
Instruction issue:        The sending of an instruction to CPU ’ s functional units for 

execution.  
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Instruction register:        CPU ’ s internal register that holds the instruction pointed 
to by the contents of the program counter.  

Instruction set:        The instruction set of a processor is the collection of all the 
machine - language instructions available to the programmer (or a high - level 
language compiler).  

Integration:        The process of uniting hardware/software modules from different 
sources to form the overall system.  

Internal fragmentation:        Condition that occurs in fi xed - partition schemes 
when, for instance, a processor requires 1 K byte of memory, while only 2 
K byte partitions are available.  

Interoperability:        Software quality that refers to the ability of the software 
system to coexist and cooperate with other systems.  

Interpreter:        A computer program that translates and immediately performs 
intended operations of the source statements of a high - level language 
program.  

Interrupt:        An input to a processor that signals the occurrence of an asynchro-
nous event.  

Interrupt controller:        A device that provides additional interrupt handling 
capability to a CPU.  

Interrupt handler:        A predefi ned subprogram that is executed when an inter-
rupt occurs.  Also  known as an interrupt service routine.  

Interrupt handler location:        Memory location containing the starting address 
of an interrupt handler routine. The program counter is automatically 
loaded with its address when the particular interrupt occurs.  

Interrupt latency:        The delay between when an interrupt request occurs and 
when the CPU begins reacting to it.  

Interrupt register:        A register containing a bit map of all pending (latched) 
interrupts.  

Interrupt return location:        Memory location (usually in the stack memory) 
where the content of the program counter is saved when the CPU processes 
an interrupt.  

 Interrupt Service Routine  ( ISR ):   See  interrupt handler.  

Interrupt vector:        Register that contains the identity of the (highest - priority) 
interrupt request. The interrupt vector is sent to the CPU by the device 
whose interrupt request was just acknowledged by the CPU.  

Intrinsic function:        A macro where the actual function call is replaced by cor-
responding in - line code.   

Jackson chart:        A popular form of structure chart that provides for conditional 
branching.   

Kalman fi lter:        A mathematical construct used, for instance, to combine mea-
surements of the same quantity from different sources.  
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KDSI:   See  KLOC.  

Kernel:        The smallest portion of the operating system that provides for task 
scheduling and dispatching only.  

Kernel preemption:        A method used in real - time Unix that provides preemp-
tion points in calls to kernel functions to allow them to be interruptible.  

Key:        In a mailbox, the data that are passed as a fl ag used to protect a critical 
region.  

KLOC:        A software metric measuring thousands of lines of source code (not 
counting comments and nonexecutable statements).  Also  known as thou-
sands of delivered source instructions KDSI) and noncommented source 
code statements (NCSS).   

Latency:        A measure of time delay experienced in a real - time system.  

 Least Recently Used  ( LRU ) rule:        The best nonpredictive memory - page 
replacement algorithm.  

Legacy system:        Applications that are in a maintenance phase but are not 
ready for retirement.  

Leveling:        In data fl ow diagrams, the process of redrawing a diagram at a fi ner 
level of detail.  

Library:        A set of precompiled routines that may be linked with a program at 
compile time or loaded at load time or dynamically at run time.  

Lightweight programming methodology:        Any programming methodology 
that is adaptive rather than predictive and emphasizes people rather than 
processes.  Also  known as agile programming.  

Link:        The postcompilation process in which individual object modules are 
placed together and cross - module references resolved.  

Linker:        A computer program that takes one or more object fi les, assembles 
them into blocks that are to fi t into particular regions in memory, and 
resolves all references to other segments of a program and to libraries of 
precompiled program units.  

Little ’ s law:        Rule from queuing theory stating that the average number 
of customers in a queuing system is equal to the average arrival rate 
of the customers to that system times the average time spent in the 
system.  

Live variable:        A variable that can be used subsequently in the program.  

Livelock:        Another term for task starvation.  

Load module:        Executable code that can be readily loaded into the machine.  

Locality - of - reference:        The notion that if you examine a list of recently exe-
cuted program instructions, you will see that most of the instructions are 
localized to within a small number of addresses.  

Lock - up:        When a system enters a state in which it is rendered ineffective.  

www.it-ebooks.info

http://www.it-ebooks.info/


518 GLOSSARY

Logic analyzer:        A sophisticated instrument that can be used to read, store, 
and display signals from individual circuits, circuit boards, or hardware 
systems.  

Logical operation:        A machine - language instruction that performs Boolean 
operations, such as AND, OR, and XOR.  

Look - up table:        An arithmetic technique that uses precalculated tables for 
function values and may rely on mathematical defi nition of the derivative 
to interpolate these functions quickly.  

Loop invariant optimization:        The process of placing computations outside a 
loop that do not need to be performed within the loop.  

Loop invariant removal:        A code optimization technique that involves remov-
ing code that does not change inside a looping sequence.  

Loop jamming:        An optimization technique that involves combining multiple 
loops within the control of one loop variable.  

Loop unrolling:        A code optimization technique that involves expanding a 
loop so that loop overhead is completely removed.  

Loosely coupled system:        A software system that can run on other hardware 
with the rewrite of no more than a few modules (perhaps device drivers).  

LRU:   See  least recently used rule.   

Machine code:        The machine format of a compiled executable, in which indi-
vidual instructions are represented in binary notation.  

Machine language:        The set of legal instructions to a CPU, expressed in binary 
notation.  

Macro:   See  macroinstruction.  

Macroinstruction:        A native machine - language instruction.  

Macroprogram:        A sequence of macroinstructions.  

Mailbox:        An intertask communication device consisting of a memory location 
and two operations — post and pend — that can be performed on it.  

Main memory:        Memory that is directly addressable by the CPU.  

Maintainability:        A software quality that is a measure of how easily the system 
can be evolved to accommodate new features, or changed to repair errors.  

Maintenance:        The changes made on a system to fi x errors, to support new 
requirements, or to make it more effi cient.  

Major cycle:        The largest sequence of repeating processes in cyclic or periodic 
systems.  

MAR:   See  memory address register.  

Mask register:        A register that contains a bit map either enabling or disabling 
specifi c interrupts.  

Master processor:        The online processor in a master/slave confi guration.  

MDR:   See  memory data register.  
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Mealy fi nite state machine:        A fi nite state machine with outputs during 
transitions.  

 Memory Address Register  ( MAR ):        Register that holds the address of the 
memory location to be acted on.  

Memory caching:        A technique in which frequently used segments of main 
memory are stored in a faster and smaller bank of memory, called a cache, 
which is local to the CPU.  

 Memory Data Register  ( MDR ):        Register that holds the data to be written to 
or that is read from the memory location held in the MAR.  

Memory leak:        It occurs when a task consumes temporary memory, but is 
unable to release it back to the real - time operating system after it is no 
more needed.  

Memory - loading:        The percentage of usable memory that is being used.  

Memory locking:        In a real - time system, the process of locking all or certain 
parts of a task into memory to reduce the overhead involved in paging, and 
thus make the execution times more predictable.  

Memory - mapped I/O:        An input/output scheme where reading or writing 
involves executing a load or store instruction on a pseudomemory address 
mapped to the device. Contrast with DMA and programmed I/O.  

Memory reference instruction:        An instruction that communicates with 
memory, writing to it (store) or reading from it (load).  

Message exchange:   See  mailbox.  

Message polynomial:        Used in CRC.  

Metadata:        Data that describes other data.  

Methods:        In object - oriented systems, functions that can be performed on 
objects.  

Microcode:        A stream of low - level operations that are executed as a result of 
a single macroinstruction being executed.  

Microcontroller:        A single - chip computer system, which contains a CPU, some 
memory, and I/O ports.  

Microinstructions:   See  microcode.  

Microkernel:        A kernel that provides for task scheduling and dispatching only.  

Micromemory:        CPU ’ s internal memory that holds the individual microcodes 
corresponding to macroinstructions.  

Microprogram:        Sequence of microcode stored in the micromemory.  

Minor cycle:        A sequence of repeating processes in cyclic or periodic systems.  

Mixed listing:        A printout that combines the high - level language instructions 
with the corresponding assembly language code.  

Mixed system:        A system in which interrupts occur both at fi xed rates and 
sporadically.  
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Modularity:        Design principle that calls for design of small, self - contained code 
units.  

Moore fi nite state machine:   See  fi nite state machine.  

Multi - core processor:        A processor that is composed of two or more CPUs, 
which are independent but share some memory.  

Multiplexer (MUX):        An analog or digital device used to route multiple lines 
onto fewer lines.  

Multiprocessing operating system:        An operating system where more than one 
processor is available to provide for simultaneity. Contrast with multitask-
ing operating system.  

Multiprocessor:        A computer system that has more than one internal processor 
capable of operating collectively on a computation. Normally associated 
with those systems where the individual processors can access a common 
main memory.  

Multitasking operating system:        An operating system that provides suffi cient 
functionality to allow multiple tasks to run on a single processor so that the 
illusion of simultaneity is created. Contrast with multiprocessing operating 
system.  

Mutex:        A common name for a semaphore variable.  

MUX:   See  multiplexer.   

NCSS:        Noncommented source statements.  See  KLOC.  

Nested subroutine:        A subroutine called by another subroutine.  

Nonfunctional requirements:        System requirements that cannot be tested 
simply by program execution.  

Nonvolatile memory:        Memory whose contents are preserved upon removing 
power.  

Non von Neumann architecture:        An architecture that does not use the stored -
 program serial fetch – execute cycle.  

No - op:        A macroinstruction that does not change the state of the CPU but just 
advances the program counter.  

NP - complete problem:        A decision problem that is a seemingly intractable 
problem for which the only known solutions are exponential functions of 
the problem size and which can be transformed to all other NP - complete 
problems. Compare with NP - hard problem.  

NP - hard problem:        A decision problem that is similar to an NP - complete 
problem, except that for the NP - hard problem it cannot be shown to be 
transformable to all other NP - complete problems.  

N - version programming:        A programming technique used to reduce the 
likelihood of system lock - up by using redundant processors, each 
running software that has been coded to the same specifi cations by different 
teams.  

www.it-ebooks.info

http://www.it-ebooks.info/


GLOSSARY 521

Nucleus:   See  kernel.  

Null:        A special value denoting that an attribute value is unknown or not 
applicable.   

Object:        An instance of a class defi nition.  

Object code:        A fi le comprising a compiled description of a program 
segment.  

Object - oriented:        The organization of software into discrete objects that 
encapsulate both the data structure and behavior.  

Object - oriented analysis:        A method of analysis that estimates requirements 
from the perspective of the classes and objects found in the problem domain.  

Object - oriented design:        A design methodology viewing a system as a collec-
tion of objects with messages passed from object to object.  

Object - oriented language:        A programming language that provides constructs 
that encourage a high degree of information hiding and data abstraction.  

Object - oriented methodology:        An application development methodology 
that uses a top - down approach based on the decomposition of a system in 
a collection of objects communicating via messages.  

Object - oriented programming:        A programming style using languages that 
support abstract data types, inheritance, function polymorphism, and 
messaging.  

Object type:        The type of an object determines the set of allowable operations 
that can be performed on the object. This information can be encoded in 
a  “ tag ”  associated with the object, can be found along an access path 
reaching to the object, or can be determined by the compiler that inserts 
 “ correct ”  instructions to manipulate the object in a manner consistent with 
its type.  

Opcode:        Starting address of the microcode of a machine language instruction 
stored in micromemory.  

Open source code:        Source code that is made available to the user community 
for moderate improvement and correction.  

Open system:        An extensible collection of independently written applications 
that cooperate to function as an integrated system.  

Operating system:        A set of programs that manages the operations of a com-
puter. It oversees the interaction between the hardware and software and 
provides a set of services to system users.  

Operation:        Specifi cation of one or a set of computations on the specifi ed 
source operands placing the results in the specifi ed destination operands.  

Organic system:        A system that is not embedded.  

Orthogonal product:        In statecharts, a process that depicts concurrent tasks 
that run in isolation.  
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Output dependency:        The situation when two sequential instructions in a 
program write to the same location. To obtain the desired result, the second 
instruction must write to the location after the fi rst instruction.  

Output space:        The set of all possible output combinations for a system.  

Overlay:        Dependent code and data sections used in overlaying.  

Overlaying:        A technique that allows a single program to be larger than the 
allowable user space.  

Overloading:        Principle according to which operations bearing the same name 
apply to arguments of different data type.   

Page:        Fixed - size chunk used in demand - paged memory systems.  

Page fault:        An exception that occurs when a memory reference is made to a 
location within a page not loaded in main memory.  

Page frame:   See  page.  

Page stealing:        When a page is to be loaded into main memory, and no free 
pages are found, then some page frame must be written out or swapped to 
disk to make room.  

Page table:        A collection of pointers to pages used to allow noncontiguous 
allocation of page frames in demand paging.  

Pair programming:        A technique in which two persons write code together.  

Parnas partitioning:   See  information hiding.  

Pattern:        A named problem – solution pair that can be applied in new contexts, 
with advice on how to apply it in novel situations.  

PC:   See  program counter.  

PDL:   See  program design language.  

Peephole optimization:        A code optimization technique where a small window 
of assembly language or machine code is compared against known patterns 
that yield optimization opportunities.  

Pend operation:        Operation of removing data from a mailbox. If data are not 
available, the task performing the pend suspends itself until the data become 
available.  

Performance:        A measure of the software ’ s capability of meeting certain func-
tional constraints such as timing or output precision.  

Petri net:        A mathematical/pictorial system description technique.  

Phantom interrupt:   See  spurious interrupt.  

Phase - driven code:   See  state - driven code.  

PIC:        Priority interrupt controller.  Also  known as interrupt controller.  

Ping - pong buffering:   See  double buffering.  

Pipeline:        For example, an intertask communication mechanism provided in 
some operating systems.  See  also pipelining.  
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Pipelining:        A technique used to increase CPU ’ s instruction throughput that 
relies on the fact that fetching the instruction is only one part of the fetch –
 execute cycle, and that is can overlap with different parts of the fetch –
 execute cycle for other instructions.  

PIU:        Peripheral interface unit.  

PL/I:        A procedural programming language that was introduced in the 1960s. 
It was the model for the fi rst high - level programming languages that were 
developed in the late 1970s for microprocessors (such as MPL, PL/M, and 
PL/Z).  

Polled loop system:        A real - time system in which a single and repetitive test 
instruction is used to test a fl ag, which indicates that some event has 
occurred.  

Polymorphism:        In object - oriented programming, polymorphism allows the 
programmer to create a single function that operates on different objects, 
depending on the type of object involved.  

Portability:        A quality in which the software can easily run in different hard-
ware and operating system environments.  

Post operation:        Operation that places data in a mailbox.  

Power bus:        The collection of wires used to distribute power to the various 
components of computer systems.  

Power on self - test:        A series of diagnostic tests performed by a computer when 
it powers on.  

Pragma:        In certain programming languages, a pseudo - op that allows assembly 
code to be placed in line with the high - level language code.  

Preempt:        A condition that occurs when a higher - priority task interrupts a 
lower - priority task.  

Preemptive - priority system:        A system that uses preemption schemes instead 
of round - robin or fi rst - come, fi rst - served scheduling.  

Primary memory:   See  main memory.  

Priority inversion:        A condition that occurs when a medium - priority task is 
executing while a high - priority task is waiting for a shared resource from a 
low - priority task.  

Procedure:        A self - contained code sequence designed to be reexecuted from 
different places in a main program or another procedure.  

Process:        The context, consisting of allocated memory, open fi les, and network 
connections, in which an operating system places a running program.  

Process control block:        An area of memory containing information about the 
context of an executing program.  

 Program Counter  ( PC ):        A CPU register containing the address of the next 
macroinstruction to be executed.  
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  Program Design Language  ( PDL ):        A type of abstract high - order language 
used in system specifi cation.  

Programmed I/O:        Transferring data to or from a peripheral device by running 
a program that executes specifi c computer instructions or commands to 
control the transfer. An alternative is to transfer data using DMA.  

Propagation delay:        The contribution to interrupt and other latencies due to 
limitations in switching speeds of digital devices and in the transit time of 
electrons across wires.  

Protection fault:        An error condition detected by the address mapper when 
the type of request is not permitted by the object ’ s access code.  

Prototype:        A mock - up of a software system often used during the design 
phase.  

Prototyping:        Building an engineering model of all or part of a system to verify 
that the concept works.  

Pseudocode:        A technique for specifying the logic of a program in an English -
 like language. Pseudocode does not have to follow strict syntax rules and 
can be read by anyone who understands programming logic.  

Pseudo - exhaustive testing:        A testing technique that relies on various forms of 
hardware/software segmentation and application of exhaustive test pat-
terns to these segments.  

Pseudo - operation:        In assembly language, an operation code that is an instruc-
tion to the assembler rather than a machine - language instruction.  

Pseudorandom testing:        A testing technique based on pseudorandomly gener-
ated test patterns. The test comprehensiveness is adapted to the required 
level of fault coverage.  

Pure procedure:        A procedure that does not modify itself during its own execu-
tion. The instructions of a pure procedure can be stored in a read - only 
portion of the memory and can be accessed by multiple tasks.   

Race condition:        A situation where multiple tasks access and manipulate 
shared data with the outcome dependent on the relative timing of these 
tasks.  

Raise:        Mechanism used to initiate a software interrupt in certain program-
ming languages, such as C.  

RAM scrubbing:        A technique used in memory confi gurations that include 
error detection and correction chips. Such a technique, which reduces the 
chance of multiple - bit errors occurring, is needed because in some confi gu-
rations, memory errors are corrected on the bus and not in memory itself. 
The corrected memory data then need to be written back to memory.  

Random testing:        The process of testing using a set of pseudorandomly gener-
ated test patterns.  

Random variable:        An integer -  or real - valued variable whose values are not 
predictable but random.  
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Rate - monotonic system:        A fi xed - rate, preemptive, prioritized real - time system 
where the task priorities are assigned so that the higher the execution rate, 
the higher the priority.  

Reactive system:        A system that has some essential interaction with its 
environment.  

Read/write line:        A logic control line that is set to logic 0 during each memory 
write and to logic l during memory read.  

Ready state:        In the task - control block model, the state of those tasks that are 
ready to execute, but are not executing since some higher priority task is 
executing.  

Real - time:        Refers to systems whose correctness depends not only on outputs 
but the timeliness of those outputs as well. Failure to meet one or more of 
the deadlines can result in system failure.  

Real - time computing:        Support for operating environments in which response 
time to an event must occur within a predetermined amount of time. Real -
 time systems may be categorized into hard, fi rm, and soft real - time.  

Recovery:        Action that restores the state of a task to an earlier confi guration 
after it has been determined that the system has entered a state that does 
not correspond to the desired functional behavior. For correct functional 
behavior, the states of all tasks should be restored in a manner consistent 
with each other and with the conditions within communication links or 
message channels.  

Recovery block:        Section of code that may terminate in checkpoints. If the 
check fails, processing can resume at the beginning of a recovery block.  

Recursion:        The process whereby a program calls itself.  

Recursive procedure:        A procedure that can be called by itself or by another 
program that it has called; effectively, a single task can have several execu-
tions of the same procedure alive at the same time. Recursion provides one 
means of defi ning special functions, such as the factorial function.  

 Reduced Instruction Set Computer  ( RISC ):        CPU architecture usually char-
acterized by a compact instruction set with limited addressing modes and 
hardwired (as opposed to microcoded) macroinstructions.  

Reduction in strength:        A code optimization technique that uses the fastest 
macroinstruction available to accomplish a given calculation.  

Redundancy:        The use of parallel or serial components in a system to reduce 
the probability of failure. Similarly, referring to an increase in the number 
of components that can interchangeably perform the same function in a 
system. Redundancy can increase the system reliability.  

Reentrant:        Term describing a program that uses concurrently exactly the 
same executable code in memory for more than one invocation of the 
program rather than separate copies of a program for each invocation. The 
read and write operations must be timed so that the correct results are 
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always available and the results produced by one invocation are not over-
written by another.  

Reentrant procedure:        A procedure that can be used by several concurrently 
running tasks in a multitasking system.  

Refactoring:        To perform a behavior - preserving code transformation.  

Register - direct mode:        A memory - addressing scheme similar to direct mode 
except the operand is a CPU register and not an explicit address.  

Register - indirect mode:        A memory - addressing scheme similar to indirect 
mode, except the operand address is kept in a register rather than in another 
memory address.  

Regression testing:        A testing methodology used to validate modifi ed software 
against an earlier set of test cases that have already been passed.  

Reliability:        The probability that a component or system will function without 
any failure over a specifi ed time period, under stated conditions.  

Requirements analysis:        A phase of software development life cycle in which 
the high - level (or business) requirements for a software product are defi ned 
and documented.  

Response time:        The time between the presentation of a set of inputs to a 
software system and the appearance of all the associated outputs.  

Reusability:        The possibility to use or easily adapt the hardware or software 
developed for a specifi c system to build other systems. Reusability is a 
property of module design that permits and supports reuse.  

Reuse:        Program modules are reused when they are copied from one program 
and used in another.  

Reverse engineering:        The reverse analysis of an old application to conform 
to a new methodology.  

Ring buffer:        A fi rst - in, fi rst - out list in which simultaneous input and output to 
the list is achieved by keeping separate head and tail pointers. Data are 
loaded at the tail and read from the head.  

RISC:   See  reduced instruction set computer.  

Robustness:        A software quality that measures the software ’ s tolerance to 
exceptional situations, for example, an input out of range.  

Root:        In overlaying memory management, the portion of memory containing 
the overlay manager and code common to all overlay segments, such as 
math libraries.  

Round - robin system:        A system in which several tasks are executed sequen-
tially to completion, often in conjunction with a cyclic executive.  

Round - robin system with timeslicing:        A system in which each executable task 
is assigned a fi xed time quantum called a time slice in which to execute. A 
clock is used to initiate an interrupt at a rate corresponding to the time slice.  
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RTOS:        Real - time operating system.  
RTSJ:        The real - time specifi cation of Java.   
SA:   See  structured analysis.  
Safety:        The probability that a system will either perform its functions correctly 

or will discontinue its functions in a well - defi ned and safe manner.  
Safety - critical system:        A system that is intended to handle unexpected, dan-

gerous events.  
Sampling rate:        The rate at which an analog input signal is converted to digital 

form.  
Scale factor:        A technique used to simulate fl oating - point operations by assign-

ing an implicit noninteger value to the  least signifi cant bit  ( LSB ) of an 
integer.  

Scaled number:        A performance optimization technique where the least sig-
nifi cant bit (LSB) of an integer variable is assigned a real number scale 
factor.  

Schedulability analysis:        The compile - time prediction of tasks ’  execution time 
performance.  

Scheduler:        The part of the real - time kernel that determines which task will 
execute.  

Scratch pad memory:        CPU ’ s internal memory used for intermediate 
results.  

Screen signature:        The CRC of a screen memory.  
Scrum:        A lightweight programming methodology based on the empirical 

process control model, the name is a reference to the point in a rugby match 
where the opposing teams line up in a tight and contentious formation. 
Scrum programming relies on self - directed teams and dispenses with much 
advanced planning, task defi nition, and management reporting.  

SD:   See  structured design.  
Secondary memory:        Memory that is characterized by long - term storage 

devices, such as hard disks and Flash cards, which are not part of the physi-
cal address space of the CPU.  

Segment:        A disjoint processing element in instruction pipelining.  Also  called 
a stage.  

Self - modifying code:        A program using a machine instruction that changes the 
stored binary pattern of another machine instruction in order to create a 
different instruction that will be executed subsequently. This is by no means 
a recommended practice.  

Self - test:        A functional test that a module, either hardware or software, runs 
upon itself.  

Self - test and repair:        A fault - tolerant technique based on a functional unit ’ s 
active redundancy, spare switching, and reconfi guration.  

Semaphore:        A special variable type used for protecting critical regions.  
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Semaphore primitives:        The two fundamental operations that can be per-
formed on a semaphore, namely, wait and signal.  

Semidetached system:   See  loosely coupled system.  

Serially reusable resource:        A resource that can only be used by one task at a 
time and that must be used to completion.  

Server:        A task used to manage multiple requests to a serially reusable resource.  

SEU:   See  single - event upset.  

Signal operation:        Operation on a semaphore that essentially releases the 
resource protected by the semaphore.  

 Single - Event Upset  ( SEU ):        Alteration of memory contents due to charged 
particles present in space, or in the presence of a nuclear event.  

Slave processor:        The off - line processor in a master – slave confi guration.  

SLOC:   See  source lines of code.  

Soft computing:        An association of computing methodologies centering on 
fuzzy logic, artifi cial neural networks, and evolutionary computation. Each 
of these methodologies provides complementary and synergistic reasoning 
and searching methods to solve complex, real - world problems.  Also  known 
as computational intelligence.  

Soft error:        Repairable alternation of the contents of a memory cell.  

Soft real - time system:        A real - time system in which failure to meet deadlines 
results in performance degradation but not necessarily a system failure.  

Software:        A systematic composition of macroinstructions.  

Software design:        A phase of software development lifecycle that maps what 
the system is supposed to do into how the system will do it in a particular 
hardware/software confi guration.  

Software development lifecycle:        A way to divide the work that takes place in 
the development of an application.  

Software engineering:        Systematic development, operation, maintenance, and 
retirement of software.  

Software evolution:        The process that adapts the software to changes of the 
environment where it is used.  

Software interrupt:        A machine language instruction that initiates an interrupt 
function. Software interrupts are often used for system calls, because they 
can be executed from anywhere in memory and the CPU provides the 
necessary return address handling.  

Software reengineering:        The reverse analysis of an old application to conform 
to a new methodology.  

Software reliability:        The probability that a software system will not fail before 
some time t , under certain conditions.  
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Source code:        Software code that is written in a form or language meant to be 
understood by programmers. Must be translated (or compiled) to object 
code in order to run on a computer.  

 Source Lines of Code  ( SLOC ):        A metric that measures the number of execut-
able program instructions; one SLOC may span several lines, for instance, 
as in an if - then - else statement.  

Spatial fault tolerance:        Methods involving redundant hardware or software 
components.  

Specifi cation:        A statement of the design or development requirements to be 
satisfi ed by a system or product.  

Speculative execution:        An instruction execution technique in which instruc-
tions are executed without regard to data dependencies.  

Spin lock:        Another name for the wait semaphore operation.  
Sporadic system:        A system with all interrupts occurring sporadically.  
Spurious interrupt:        An extraneous and unwanted interrupt.  Also  known as a 

phantom interrupt.  
SRAM:   See  static random - access memory.  
Stack:        A fi rst - in, last - out data structure.  
Stack machine:        Computer architecture in which the instructions are centered 

on an internal memory store called a stack, and an accumulator.  
Stage:   See  segment.  
Starvation:        A condition that occurs when a task is not being serviced fre-

quently enough.  
State diagram:        A diagram showing the conditions (states) that can exist in a 

logic system and what signals are required to go from one state to another 
state.  

State - driven code:        Program code based on a fi nite state machine.  
 Static Random - Access Memory  ( SRAM ):        Random access memory that does 

not need to be recharged (or refreshed) periodically.  
Statistically based testing:        Technique that uses an underlying probability 

distribution function for each system input to generate random test 
cases.  

Stress testing:        A type of testing wherein the system is subjected to a large 
disturbance in the inputs (e.g., a large burst of interrupts), followed by 
smaller disturbances spread out over a longer period of time.  

Structure chart:        Graphical design tool used to partition system 
functionality.  

  Structured Analysis  ( SA ):        A graphical methodology for systems analysis.  
 Structured Design  ( SD ):        A graphical methodology for systems design, which 

is related to structured analysis.  
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Subclass:        A class that adds specifi c attributes, behavior, and relationships for 
a generalization.  

Subroutine:        A group of instructions written to perform a specifi c task, inde-
pendent of a main program and can be accessed by a program or another 
subroutine to perform the task.  

Superclass:        A class that holds common attributes, behavior, and relationships 
for generalization.  

Suspended state:        In the task control block model, those tasks that are 
waiting on a particular resource, and thus are not ready. Also called blocked 
state.  

Swapping:        The simplest scheme that allows the operating system to allocate 
main memory to two tasks simultaneously.  

Switch bounce:        The physical phenomenon that an electromechanical switch 
cannot change logic states instantaneously without short - term oscillation 
between these states.  

Synchronous:        An operation or multiple operations that are controlled or 
synchronized by a clocking signal.  

Synchronous data:   See  time - relative data.  
Synchronous event:        An event that occurs at predictable times in the 

fl ow - of - control.  
Syndrome bits:        The extra bits needed to implement a Hamming code.  
Syntax:        The part of a formal defi nition of a programming language that speci-

fi es legal combinations of symbols that make up statements in the 
language.  

System:        An entity that when presented with a set of inputs produces corre-
sponding outputs.  

System integration:        A phase of the software development lifecycle 
during which a software product is integrated into its operational 
environment.  

System program:        Software used to manage the resources of a computer.  
System unifi cation:        A process consisting of linking together the testing soft-

ware modules in an orderly fashion.  
Systems engineering:        An approach to the overall lifecycle evolution of a 

product or system. Generally, the systems engineering process comprises a 
number of phases. There are three essential phases in any systems engineer-
ing lifecycle: formulation of requirements and specifi cations, design and 
development of the system or product, and deployment of the system. Each 
of these basic phases can be further expanded.   

Task Control Block (TCB):        A collection of data associated with a task 
including context, process code (or a pointer to it), and other necessary 
information.  
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TCB:   See  task control block.  

Temporal determinism:        A condition that occurs when the response time for 
each set of outputs is known in a deterministic system.  

Temporal fault tolerance:        Techniques that allow for tolerating missed 
deadlines.  

Test - and - set instruction:        A macroinstruction that can atomically test and then 
set a particular memory address to some value.  

Test fi rst coding:        A software engineering technique in which the code ’ s 
unit test cases are written by the programmer before the actual code is 
written.  

Test pattern:        An input vector designed in such a way that the faulty output is 
different from the fault - free output.  

Test probe:        A checkpoint used only during testing.  

Test suite:        A collection of test cases.  

Testability:        The measure of the ease with which a system can be tested.  

Testing:        A phase of software development life cycle during which the applica-
tion is exercised for the purpose of fi nding errors.  

Thrashing:        Very high paging activity.  

Throughput:        A measure of the number of macroinstructions per second that 
can be processed based on some predetermined instruction mix.  

Time loading:        The percentage of  “ useful ”  processing the computer is doing. 
Also  known as the utilization factor.  

Time overloaded:        A system that is 100% or more time loaded.  

Time - relative data:        A collection of data that must be time correlated.  

Timeslice:        A fi xed time quantum used to limit execution time in round - robin 
systems.  

Timing error:        An error in a system due to faulty time relationships between 
some of its constituents.  

Traceability:        A software property that is concerned with the relationships 
between requirements, their sources, and the system design.  

Tracing:        In software engineering, the process of capturing a stream of instruc-
tions, referred to as the trace, for later analysis.  

Transceiver:        A transmitter/receiver hybrid device.  

Trap:        Internal interrupt caused by the execution of a certain operation, such 
as a divide by zero.   

UML:   See  Unifi ed modeling language.  

Unconditional branch:        A  “ jump ”  instruction that causes a transfer of control 
to another address without regard to the state of any condition fl ags.  
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 Unifi ed Modeling Language  ( UML ):        A collection of modeling tools for 
object - oriented representation of software and other enterprises.  

 Unifi ed Process Model  ( UPM ):        A process model that uses an object - oriented 
approach by modeling a family of related software processes using the 
UML as a notation.  

Unit:        A software module.  

Unreachable code:        Code that can never be reached in the normal fl ow of 
control.  

UPM:   See  unifi ed process model.  

Usability:        A property of software detailing the ease in which it can be 
used.  

User space:        Memory not required by the operating system.  

Utilization factor:   See  time loading.   

Validation:        A review to establish the quality of a software product for its 
operational purpose.  

Verifi ability:        A software property in which its other properties (e.g., portabil-
ity and usability) can be verifi ed easily.  

Version control software:        A system that manages the access to the various 
software components from the software library.  

 Very Long Instruction Word  ( VLIW ) computer:        A computer that implements 
a form of parallelism by combining microinstructions to exploit redundant 
CPU components.  

Virtual machine:        A task on a multitasking computer that behaves as if it were 
a standalone computer and not part of a larger system.  

VLIW:   See  very long instruction word computer.  

Void:        Empty data type in C language. For example, when used as a function 
return type,  void  means that the function does not return any value.  

Volatile memory:        Memory in which the contents will be lost if power is 
removed.  

von Neumann architecture:        A CPU employing a serial fetch – execute process.  

von Neumann bottleneck:        A situation in which the serial fetch and execution 
of instructions limits the overall execution speed.   

WBS:   See  work breakdown structure.  

Wait - and - hold condition:        The situation in which a task acquires a resource 
and then does not relinquish it until it can acquire another resource.  

Wait operation:        Operation on a semaphore that essentially locks the resource 
protected by the semaphore, or prevents the requesting task from proceed-
ing if the resource is already locked.  

Wait state:        Additional clock cycles used to synchronize macroinstruction exe-
cution with the access time of memory.  
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Watchdog timer:        A device that must be reset periodically or a discrete  “ alarm ”  
signal is issued.  

White - box testing:        Logic - driven testing designed to exercise all paths in the 
software module. Same as clear - box testing.  

 Work Breakdown Structure  ( WBS ):        A hierarchically decomposed listing of 
tasks.    

www.it-ebooks.info

http://www.it-ebooks.info/


 ABOUT THE AUTHORS     

535

Dr. Phillip A. Laplante  is a Professor of Software Engineering and a member 
of the Graduate Faculty at The Pennsylvania State University. Before joining 
Penn State, he was a Professor and senior academic administrator at several 
other colleges and universities. 

 Prior to his academic career, Dr. Laplante was a software engineer and 
project manager working on avionics, computer - aided design, and software 
test systems. He has nearly 30 years of experience in building, studying, and 
teaching real - time systems. His travels have taken him to NASA, UPS, 
Lockheed Martin, the Canadian and Australian Defense Forces, MIT ’ s Charles 
Stark Draper Lab, and many other places. His practical and theoretical knowl-
edge of real - time systems has been enhanced during these visits and in interac-
tions with hundreds of students from Boeing, Motorola, Siemens, and other 
major companies. 

 Dr. Laplante has authored or edited 25 books (including three technical 
dictionaries and the Encyclopedia of Software Engineering ) and has published 
more than 150 scholarly papers. He also co - founded the journal  Real- Time 
Imaging , which he edited for fi ve years, and serves as editor - in - chief for three 
book series. 

 Dr. Laplante received his B.S., M.Eng., and Ph.D. degrees in computer 
science, electrical engineering, and computer science, respectively, from Stevens 

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/


536 ABOUT THE AUTHORS

Institute of Technology, and an MBA from the University of Colorado. He is 
a licensed professional engineer in the Commonwealth of Pennsylvania and a 
Certifi ed Software Development Professional. He is a Fellow of both the 
IEEE and SPIE for his achievements in real - time systems and real - time 
imaging research and education. 

Dr. Seppo J. Ovaska  is a Professor in the School of Electrical Engineering at 
Aalto University, Finland. His current research focuses on computationally 
intelligent systems and their applications. Dr. Ovaska is a prolifi c author, 
having published more than 100 peer - reviewed journal articles, 155 conference 
publications, and 10 book chapters. In addition, he has edited the pioneering 
book Computationally Intelligent Hybrid Systems: The Fusion of Soft 
Computing and Hard Computing  (Wiley - Interscience, 2004), and holds nine 
patents in the area of high - rise elevator systems. 

 Dr. Ovaska received a D.Sc. degree in electrical engineering from the 
Tampere University of Technology, Finland. He earned an Lic.Sc. degree in 
computer science and engineering from the Helsinki University of Technology, 
Finland, and an M.Sc. in electrical engineering from the Tampere University 
of Technology. During the academic year 2006 – 2007, he served as a Visiting 
Professor of Electrical and Computer Engineering at Utah State University. 
Dr. Ovaska has taught university courses in computer architectures, embedded 
microprocessor systems, microcomputer hardware and software, microcom-
puter systems programming, and real - time systems design. Prior to his aca-
demic career, he held software engineering, research, and R & D management 
positions, both in Finland and Kentucky. 

 Dr. Ovaska has served as a guest editor for the prestigious  Proceedings of 
the IEEE . Besides, he was an elected member of the board of governors, IEEE 
Systems, Man, and Cybernetics (SMC) Society. He is a recipient of two 
Outstanding Contribution Awards, as well as the Most Active SMC Technical 
Committee Award of the IEEE SMC Society.        

www.it-ebooks.info

http://www.it-ebooks.info/


537

INDEX

Note: Page numbers in italics refer to fi gures, those in bold to tables.

absolute deadlines, 98, 99
abstract data types, 157
abstraction, 161, 178, 193, 225, 285, 286, 

293, 294, 482, 489
accelerometers, 6, 17, 18, 90, 108, 294–295
activity diagrams, 299
A/D circuitry (analog-to-digital 

conversion), 58–60, 59
Ada, 21, 22, 149, 151, 151, 167–169

exception handling in, 161
and information hiding, 156
package, 156

Ada 95, 21, 22, 151, 168
Ada 2005, 168–169
adaptation adjustment factor, in 

intermediate COCOMO 81, 
431–432

address bus, 29, 30
addressing modes, 31, 32, 46, 158, 185, 191

after-sale support, and operating system 
selection, 136, 138, 139, 140

agile life cycle methodologies, 307–311, 
308, 312

AIE (Asynchronously-
InterruptedException), in 
real-time Java, 176

aircraft guidance systems, 1, 2, 6, 11, 
17–18, 90, 138–140, 140, 140

airline reservation systems, 2, 6, 18–19
ALU. See arithmetic-logic unit
Amdahl’s law, 382–384
analog-to-digital conversion (A/D 

circuitry), 58–60, 59
analysis class diagrams, 223
ANSI-C, 160, 187, 191–192
anticipation of change, as engineering 

principle, 278–279, 282
aperiodic events, 10, 10, 11

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition. 
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley 
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/


538 INDEX
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automatic verifi cation, 491–492
avionics applications, 72, 90, 465
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blocked state, in task control block 
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block-oriented instructions, 35
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Bormuth Grade Level Index, 232
bottom-up design approach, 286
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bounded buffers, 107, 107
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branching, 9, 10, 30, 46, 390, 454
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statecharts, 210–211, 212, 213
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bounded, 107, 107
double, 107–108, 108
linear, 107–108
message, 291
and overfl ow, 110
ring, 109, 109–110, 112, 114, 128
size, 401–402, 405–408
time-correlated, 108
and underfl ow, 110

bug, 447
built-in-test software, 444–447
burn-in testing, 456
burst periods, buffer size calculation, 

405–408
bursts, and polled-loop systems, 83–84
bus arbitration, 56–57
bus-acknowledgment (B_ACK) signal, 

56, 57
bus-cycle length, 38, 39
bus-request (B_REQ) signal, 56, 57

C, 21, 149, 151, 151, 157, 165, 166, 
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automatic coercion in, 169
vs. C++, 171
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longjmp call in, 169
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signal function in, 160
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multiple inheritance in, 170
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thread synchronization mechanisms, 
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on-chip, 48, 49
performance, 42–43
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call-by-value, 158, 169, 173
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164–165

and procedural languages, 161–162
CASE (computer-aided software 

engineering) tools, 220, 232, 233, 
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CC (cyclic code) scheduling, 100–102, 
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CDs (context diagrams), 220–221, 221,
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central processing units, 29, 29–30, 30
clock rates, 39, 41
complex instruction set computers vs. 

reduced instruction set computers, 
50–51

control unit in, 29–30, 30, 32, 33
CPU–memory gap, 38, 40, 41
and direct memory access transfer, 

57–58
fetch and execute cycle, 29–30, 30
internal bus in, 29, 30
and power consumption, 48
reduced instruction set computers vs. 

complex instruction set computers, 
50–51

supported, and operating system 
selection, 136–137, 138, 139, 140

testing, 444
throughput, 13
utilization, 12–14, 12, 36, 385, 395, 410

certifi cation, of systems, 72
CFDs (control fl ow diagrams), 291, 291
chain reactions, and statecharts, 212, 213
chaotic systems under control, 435
checkpointing, 438, 442, 442–443
checksums, 445
circular addressing mode, 191
circular-wait condition, 116–117, 116
CISC (complex instruction set 

computers), 50–51
class diagrams, 223, 247, 299, 329
cleanroom software development, 

457
clock rates, 39, 41, 48
clock(s), 10, 71, 72

cycles, 30–31, 31, 32, 38, 39, 45, 45–47, 
47, 50, 51

global, 8
and performance analysis, 390–391
services, 122–123
and time-stamping, 8
and timing accuracy, 390–391

COCOMO, 429–433, 430
code, dead/subject to removal, 184–185, 

186, 189
code generation, 178–181, 179
code inspections, 451
code optimization. See compiler 

optimization

code smells, and uncertainty, 437
coding, 150

standards, 152–154
test-fi rst, 453

coercion, 169, 174
cohesion, 277–278, 277, 279, 284, 285
coincidental cohesion, 277
Coleman-Liau Grade Level Index, 232
collaborating real-time systems, 494–495
comfort applications, 494
command-line arguments, 174
commercial off-the-shelf exploratory 

tests, 465
commercial real-time operating systems, 

134–140, 138, 140, 140, 143
commercial real-time systems, 14–15, 21
common coupling, 238
communication diagrams, 299
communication mechanisms, and 

operating system selection, 136, 138,
139, 140

communicational cohesion, 277
compaction, in memory management, 

131, 132
compilation, economy of, as Cardelli 

criterion, 151, 152, 155, 161, 164
compiler optimization, 181–182, 190–192

arithmetic identities, 182
Boolean code, short-circuiting, 

186–187
caches, use of, 184
constant assignments, 185–186
constant folding, 183, 190
cross-branch elimination, 188
dead code, 184–185, 189
dead variables, 186
fl ow-of-control optimization, 185
intrinsic functions, 183
locality of reference, maximization of, 

189
loop fusion, 187
loop induction elimination, 184
loop invariant removal, 183–184, 189
loop jamming, 187, 189
loop unrolling, 187, 189–190
multiple-pass, 189–190
and parameter passing, 191
peephole, 182
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redundant data elements, storage of, 
189

registers, 184
same-value variables, 186
strategies, 150
strength reduction, 182–183, 190
subexpressions, 183
tables, 188
and threshold tests, 188–189
unreachable code, 184–185
See also compilers; performance 

optimization
compilers, 3, 178, 181, 190–191, 464–465

and behavioral uncertainty, 436
in Java, 173
language, 151, 178
and test cases, 191–192
and very long instruction word 

architecture, 48
See also compiler optimization

completeness, in requirements validation, 
228, 229, 267

complex instruction set computers, 50–51
component diagrams, 299
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computational complexity theory, 380–381
computer-aided software engineering 

tools, 220, 232, 233, 267
computing cloud, 484–485, 485
concurrency, 79, 97, 141, 218

and multi-core processors, 481
and object-oriented languages, 167
patterns, in Douglass’ real-time 

pattern set, 297
conditional branching, 9, 10, 30, 46, 454
conditional compilation, 454
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checking, 203–204, 204
in requirements validation, 228

constant assignments, 185–186
constant folding, 183, 190
consumer transitions, and Petri nets, 214, 

215
contact bounce, 83
content coupling, 238
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context diagrams, 220–221, 221, 286, 287, 

288

context switching, 88–89, 93, 94
stack model, 89, 90
time, and operating system selection, 

136, 138, 138, 139, 140
and turnaround time, 393–394

contiguous memory, 131
continuances, in software requirements 

specifi cations, 230
control bus, 29
control coupling, 238
control design, 283
control fl ow analysis, 290–291
control fl ow diagrams, 291, 291
control fl ows, 287–288, 290–291, 291
control specifi cations, 291, 291
control unit, in central processing unit, 

29–30, 30, 32, 33
controller area network, 69
cooling needs, of CPU chips, 48
coordinated infrastructure systems, 495
core dump, 455
core processors (custom 

microcontrollers), 66–68, 67
corner-case testing, 449–450
coroutines, 85–87, 92, 392, 392
correctness, as software quality, 272, 274, 

275, 282
cost

and operating systems selection, 137, 
138, 139, 140

models, 417, 429–433, 430, 470
counting semaphores, 114
coupling, 238, 277, 277, 278, 279, 284, 

285
CPUs. See central processing units
CPU–memory gap, 38, 40, 41
CRC-16, 445–446
creational patterns, 296, 296
critical instant, of task, 103
critical regions, 112, 113, 117, 119
cross-branch elimination, 188
C-SPECs (control specifi cations), 291, 

291
custom microcontrollers, 66–68, 67
customers (consumers), and queuing, 

399, 403, 404
cyberpandemics, 495
cyclic code scheduling, 100–102, 101
cyclic code structure, 84–85
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cyclic redundancy code, 445–446
cyclomatic complexity, 420–421, 421, 453

D/A circuitry (digital-to-analog 
conversion), 60

data abstraction, 161, 293
data bus, 29, 30
data coupling, 238
data design, 283
data dictionaries, 289, 290–291, 291
data fl ow diagrams, 286–289, 288, 289,

291
data integrity, 84
data stores, 287
datapath, in central processing unit, 

29–30, 30
DDs (data dictionaries), 289, 290–291, 

291
dead code, 184–185, 186, 189
dead variables, 186
deadlines, 7–8, 14, 16, 98, 99
deadlocks, 114–115, 115, 117–118, 

119–120, 142, 216–217, 216
debug code, 184–185
debugging, 137, 150, 155, 161, 453, 454–456, 

460, 461. See also testing
DEC (Digital Equipment Corporation), 

21
decode instruction (D), 31, 31, 44, 45, 45,

47
defect, defi ned, 447
defi nition of requirements document, 

199
delay function, 122–123, 127
delay uncertainty, 122
delivered source instructions, 419
delta KLOC, 419
dependency inversion principle, 294–295
deployment diagrams, 300
design constraint requirements, 200, 201
design document, 267
design of real-time systems, 14, 16
design patterns, 296, 297, 299
destroyed determinism, 397, 398, 412
detailed COCOMO 81, 431, 432
detailed design, 283
determinism, 11–12, 127, 164, 397–398

destroyed, 397, 398, 412
event, 11, 443

nondeterminism, 43, 64
temporal, 11, 12

development platforms, availability of, 
and operating system selection, 137, 
138, 138, 140

device drivers, 34, 53, 468–470, 469
DFDs (data fl ow diagrams), 286–289, 

288, 289, 291
diamond-shaped requirements structure, 

227, 227
Digital Equipment Corporation, 21
digital signal processing, 65–66
digital-to-analog conversion (D/A 

circuitry), 60
DIP (dependency inversion principle), 

294–295
direct addressing mode, 32, 46
direct memory access, 56–58, 57

bus-acknowledgment (B_ACK) signal, 
56, 57

bus-request (B_REQ) signal, 56, 57
and central processing unit, 57–58
controller, 56–57, 57
DMA-acknowledgment (D_ACK) 

signal, 56, 57, 57
DMA-request (D_REQ) signal, 56, 57,

57
and performance analysis, 397, 398

directives, in software requirements 
specifi cations, 230

disable priority interrupt, 35–36
disk resident system/user programs, 21, 22
dispatchers, 81, 81, 85–86, 95, 123–125, 

124, 130, 221, 223, 392, 441, 442
dispatching, in heterogeneous soft 

multi-core architecture, 486
distance collaboration in software 

projects, 492–493, 498
distributed real-time architectures, 68

fi eldbus networks, 68–71, 70, 484–485, 
485

time-triggered architecture, 71–73, 71
distribution patterns, in Douglass’ 

real-time pattern set, 297
DMA. See direct memory access
documentation design, 283
domain model, 199, 199, 301
dormant state, 95, 96, 97, 97
double buffering, 107–108, 108
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Douglass’ real-time pattern set, 297
downcasting, in Java, 174
downward leveling, 287
DPI (disable priority interrupt), 35–36
DPRAM (dual-port RAM), 57–58
drag-and-drop systems, 493
DRAM (dynamic RAM), 38–39, 40–41
DSI (delivered source instructions), 419
DSP (digital signal processing), 65–66
dual-port RAM, 57–58
dubious constraints, and uncertainty, 437
dynamic binding, and object-oriented 

languages, 453
dynamic memory allocation, 159
dynamic RAM, 38–39, 40–41
dynamic requirements, 201
dynamic-priority systems, 90, 104–106, 

105, 105, 106, 142

earliest deadline fi rst approach, 104–106, 
105, 105

EDFA bound, 105
and rate-monotonic approach, 106

EDC (error detection and correction) 
chip, 446

EDF approach. See earliest deadline fi rst 
approach

edge-triggered interrupts, 55
EEPROM (electrically erasable 

programmable ROM), 36–37, 38, 39,
40

effort adjustment factor, in intermediate 
COCOMO 81, 431, 432

effort estimation, 417. See also cost: 
models; metrics

electrically erasable programmable 
ROM, 36–37, 38, 39, 40

electrostatic discharge, 444, 447
elevator control systems, 8–9, 13, 40, 68, 

123–127, 124, 206–207, 207, 208, 217, 
220–221, 221, 287–290, 289, 440–441, 
441

ELF (Erlang Loss Formula), 404–405
embedded systems, 5–6, 7
enable priority interrupt, 35–36, 92–93
encapsulation, 162, 163
energy-aware operating systems, 141–142
energy-aware support, and operating 

system selection, 141–142

engineering principles. See software 
engineering principles

entertainment applications, 494
entity relationship diagrams, 288
environmental exploratory tests, 463–464
environmental models, in structured 

analysis/structured design, 218, 219
environmental uncertainty, 435–436, 439
EPI (enable priority interrupt), 35–36, 

92–93
ERDs (entity relationship diagrams), 288
Erlang Loss Formula, 404–405
error detection and correction chip, 446
errors, 447, 454–455
error-tolerant computing, 480
ETA (event-triggered architecture), 73
Euclid, 177
European Futurist Conference, 478
event determinism, 11, 443
events, 10–11, 10, 82, 176, 391
event-triggered architecture, 73
evolvability, 273
exception function, 161
exception handling, 159–161, 169
exceptions, 87–88
execute ALU instruction (E), 31, 31, 44, 

45, 45, 47
executing state, 95, 96, 97, 97
execution

economy of, as Cardelli criterion, 151, 
152, 155, 161, 164

time, 99, 385–391, 389, 395, 483
executives, operating systems as, 82
exhaustive testing, 449
exploratory testing, 462–465
external fragmentation, 131, 132
external interface requirements, 200
external locking, 163
external software qualities, 268
eXtreme Programming, 153, 307, 459

failed systems, 5
failure, 447

function, 270–271, 270, 271
probability, 269–270, 270

fairness scheduling, 86–87
falling edge, 55
“fast” systems, 14
fault-injection, 436
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faults, 447
fault-tolerance, 16, 418, 438, 439, 470

built-in-test software, 444–447
CPU testing, 444
memory testing, 444–446
missed interrupts, 447
N-version programming, 443–444
RAM, 444–446
recovery-block approach, 442, 442–443
and redundant hardware/software, 440, 

441, 443–444
ROM, 444–445, 446
software black boxes, 443
spatial, 440–443, 441, 442
spurious interrupts, 447
temporal, 440
and voting schemes, 440
See also reliability

feasibility report, in requirements 
engineering, 198, 199

feature points, 427–428
ferrite core memory, 20, 22
fetch and execute cycle, and central 

processing unit, 29–30, 30
fetch instruction (F), 31, 31, 44, 45, 45, 47
fi eldbus networks, 68–71, 70, 484–485, 

485
fi eld-programmable gate arrays, 67, 67, 

481–482
FIFO (fi rst-in, fi rst-out), 128, 133, 176
fi ltering, 60–61, 61
fi lters, and A/D circuitry, 59
fi nal design review, 283
fi nite state automaton. See fi nite state 

machines
fi nite state machines, 85, 203, 205–207, 

207, 208, 209–210, 209, 210, 211, 212, 
213, 291, 292–293, 292

fi ring, in Petri nets, 214, 214, 214, 215,
215

fi rm real-time systems, 7, 7, 73
fi rst-in, fi rst-out, 128, 133, 176
fi xed-period systems, 394–396
fi xed-priority scheduling, rate-monotonic 

approach, 102–104, 103, 104, 104
fi xed-priority systems, 90, 102–104, 103,

104, 104, 106, 142
Flash memory, 36–37, 38
Flesch Reading Easiness Index, 232

Flesch-Kincaid Grade Level Index, 232
fl oating-point data, 30, 31, 32, 386, 

465–467
fl oating-point overfl ow errors, 160
fl owcharts, 202
fl ow-of-control, 9–10, 9, 185
foreground/background systems, 91–94, 

91, 94, 125
formal program verifi cation, 451–452
formal specifi cation methods, 198, 201, 

202–203, 205, 233
and consistency checking, 203–204, 

204
fi nite state machines, 203, 205–207, 

207, 208, 209–210, 209, 210
limitations of, 205
and model checking, 203
Petri nets, 213–214, 214, 214, 215, 215,

216–217, 216
and reuse of requirements, 203
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
and theorem proving, 203

formality, as engineering principle, 
275–276, 282

Fortran, 156, 178
FPGAs (fi eld-programmable gate 

arrays), 67, 67, 481–482
fragmented memory, 131–132, 131, 411
frames, in cyclic code scheduling, 

100–102, 101
FSA (fi nite state automaton). See fi nite 

state machines
FSMs. See fi nite state machines
func function, 160
function points, 423–427, 425, 426,

453–454
functional cohesion, 277
functional design, 283
functional requirements, 199, 200, 201
future of real time systems, 477–479, 

497–499
applications, 493–497
hardware, 479–485, 482, 485, 498
operating systems, 485–488, 487, 498
programming languages, 488–491, 490,

498
systems engineering, 491–493
vision confi dence pentacles, 479, 480

www.it-ebooks.info

http://www.it-ebooks.info/


INDEX 545

galvanic isolation, 60, 61
“Gang of Four” patterns, 295–296, 296
garbage, 133, 163–164, 171, 172, 175
general semaphores, 114
generality, as engineering principle, 

279–280, 282
generator polynomial, 445–446
global clocks, 8. See also clock(s)
global variables, 84–85, 86, 107, 126–127, 

157, 158–159, 411
GoF (“Gang of Four”) patterns, 295–296, 

296
“green” software, 33
group walkthroughs, 451
Gustafson’s law, 383–384, 384

Halstead’s metrics, 420, 421–423
Hamming code, 446
hard disks, use in real-time systems, 405
hard real-time systems, 6, 7, 7, 73
hardware, 27–28, 73–74

application-optimized, 73
basic processor architecture, 28–36, 29,

30, 31, 34
central processing unit, 29, 29–30, 30
complex instruction set vs. reduced 

instruction set, 50–51
distributed real-time architectures, 

68–73, 70, 71
event-triggered architecture, 73
in future real-time systems, 479–485, 

482, 485, 498
Harvard architecture, 44–45, 44
input/output, 33–34, 34
instruction processing, 30–33, 31, 44, 

45–46, 45
interrupts, 34–35, 87, 88, 126, 141, 486
memory, 36–43, 37, 39, 42
microcontrollers, 62, 63, 64–68, 65, 67
microprocessors, 62–64, 63
multi-core processors, 48–50, 49
peripheral interfacing, 52–62, 52, 54,

55, 57, 59, 61
pipelined instruction processing, 

45–46, 45
power consumption of, 39
selection of, 16
superscalar architecture, 46–47, 47, 48
time-triggered architecture, 71–73, 71

very long instruction word 
architecture, 47–48

von Neumann architecture, 29–30, 29,
30, 35, 43, 44, 45

hard-wired logic, 32, 33
Harvard architecture, 44–45, 44
heat generation of CPU chips, 48
Heisenberg Uncertainty Principle, 434
heterogeneous soft multi-core 

architecture, 481–484, 482, 486–487, 
487, 498

hierarchical memory organization, 41–43, 
42

hierarchy, and statecharts, 211, 212
high impedance, 57
hit ratio, 43, 411
hold-and-wait condition, 117
hourglass-shaped requirements structure, 

227, 227
HSMC architecture. See heterogeneous 

soft multi-core architecture
Hungarian notation, 153–154
hybrid code generation, 179–180, 179
hybrid scheduling systems, 90–94, 91,

100, 100
hyperperiod, 100, 101

ICE (in-circuit emulator), 461
idioms, 296
IEEE Std 100–2000, Standard Dictionary 

of Electrical and Electronics Terms, 
268

IEEE Std 830–1998, Recommended 
Practice for Software Requirements 
Specifi cations, 199–200, 225–227, 
225, 233, 315

IEEE Std 1016–2009, 281, 315, 317
IH (interrupt handling), 35, 88–89, 96
immediate addressing mode, 32, 185
immutable objects, 163
imperatives, in software requirements 

specifi cations, 230, 230
implementation models, in structured 

analysis/structured design, 219, 219
imprecise computations, 468
in-circuit emulator, 461
incrementality, as engineering principle, 

280, 282
indirect addressing mode, 158
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industrial systems, and interference, 
60–61, 61

inertial measurement systems, 17–18, 
139, 140, 386, 420–421, 421, 424–425,
425, 428, 431

informal specifi cation methods, 201–202
information hiding, 278

and Ada, 156
and C, 156
and object-oriented languages, 162, 

293
Parnas partitioning, 284–286, 285
and procedural languages, 156

inheritance, 166, 170, 174, 293, 302, 
452–453

initialization, in foreground/background 
systems, 92–94, 94

input exploratory tests, 464
input/output, 33–34, 34, 58, 74

A/D circuitry (analog-to-digital 
conversion), 58–60, 59

D/A circuitry (digital-to-analog 
conversion), 60

interrupt-driven, 53–56, 54, 55
memory-mapped, 33–34
performance analysis of, 405–408, 412
polled, 52
programmed, 34, 34
signals, 60–62, 61

inputs, 3–4, 3, 4. See also input/output
instruction codes, mnemonic, 31–32
instruction completion time, 397
instruction counting, 385–390, 389
instruction cycles, 30–31, 31
instruction processing, 30–33, 31, 44

pipelined instruction processing, 
45–46, 45

superscalar architecture, 46–47, 47, 48
very long instruction word 

architecture, 47–48
instruction registers, 29, 30
instruction sets, 50–51
integer data, 30, 31, 58, 157, 183–184, 386, 

465–467
integer overfl ow, 157
integrated circuits, 479–480
integration testing, 457, 458–462, 459,

460, 462
Intel, 481

intelligent transportation systems, 495
intelligent systems, 63
interaction diagrams, 223, 300
interaction overview diagrams, 300
inter-core multitasking, 141
interfacing, peripheral, 52–62, 52, 54, 55,

57, 59, 61
interference, and parallel I/O signals, 

60–61, 61
interlock, in C#, 172
intermediate COCOMO 81, 431–432
intermediate design reviews, 283
internal bus, in central processing unit, 

29, 30
internal fragmentation, 131–132
internal interrupts, 36
internal locking, 163
internal software qualities, 268
International Function Point Users 

Group, 427, 454
interoperability, 16, 273, 275, 282
interrupt disabling, 397
interrupt handling, 35, 88–89, 96
interrupt latency, 35, 135–136

minimum, and operating system 
selection, 135–136, 138, 138, 139, 140

and response times, 396–397
interrupt-driven input/output, 53–56, 54,

55
interrupt-driven systems, 396–397
interrupt-only systems, 87–90, 91, 92
interrupt-request latching, 35
interrupts, 34–36

asynchronous, 20, 22
edge-triggered, 55
exceptions, 87–88
hardware, 34–35, 87, 88, 126, 141, 486
hybrid scheduling systems, 90–94
internal, 36
level-triggered, 55
maskable, 35
missed, 447
nonmaskable, 35
phantom, 54, 447
preemptive priority systems, 90
prioritized, 90
prioritizing, 53–56, 55
priority interrupt controllers, 55–56, 55
software, 36, 87
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spurious, 54, 447
vectored, 53–55, 54
watchdog, 65

intertask communication, 81, 81, 106
buffers, 107–110, 107, 108, 109
deadlock, 114–115, 115, 117–118
in heterogeneous soft multi-core 

architecture, 486–487, 487
mailboxes, 110–112, 111
priority inversion problem, 118–122, 

118, 120, 121, 121
semaphores, 112–114
starvation problem, 116–117, 116
timer/clock services, 122–123

intra-core multitasking, 141
intrinsic functions, and compiler 

optimization, 183
I/O. See input/output
IRs (instruction registers), 29, 30
iterative life cycle models, 303, 304, 307

Java, 21, 149, 151, 151, 154, 165, 167, 
172–177, 172

args value, 174
automatic coercion in, 174
call-by-reference/call-by-value in, 173
and classes, 173
command-line arguments, 174
compilers, 173
conversion from procedural languages, 

173
downcasting, 174
and garbage, 164
microprocessors, 173
and multiple inheritance, 174
and pointers, 173
preprocessors, use of, 173
real-time, 174–177
references in, 173
scheduling in, 174
and strings, 174
upcasting, 174
and virtual machines, 172–173, 172

jump-to-self instruction, 87, 89, 91

kernels, 80–82, 81, 114, 134, 172
keys, in mailboxes, 110–111, 113–114, 125
KLOC (thousands of lines of code), 419, 

420, 429–431, 430

language compilers, 151, 178
language exploratory tests, 464–465
language features

economy of, as Cardelli criterion, 152,
152, 155, 162, 165

orthogonality of, 162
language standards, 152–153
languages, 157. See also specifi c 

languages
large-scale development, economy of, as 

Cardelli criterion, 152, 152, 155, 161, 
164–165

latency, 35, 61–62, 73. See also interrupt 
latency

laxity type, 98
Layland, J. W., 19, 103
least recently used algorithm, and 

paging, 133
least signifi cant bit, 465–466, 466
legacy systems, and behavioral 

uncertainty, 436
level-triggered interrupts, 55
life cycle models, 302–314

agile methodologies, 307–311, 308, 312
iterative, 303, 304, 307
sequential, 303, 304
spiral, 306–307, 306
V-model, 305–306, 305
waterfall, 303–305, 304

linear buffers, 107–108
line-drawing routines, 285
lines of code (LOC), 419, 420, 429–431, 

430
linked lists, and task control blocks, 128, 

129, 129–130
linkers, 3
Linux, 16, 454, 455, 470
Liskov substitution principle, 295
Little’s law, 403–404
Liu, C. L., 19, 103
load operand (L), 31, 31, 44, 45, 45, 47
local networks of collaborating real-time 

systems, 494–495
locality of reference, 41, 189
locators, 3
lock construct, in C#, 172
locking

external/internal, 163
memory, 133
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logic
analyzers, 385, 451, 460–461, 460
cells, 67, 67
errors, 454–455
hard-wired, 32, 33
temporal, 219, 219

logical cohesion, 277
logical database requirements, 200, 201
longjmp call, in C, 169
look-up tables, 410, 467–468, 467
loop fusion, 187
loop induction elimination, 184
loop invariant removal, 183–184, 189
loop jamming, 187, 189
loop unrolling, 187, 189–190
looping, 390
low-pass fi lters, 59, 60–61, 61
LRU (least recently used) algorithm, 

and paging, 133
LSB (least signifi cant bit), 465–466, 466

MAC (multiple-accumulation) 
instructions, 65

machine code, 3, 173, 182, 292
mailbox queues, 111–112
mailboxes, 110–112, 111, 113–114, 125
maintainability, 149, 153, 273–274, 275,

278, 282
Mars Exploration Rover, NASA, 17, 18
Mars Pathfi nder Sojourner, NASA, 120
Martin, J., 19
maskable interrupts, 35
master–servant bus-type connection, 123
master–slave confi guration, 444
McCabe, T. J., 420, 453–454
Mealy machines, 209, 209, 210, 213, 291
mean processing time, 400
mean time between failures, 272
mean time to fi rst failure, 272
memory

access, 38–39, 39, 40–41
classes of, 36–38, 37
contiguous, 131
corruption of, 444–445
errors, 445
ferrite core, 20, 22
Flash, 36–37, 38
fragmentation of, 131–132, 131, 411
and garbage, 133

layout, 39, 39–40
locking, 133
management, 127–133, 129, 131, 143
nonvolatile, 54, 65
organization, hierarchical, 41–43, 42
patterns, in Douglass’ real-time 

pattern set, 297
in real-time Java, 176–177
size, 412–413
speed, 412
technologies, 36–43, 37, 39, 42
testing, 444–446
total required, and operating system 

selection, 136, 138, 138, 140
utilization, 408–411, 410
in von Neumann architecture, 29, 29, 

30
memory-mapped input/output, 33–34
memory-read access time, 38, 39
memory-write access time, 38
message buffers, 291
message transfer delay, 69–70
messaging, and object-oriented 

languages, 293
metrics, 417, 418–419, 470

best practices, 429
criticisms of, 428–429
cyclomatic complexity, 420–421, 421,

453
feature points, 427–428
function points, 423–427, 425, 426
Halstead’s metrics, 420, 421–423
lines of code (LOC), 419, 420
for object-oriented software, 428
and testing, 419

M/G/l queues, 403
microcode, 50, 51
microcontrollers, 62, 63, 64–68, 65, 67
microinstructions, 32, 51
microkernels, 81, 81–82
microprocessors, 62–64, 63, 173
microprogramming, 32–33
migrating objects, 163
MIL-STD-1553B, 120
missed interrupts, 447
mission-critical systems, 452, 482
M/M/l queues, 398–403, 399
mnemonic instruction codes, 31–32
model checking
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in requirements validation, 229
in system specifi cation, 203
and uncertainty, 438

modularity, 156–157, 276–278, 276, 277,
279, 281, 282

module-level testing, 455
modulo-2, 445
Moore machines, 209
Moore’s law, 479–480
most signifi cant bit, 466, 466
MROS 68K, 21, 22
MSB (most signifi cant bit), 466, 466
MTBF (mean time between failures), 272
MTFF (mean time to fi rst failure), 272
multi-core processors, 48–50, 49, 488

cache in, 48, 49
heterogeneous soft multi-core, 

481–484, 482
operating systems for, 141
and parallelization, 382, 384
and task concurrency, 49

multi-core support, and operating system 
selection, 141

multidisciplinary design challenges, 
15–16, 15

multiple inheritance, 170, 174
multiple-accumulation instructions, 65
multiple-pass optimization, 189–190
multiple-stack arrangements, 128–129, 

129, 143
multiprocessor(s), 97, 381–382, 398
multitasking, 43, 80, 82, 85, 141
mutexes, 120, 172, 486
mutual exclusion, 116

N × N matrixes, 443
National Institute of Standards and 

Technology, 175
NCSS (noncommented source-code 

statements), 419
.NET framework, and C#, 171, 172
network support, and operating system 

selection, 137, 138, 139, 140, 141
network-based control systems, 70
Neuron® C, 177
NFL (“no free lunch”) theorems, 

309–310
NIST (National Institute of Standards 

and Technology), 175

“no free lunch” theorems, 309–310
noncommented source-code statements, 

419
nondeterminism, 43, 64
nondeterministic access time, and cache, 

42
“none” level of coupling, 238
nonfunctional requirements, 199, 200, 

201
nonidle processing, 12
noninterrupt-driven systems, 84, 91, 92
nonintrusive testing, 454
nonmaskable interrupts, 35
nonobservable requirements, 201
nonperiodic systems, performance 

analysis of, 396–398
nonpipelined systems, 45, 388
nonvolatile memory, 54, 65
no-preemption condition, 117
NP problems, 380–382
N-Sat problems, 381
nuclear power plant monitoring systems, 

1, 2, 6, 18, 90, 270, 450, 465
N-version programming, 443–444
Nyquist–Shannon sampling theorem, 58, 

59

OAOOP (once-and-only-once principle), 
294

object code, 3, 172, 173, 181, 193
object diagrams, 300
object-oriented analysis, 221–224, 223
object-oriented analysis and design, 301,

302
object-oriented design, 293, 311

advantages of, 293–295
dependency inversion principle, 

294–295
Liskov substitution principle, 295
once-and-only-once principle, 

294
open-closed principle, 294
patterns of, 295–297, 296
vs. procedural approaches, 301–302, 

301
and reuse support, 294–295
vs. structured design, 301–302, 301
and unifi ed modeling language, 293, 

298–301, 298
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object-oriented languages, 150, 151, 162, 
221, 192, 293

and Cardelli’s criteria, 164–165
and concurrency, 167
and data abstraction, 293
and dynamic binding, 453
and fl exibility, 166
and garbage collection, 163–164
and ineffi ciency, 165
and information hiding, 162, 293
and inheritance, 166, 293, 452–453
and messaging, 293
and polymorphism, 293, 295
vs. procedural languages, 165, 167
special real-time languages, 177–178
synchronizing objects, 162–163
and unpredictability, 165
See also Ada; C++; C#; Java

object-oriented software
metrics, 428
testing, 452–453

objects, 162–163
observable requirements, 201
Occam 2, 177
OCP (open-closed principle), 294
off-the-shelf systems, and behavioral 

uncertainty, 436
OMG Unifi ed Modeling LanguageTM,

299. See also unifi ed modeling 
language

once-and-only-once principle, 294
on-chip caches, 48, 49
one-address form, 32
one-shot timer, 123
OOA (object-oriented analysis), 

221–224, 223
OOAD (object-oriented analysis and 

design), 301–302, 301
open systems, 16, 273
open systems interconnection model, 

68–69
open-closed principle, 294
operating systems, 3, 79–82, 142–143

built in house, 134
commercial systems, 134–140, 138, 140,

140, 143
cost, as criterion in selection, 137, 138,

139, 140
dispatching, 81, 81

energy-aware, 141–142
as executives, 82
foreground/background systems, 

91–94, 91, 94
in future real-time systems, 485–488, 

487, 498
hybrid scheduling systems, 90–94, 91
interrupt-only systems, 87–90, 91, 92
intertask communication, 81, 81,

106–127, 107, 108, 109, 111, 115, 116,
118, 120, 121, 121, 124

kernels, 81, 81, 82
memory management, 127–133, 129,

131
microkernels, 81, 81–82
for multi-core processors, 141
preemptive priority systems, 90, 95
process, 80–81, 81
pseudokernels, 82–87, 91–92, 142
selection of, 133–142, 138, 140, 140,

143
synchronization, 81–82, 81
task control block model, 95–97, 95
threads, 80–81, 81, 98

operations research, 19
optical isolators, 60
optimization, of code/compilers. See

compiler optimization
options, in software requirements 

specifi cations, 230–231
organic software systems and basic 

COCOMO 81, 430–431
orthogonality

of language features, 162
and statecharts, 211, 211, 212–213

oscilloscopes, use in systems integration, 
459–460

OSI (open systems interconnection) 
model, 68–69

output exploratory tests, 464
outputs, 3–4, 3, 4. See also input/output
overfl ow, and ring buffering, 110
overhead, and memory management, 127
overlapping events, 82, 391
overlapping interrupt requests, 55
overlaying, 130–131
overspeed detection, and biometric 

identifi cation devices, 496
overvoltage suppressors, 60, 61
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P problems, 380
package diagrams, 300
paging, 132–133
parallel I/O signals, 60–61, 61
parallel programming, 489
parallel systems, 383
parallelism, 49–50
parallelization, 382–384, 384
parameter lists, 158, 159
parameter passing, 157–159, 191
Parnas, David, 491
Parnas partitioning, 156, 277, 284–286, 

285
partial real-time system, 89–90
partially implemented systems, testing, 

458
partition swapping, 131
passwords, and biometric identifi cation, 

496, 498
pasta sauce bottling process, 19
patching, 418
pathological-case testing, 450
pause system call, 83
PCR (program counter register), 29, 30,

35
PDP-11, 21
PEARL (process and experiment 

automation real-time language), 
177

peephole optimization, 182
performance analysis, 379–382, 411–413

Amdahl’s law, 382–384
of coroutines, 392, 392
and determinism, 397–398
and direct memory access, 397, 398
execution time estimation, 385–391, 

389
of fi xed-period systems, 394–396
Gustafson’s law, 383–384, 384
instruction counting, 385–390, 389
interrupt-driven systems, 396–397
input/output, 405–408, 412
memory requirements, 408–411, 410,

412–413
of nonperiodic systems, 396–398
and parallelization, 382–384, 384
of polled loops, 391, 391
queuing theory, 396, 398–405, 399
response-time, 394–396

of round-robin systems, 392–394
in testing phase, 379

performance, as software quality, 272, 
275, 282

performance optimization, 380, 413, 418, 
465, 471

binary angular measure, 466–467, 466
imprecise computations, 468
look-up tables, 467–468, 467
memory usage, 410–411
real-time device drivers, 468–470, 

469
scaled numbers, 465–467, 466
See also compiler optimization

performance requirements, 200–201
period, as temporal parameter of task, 

98
periodic events, 10–11, 10
peripheral interface units, 52–53, 52
peripheral interfacing, 52–62, 52, 54, 55,

57, 59, 61
Petri nets, 213–217, 214, 214, 215, 215,

216, 299
phantom interrupts, 54, 447
phase, as temporal parameter of task, 

98
physical design, 283
PhysicalMemory, in real-time Java, 

176–177
PICs (priority interrupt controllers), 

55–56, 55
pipelines, 45, 483

instruction counting, 388–389, 389
instruction processing, 45–46, 45
and memory, 411

PIUs (peripheral interface units), 52–53, 
52

Place/Transition nets. See Petri nets
platform-independent code, 488, 489, 

491
PL/I derivatives, 149, 151
pointers, 90, 95, 129, 170, 171, 173
Poisson distribution, 398, 403
polled input/output, 52
polled loops, 82–84, 91, 391, 391
polymorphism, and object-oriented 

languages, 293, 295
portability, 274, 275, 282
postembedded systems, 479
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power consumption
of CPU chips, 48
of hardware, 39
of integrated circuits, 480
and performance, 410
and sleep mode, 141
and slowdown mode, 33
ultra-low, 62

power surges, 447
precedence constraints, 98
preemptive priority systems, 90, 95
preliminary study, in requirements 

engineering process, 198, 199
preprocessors, 170, 173
pre-runtime scheduling, 98
Princeton architecture. See von 

Neumann architecture
prioritized interrupts, 90
priority ceiling protocol, 120–122, 121,

121
priority, in real-time Java, 176
priority inheritance protocol, 119–120, 

120
priority interrupt controllers, 55–56, 55
priority inversion problem, 118–122, 118,

120, 121, 121
probabilistic hard real-time systems, 398
probability distribution, 398, 399, 

402–403
procedural cohesion, 277
procedural design, 284, 311

and fi nite state machines, 292–293, 292
vs. object-oriented approaches, 

301–302, 301
Parnas partitioning, 284–286, 285
structured design, 286–291, 288, 289,

291
procedural languages, 151, 156, 193

call-by-reference/call-by-value, 158
and Cardelli’s criteria, 161–162
conversion to Java, 173
and data abstraction, 161
dynamic memory allocation, 159
exception handling, 159–161
and garbage collection, 164
global variables, 157, 158–159
and information hiding, 156
modularity, 156–157
vs. object-oriented languages, 165, 167

parameter passing, 157–159
recursion, 159
typing issues, 157
See also Ada; C

procedures, storage of, 189
process specifi cations, 287, 288, 291
processes, 80–81, 81
processing rates, and queuing, 400–401
processor architecture, 28–36, 29, 30, 31,

34
processors, 62, 63

custom microcontrollers, 66–68, 67
microprocessors, 62–64, 63, 173
redundant, 443
standard microcontrollers, 64–66

producer transitions, and Petri nets, 214, 
215

product development process, 267
productivity, of programmers, 178, 192, 

193, 275, 488–489
profi le diagrams, 300
program counter register, 29, 30, 35
programmed input/output, 34, 34
programmer-generated code, 179, 179
programming languages, 16, 149–150, 

151, 192–193
automatic code generation, 178–181, 

179
assembly language, 151, 151, 154–156, 

193
and behavioral uncertainty, 436
code optimization. See compiler 

optimization
fi tness for real-time applications, 

151–152
in future real-time systems, 488–491, 

490, 498
special real-time, 152, 177–178, 193
See also Ada; C; C++; C#; Java; 

object-oriented languages; 
procedural languages

prototyping, 180, 272
pseudocode, 89–90, 113–114, 185, 292–

293, 292
pseudokernels, 82, 142

coroutines, 85–87, 92
cyclic code structure, 84–85
polled loops, 82–84, 91
state-driven code, 85, 92
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P-SPECS (process specifi cations), 287, 
288, 291

pulse I/O signals, 61–62

QoS (quality of service), for 
communications performance, 141

quality of service, for communications 
performance, 141

quantization, and A/D circuitry, 59–60, 59
queuing, 19, 396, 398

arrival rates, 400, 401
buffer size calculation, 401–402
customers (consumers), 399, 403, 404
Erlang Loss Formula, 404–405
Little’s law, 403–404
mailbox queues, 111–112
M/G/l queues, 403
M/M/l queues, 398–403, 399
processing rates, 400–401
response-time modeling, 402–403
servers (producers), 398, 403
single-server queue model, 398–400, 

399
time loading, 404, 405

race conditions, 216, 216
raise function, 160
RAM, 409

checking, 446
and fault-tolerance, 444–446
scrubbing, 446

random access memory. See RAM
random burst periods, buffer size 

calculation, 407–408
random test-case generation, 450
rate-monotonic scheduling, 14, 19, 22, 90, 

102–104, 103, 104
and earliest deadline fi rst approach, 106
rate-monotonic theorem, 102–103
response time calculation, 395–396
RMA bound, 103–104, 104
and uncertainty, 434

ratios, derived from software 
requirements specifi cations, 231, 231

RawMemoryAccess, in real-time Java, 
176, 177

reactive real-time systems, 5
readability

and coding standards, 153

statistics, in software requirements 
specifi cations, 232

readers-and-writers problem, 107, 107
read-only memory. See ROM
ready state, 95, 96–97, 97
realism, in requirements validation, 228
real-time C/C++, 177
real-time computing, 20
real-time device drivers, 468–470, 469
real-time Euclid, 177
Real-Time Executive, 21, 22
real-time Java, 174–177
AsyncEvent/

AsyncEventHandler, 176
AsynchronouslyInterrupted-

Exception, 176
and garbage collection, 175
and memory, 176–177
PhysicalMemory, 176–177
priority in, 176
RawMemoryAccess, 176, 177
and threads, 174–176

real-time operating systems. See
operating systems

real-time punctuality, 8, 28, 72
real-time SA/SD, 290–291, 291
real-time systems, 1–2, 4, 4, 5, 6

commercial, 14–15, 21
embedded, 5–6, 7
evolution of, 16–23, 17, 18, 22
examples of, 17–19
fi rm, 7, 7, 73
hard, 6, 7, 7, 73
misconceptions about, 14–15
multidisciplinary design challenges, 

15–16, 15
reactive, 5
soft, 6, 7, 7, 73
software control, 11
terminology, 2–14
timing constraints, 4–5, 8–9

Recommended Practice for Software 
Requirements Specifi cations (IEEE 
Std 830–1998), 199–200, 225–227, 
225, 233, 315

recovery-block approach to 
fault-tolerance, 442, 442–443

recursion, 159
reduced instruction set computers, 50–51
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redundant data elements, storage of, 189
redundant hardware/software, and fault-

tolerance, 440, 441, 443–444
redundant processors, 443
reentrant code, 88
refactoring, 437, 438
references, in Java, 173
register variable type, in C, 169
register-direct/register-indirect 

addressing modes, 32
registers, 29, 30

in compiler optimization, 184
instruction, 29, 30
program counter, 29, 30, 35
register variable type, in C, 169
register-direct/register-indirect 

addressing modes, 32
status, 35, 53

register-to-memory operations, 184
register-to-register operations, 31, 184
regression testing, 456–457
rejuvenation, and uncertainty, 438
relative deadline, as temporal parameter 

of task, 98, 99
release time, 10, 98
reliability, 185, 269–272, 270, 270, 271,

274, 275, 275, 282, 297, 418, 470–471
bathtub curve, 271–272, 271
and coding standards, 153
failure function/model, 270–272, 270, 271
failure probability, 269–270, 270
and Halstead’s metrics, 420
mean time between failures, 272
mean time to fi rst failure, 272
and testing, 418
See also fault-tolerance

repairability, 273
repeating timer, 123
requirements, classes of, 199–201
requirements, composing, 226–228, 226
requirements defi nition, 199, 199
requirements document, 199, 205, 

225–228, 225, 226
requirements elicitation, 198–199, 199
requirements engineering, 197–198, 

232–233, 492
defi nition of requirements document, 

199
domain model, 199, 199

feasibility report, 198, 199
preliminary study, 198, 199
process, 198–199, 199
requirements defi nition, 199, 199
requirements document, 199, 205, 

225–228, 225, 226
requirements elicitation, 198–199, 199
requirements specifi cation, 199, 199
requirements validation, 199, 228–232, 

230, 231, 267
See also software requirements 

specifi cation; specifi cation of 
real-time software

requirements, reuse of, 203
requirements specifi cation, 199, 199. See

also software requirements 
specifi cation; specifi cation of real-
time software

requirements, structuring, 226–228, 226
requirements validation, 199, 228–232, 

230, 231, 267
resource diagrams, 115, 115, 116
resource patterns, in Douglass’ real-time 

pattern set, 297
resource sharing, 112, 115, 115
response times, 4–5, 8–9, 28, 73

analysis of, 394–396
and commercial real-time operating 

systems, 134
and interrupt latency, 396–397
measurement of, 16
modeling of, and queuing, 402–403
in rate-monotonic case, 395–396
as temporal parameter of task, 98

restore routine, in stack management, 
127, 128

reusability, 153, 163
reuse support, and object-oriented 

design, 294–295
rigor, as engineering principle, 275, 282
ring buffers, 109, 109–110, 112, 114, 128
RISC (reduced instruction set 

computers), 50–51
rising edge, 55
risks

in allocation of memory, 127
in software development projects, 307

RM scheduling. See rate-monotonic 
scheduling
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RMA bound, 103–104, 104
RMX-80, 21, 22
robots, 494–495
ROM, 36–37

checking, 445–446
and fault-tolerance, 444–445, 446

round-robin scheduling, 84, 90, 91, 95, 
99–100, 100, 392–394

RSX, 21, 22
RTE (Real-Time Executive), 21, 22
RTLinux, 136
RTOSs (real-time operating systems). 

See operating systems
RTSJ. See real-time Java
rules wizards, 154
runtime scheduling, 98
runtime stacks, 127–128

SA (structured analysis), 218, 219–220, 
286–287. See also structured 
analysis/structured design; 
structured design

SABRE airline reservations system, 20, 22
safety applications, 494
safety/reliability patterns, in Douglass’ 

real-time pattern set, 297
SAGE (Semiautomatic Ground 

Environment) system, 20, 22
same-value variables, 186
sample-and-hold circuits, 60
sampling, and A/D circuitry, 58–60
S&H (sample-and-hold) circuits, 60
SA/SD. See structured analysis/

structured design
SA/SD/RT (real-time SA/SD), 290–291, 

291
save routine, in stack management, 

127–128
scaled numbers, 465–467, 466
schedulability, 16, 103, 152, 177, 385
scheduling, 19, 20

cyclic code, 100–102, 101
dynamic-priority, 104–106, 105, 105
earliest deadline fi rst approach, 

104–106, 105, 105
execution time estimation, 385–391, 

389
fairness, 86–87
fi rst-in fi rst-out, 128, 176

fi xed-priority, 102–104, 103, 104, 104,
106

framework, 98–99
in heterogeneous soft multi-core 

architecture, 486
hybrid systems, 90–94, 91, 100, 100
in Java, 174
mechanism, and operating system 

selection, 136, 138–139, 138, 140
pre-runtime, 98
problems, 381–382
rate-monotonic approach, 102–104, 

103, 104, 104, 106
round-robin, 84, 90, 91, 95, 99–100, 100,

392–394
runtime scheduling, 98
theory, 14, 15, 97–106, 97, 100, 101,

103, 104, 104, 105, 105, 142
Schmitt-trigger circuits, 61, 61
Scientifi c 1103A, 20, 22
script-based testing, 463
scrubbing, RAM, 446
SD. See structured design; see also

structured analysis; structured
analysis/structured design

sdb debugger, 455
SDD (software design description), 281, 

283, 371, 373–374
security applications, 494
self-modifying code, 439
self-testing, 92, 486
semaphores, 112–114, 120, 126, 127
Semiautomatic Ground Environment 

(SAGE) system, 20, 22
semidetached software systems, and 

basic COCOMO 81, 430–431
semiformal specifi cation methods, 201, 

202, 217–224, 219, 221, 223, 233
separation of concerns, as engineering 

principle, 276, 282
sequence diagrams, 300, 340, 348, 351,

354, 368–369
sequential cohesion, 277
sequential life cycle models, 303, 304
serial I/O signals, 62
serially reusable resources, 112, 113–114
series expansion, 468
servers (producers), and queuing, 398, 

403
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setjmp call, in C, 169
SEUs (single-event upsets), 54–55, 445
SICE (Society of Instrument and 

Control Engineers, Japan) 
Trans-Division Technology Committee 
on Embedded Systems, 478–479

signal(s)
bus-acknowledgment (B_ACK), 56, 57
bus-request (B_REQ), 56, 57
DMA-acknowledgment (D_ACK), 56, 

57, 57
DMA-request (D_REQ), 56, 57, 57
input/output, 60–62, 61
signal function, in C, 160

Simonyi, Charles, 153
single-event upsets, 54–55, 445
single-server queue model, 398–400, 399
SiP (system in package), 68
sleep mode, 141
SLOC (source lines of code), 419
slowdown mode, 33
small-scale development, economy of, as 

Cardelli criterion, 152, 152, 155, 161, 
164

smart grids, 495
smart homes/buildings, 494
SoC (system on chip), 68
Society of Instrument and Control 

Engineers (Japan) Trans-Division 
Technology Committee on 
Embedded Systems, 478–479

soft real-time systems, 6, 7, 7, 73
software, automatic verifi cation of, 

491–492
software control, 11
software design, 267–268, 281, 283–284, 

311–312
bottom-up approach, 286
case study (traffi c light control 

system), 314–316, 316–317, 317,
318–319, 318, 320–322, 323–329, 329, 
330, 331, 332, 333–335, 335, 336–339,
339, 339, 340–343, 343, 344–345, 345,
346, 347, 347, 348–350, 350, 350, 
351–352, 352–353, 353, 353, 354–355,
355–360, 356, 357, 357, 358, 359, 359,
360, 361, 361–362, 362, 363, 364–365,
366, 367, 368–370, 370–371, 371–372,
373–374

design document, 267

top-down approach, 286
See also life cycle models; object-

oriented design; procedural design
software design description, 281, 283, 

371, 373–374
software engineering principles, 275, 282

anticipation of change, 278–279, 282
formality, 275–276, 282
generality, 279–280, 282
incrementality, 280, 282
modularity, 276–278, 276, 277, 279,

281, 282
rigor, 275, 282
separation of concerns, 276, 282
traceability, 280–281, 281, 282, 371,

373–374
software interrupts, 36, 87
software, qualities of, 268–269, 274–275, 

275, 282
correctness, 272, 274, 275, 282
evolvability, 273
external/internal, 268
interoperability, 273, 275, 282
maintainability, 273–274, 275, 282
measurement of, 268–269, 274, 275
performance, 272, 275, 282
portability, 274, 275, 282
reliability, 269–272, 270, 270, 271, 274, 

275, 275, 282
repairability, 273
usability, 272–273, 275, 282
verifi ability, 274, 275, 282

software requirements specifi cation, 200, 
225–228

case study (traffi c light control 
system), 235–238, 239, 240, 241, 242,
242–246, 246–247, 248, 249, 250–251,
252–253, 253–258, 254–262, 263–264,
264, 371, 373–374

continuances, 230
and design activity, 281
directives, 230
imperatives, 230, 230
options, 230–231
readability statistics in, 232
and requirements validation, 228–232, 

230, 231
and traceability, 280–281, 281
and verifi ability, 228
weak phrases, 231
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See also specifi cation of real-time 
software

software reuse, 180, 181, 192
software, selection of, 16
software system attributes, 200, 201
software, system programs, 2–3
source code, availability of, and 

operating system selection, 136, 138,
139, 140

source lines of code, 419
source-level debuggers, 455
space, and uncertainty, 434, 434, 435
spatial fault-tolerance, 440–443, 441, 442
special real-time languages, 152, 177–178, 

193
specifi cation of real-time software, 14, 16, 

201, 224–225
best practices, 224–225
fi nite state machines, 203, 205–207, 

207, 208, 209–210, 209, 210
formal methods, 201, 202–207, 204,

207, 208, 209–214, 209, 210, 211, 212,
214, 214, 215, 215, 216–217, 216

informal methods, 201–202
object-oriented analysis, 221–224, 223
Petri nets, 213–217, 214, 214, 215, 215,

216, 299
semiformal methods, 201, 202, 217–224, 

219, 221, 223, 233
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
structured analysis/structured design, 

218–221, 219, 221
See also software requirements 

specifi cation
speculative execution, 46
speculative generality, and uncertainty, 437
speedup, 382–383, 384, 384
spiral life cycle models, 306–307, 306
sporadic events, 10, 10, 11
spurious interrupts, 54, 447
SRAM (static RAM), 40, 57–58
SRs (status registers), 35, 53
SRS. See software requirements 

specifi cation
stack management, 127–128
stack model, for context switching, 89, 90
stack overfl ows, 143, 447
stack pointer, 90, 95, 129
stamp coupling, 238

Standard Dictionary of Electrical and 
Electronics Terms (IEEE Std 
100–2000), 268

standard microcontrollers, 64–66
standard template language, 170
starvation, 90, 116–117, 116
state exploratory tests, 464
state machine diagrams, 300
state transition diagram. See fi nite state 

machines
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
state-driven code, 85, 92
static RAM, 40, 57–58
statistically based testing, 450
status registers, 35, 53
status requests, 52
STD (state transition diagram). See fi nite 

state machines
STL (standard template language), 170
store result (S), 31, 31, 44, 45, 45, 47
strength reduction, 182–183, 190
stress testing, 457–458
strings, 170, 174
strongly typed languages, 157
structural diagrams, 298, 299, 300
structural patterns, 296, 296
structured analysis, 218, 219–220, 286–287. 

See also structured analysis/
structured design; structured design

structured analysis/structured design, 
217, 218–221, 219, 290–291

behavioral models, 218, 219
context diagrams, 220–221, 221
environmental models, 218, 219
implementation models, 219, 219
structured specifi cations, 220
See also structured analysis; structured 

design
structured design, 286–287

context diagrams, 286, 287, 288
data dictionaries, 289, 290–291, 291
data fl ow diagrams, 286–289, 288, 289,

291
vs. object-oriented approaches, 

301–302, 301
transition from structured analysis, 

286–287
See also structured analysis; structured 

analysis/structured design
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structured English, 287
structured specifi cations, 220
subexpressions, 183
substitutability, 166–167
SUCs (systems under control), chaotic, 

435
superpipeline architecture, 46
superscalar architecture, 46–47, 47, 48
supervisor task, in mailboxes, 111
suspended state, 95, 96–97, 97
swapping, 130, 131
symbolic debuggers, 455
synchronization, 81–82, 81

in heterogeneous soft multi-core 
architecture, 486

mechanisms, and operating system 
selection, 136, 138, 139, 140

synchronized objects, 162–163
synchronous events, 10–11, 10
syntactic errors, 454
syntax errors, 454
system buses, 29, 29, 30, 34, 34, 38–39
system clock, and timing accuracy, 

390–391
system in package, 68
system on chip, 68
system programs, 2–3
system-level testing, 455, 456–458, 457
systems, defi ned, 3–4, 3
systems engineering, in future real-time 

systems, 491–493
systems integration, 457, 458–462, 459,

460, 462
systems under control, chaotic, 435

task concurrency, and multi-core 
processors, 49

task state diagram, 97, 97
task states, 95–97
task-control block model, 95–97, 95

blocked state, 96
and linked lists, 128, 129, 129–130
and memory management, 127, 128, 

129, 129–130
task states, 95–97

tasks, 97, 98–99
maximum number, and operating 

system selection, 136, 138, 138, 140
temporal parameters of, 98–99

Taylor series expansion, 468
TCB model. See task-control block 

model
TDMA (time division multiple access), 

72
time overload, 12, 400, 401, 405
tell-tale comments, and uncertainty, 437
temporal cohesion, 277
temporal determinism, 11, 12
temporal fault-tolerance, 440
temporal logic, 219, 219
terminated state, 97, 97
test case generators, 449
test cases, 158, 181, 191–192, 449–450, 

453–454, 458
test design, 283
test logs, 459, 459
test plans, 458
test-fi rst coding, 453
testing, 16, 447–448, 457, 471

baseline method, 453
black-box, 443, 449–450, 451
boundary-value, 449–450
brute-force, 449
burn-in, 456
and central processing unit, 444
and cleanroom software development, 

457
corner-case, 449–450
debugging approaches, 454–456
exhaustive, 449
exploratory, 462–465
and formal methods for software 

specifi cation, 205
integration, 457, 458–462, 459, 460, 462
memory, 444–446
metrics, use in, 419
module-level, 455
nonintrusive, 454
of object-oriented software, 452–453
of partially implemented systems, 458
pathological-case, 450
patterns, 462–465
performance analysis, 379
purpose of, 448
regression, 456–457
for reliability, 418
script-based, 463
self-testing, 92, 486
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source-level debuggers, 455
statistically based, 450
stress, 457–458
symbolic debuggers, 455
system-level, 455, 456–458, 457
techniques, 448–454
test cases, 158, 181, 191–192, 449–450, 

453–454, 458
test-fi rst coding, 453
threshold tests, 188–189
tools, 460–461
and uncertainty, 435–436
unit-level, 449
white-box, 450–451, 451
worst-case, 450
See also debugging

theorem proving, 203
thread synchronization mechanisms, in 

C++, 172
thread-local objects, 163
threads, 80–81, 81, 98, 163, 171–172

objects migrating between, 163
and real-time Java, 174–176
thread-local objects, 163

three-address form, 32
3-Sat problems, 381
threshold tests, 188–189
throughput, and central processing unit, 

13
time

loading, and queuing, 404, 405
overload, 12, 400, 401, 405
slicing, 99–100
time division multiple access, 72
and uncertainty, 434, 434, 435, 436

time-correlated buffering, 108
timeliness, 5
time-invariant bursts, calculation of 

buffer size, 405–406
time-loading factor, 12–14, 12
time-variant bursts, calculation of buffer 

size, 406–407
timers, 65, 65, 92, 122–123, 172, 446–447
time-stamping, 8
time-triggered architecture, 71–73, 71
time-triggered protocol, 72
timing constraints, 4–5, 8–9
timing diagrams, 300
top-down design approach, 286

traceability, 227, 280–281, 281, 282, 371,
373–374

traceability matrix, 280–281, 281
traffi c light control system, 19

software design case study, 314–316, 
316–317, 317, 318–319, 318, 320–322,
323–329, 329, 330, 331, 332, 
333–335, 335, 336–339, 339, 339, 
340–343, 343, 344–345, 345, 346, 347,
347, 348–350, 350, 350, 351–352,
352–353, 353, 353, 354–355, 355–360, 
356, 357, 357, 358, 359, 359, 360,
361, 361–362, 362, 363, 364–365, 366,
367, 368–370, 370–371, 371–372,
373–374

software requirements specifi cation 
case study, 235–238, 239, 240, 241,
242, 242–246, 246–247, 248, 249,
250–251, 252–253, 253–258, 254–262,
263–264, 264, 371, 373–374

transition matrixes, 443
transputers, 66, 177
triangle-shaped requirements structure, 

227, 227
truth tables, 204, 204
TTA (time-triggered architecture), 

71–73, 71
TTP (time-triggered protocol), 72
turnaround time, 393–394
two-address form, 32
2-Sat problems, 381
typed languages, 157

ultra-low power consumption, 62
UML. See unifi ed modeling language
UML++, 489–491, 490, 492, 498
uncertainty, 418, 433–434, 438, 439, 463, 

464, 470
delay, 122
dimensions of, 434, 434–435
identifying, 437
and model checking, 438
sources of, 435–436, 439
and testing, 435–436

underfl ow, and ring buffering, 110
understandability, and coding standards, 

153
unifi ed modeling language, 202, 217, 

221–224, 223, 298, 298
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unifi ed modeling language (cont'd)
as future “programming language,” 

489–491, 490
and object-oriented design, 293, 

298–301, 298
OMG Unifi ed Modeling LanguageTM,

299
unit-level testing, 449
Unix, 131, 455
unpredictability, and object-oriented 

languages, 165
unreachable code, removal of, 184–185
unsynchronized objects, 163
upcasting, in Java, 174
upward leveling, 287
U.S. Department of Defense, 21
usability, 224, 233, 272–273, 275, 282
use case diagrams, 222–223, 223, 246, 300
utilization

CPU, 12–14, 12, 36, 385, 395, 410
rate, 33, 47

validation, 228, 448
variable-length latency, and interrupts, 35
vectored interrupts, 53–55, 54
verifi ability, 228, 274, 275, 282
verifi cation, 447–448, 491–492
very long instruction word architecture, 

47–48
vibration, 444
virtual machines, 172–173, 172, 487–488
vision confi dence pentacles, 479, 480
VLIW (very long instruction word) 

architecture, 47–48

V-model, 305–306, 305
volatile variable type, in C, 169
von Neumann architecture, 29–30, 29, 30,

35, 43, 44, 45
voting schemes, 440
VRTX, 21, 22

wait operation, 112, 113, 114
wait states, 38–39
watchdog interrupts, 65
watchdog timers, 65, 65, 92, 446–447
waterfall life cycle models, 303–305, 304
waveform I/O signals, 61–62
WCET (worst-case execution time), 

387–388, 389
weak phrases, in software requirements 

specifi cations, 231
Whirlwind fl ight simulation project, 20, 

21, 22
white-box testing, 450–451, 451
wide networks of collaborating real-time 

systems, 495
Windows CE, and C#, 171
wireless communications, concerns with, 

497
wireless network connections, 62
Workshop of Computer Architecture 

Research Directions, 489
worst-case execution time, 387–388, 

389
worst-case testing, 450
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