
REAL-TIME SYSTEMS
DESIGN AND ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Lajos Hanzo, Editor in Chief

 R. Abhari M. El-Hawary O. P. Malik
J. Anderson B-M. Haemmerli S. Nahavandi
G. W. Arnold M. Lanzerotti T. Samad
F. Canavero D. Jacobson G. Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers
Larry Bernstein, Stevens Institute of Technology

Bernard Sick, University of Kassel
Olli Vainio, Tampere University of Technology

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME SYSTEMS
DESIGN AND ANALYSIS

Tools for the Practitioner

Fourth Edition

PHILLIP A. LAPLANTE

SEPPO J. OVASKA

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

www.it-ebooks.info

http://www.it-ebooks.info/

Cover photo courtesy of NASA.

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifi cally disclaim any implied
warranties of merchantability or fi tness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Laplante, Phillip A.
 Real-time systems design and analysis : tools for the practitioner / Phillip A. Laplante, Seppo
J. Ovaska.—4th ed.
 p. cm.
 ISBN 978-0-470-76864-8 (hardback)
 1. Real-time data processing. 2. System design. I. Ovaska, Seppo J., 1956- II. Title.
 QA76.54.L37 2012
 004'.33–dc23

2011021433

Printed in the United States of America

oBook ISBN: 9781118136607
ePDF ISBN: 9781118136577
ePub ISBN: 9781118136591
eMobi ISBN: 9781118136584

10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.it-ebooks.info/

Phil:
To Nancy, Chris and Charlotte, with all my love

Seppo:
To Helena, Sami and Samu — my everything

www.it-ebooks.info

http://www.it-ebooks.info/

vii

CONTENTS

Preface xv

Acknowledgments xxi

1 Fundamentals of Real-Time Systems 1

1.1 Concepts and Misconceptions, 2
1.1.1 Defi nitions for Real-Time Systems, 2
1.1.2 Usual Misconceptions, 14

1.2 Multidisciplinary Design Challenges, 15
1.2.1 Infl uencing Disciplines, 16

1.3 Birth and Evolution of Real-Time Systems, 16
1.3.1 Diversifying Applications, 17
1.3.2 Advancements behind Modern Real-Time Systems, 19

1.4 Summary, 21
1.5 Exercises, 24

References, 25

2 Hardware for Real-Time Systems 27

2.1 Basic Processor Architecture, 28
2.1.1 Von Neumann Architecture, 29
2.1.2 Instruction Processing, 30
2.1.3 Input/Output and Interrupt Considerations, 33

2.2 Memory Technologies, 36
2.2.1 Different Classes of Memory, 36
2.2.2 Memory Access and Layout Issues, 38
2.2.3 Hierarchical Memory Organization, 41

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

2.3 Architectural Advancements, 43
2.3.1 Pipelined Instruction Processing, 45
2.3.2 Superscalar and Very Long Instruction

Word Architectures, 46
2.3.3 Multi-Core Processors, 48
2.3.4 Complex Instruction Set versus Reduced

Instruction Set, 50
2.4 Peripheral Interfacing, 52

2.4.1 Interrupt-Driven Input/Output, 53
2.4.2 Direct Memory Access, 56
2.4.3 Analog and Digital Input/Output, 58

2.5 Microprocessor versus Microcontroller, 62
2.5.1 Microprocessors, 62
2.5.2 Standard Microcontrollers, 64
2.5.3 Custom Microcontrollers, 66

2.6 Distributed Real-Time Architectures, 68
2.6.1 Fieldbus Networks, 68
2.6.2 Time-Triggered Architectures, 71

2.7 Summary, 73
2.8 Exercises, 74

References, 76

3 Real-Time Operating Systems 79

3.1 From Pseudokernels to Operating Systems, 80
3.1.1 Miscellaneous Pseudokernels, 82
3.1.2 Interrupt-Only Systems, 87
3.1.3 Preemptive Priority Systems, 90
3.1.4 Hybrid Scheduling Systems, 90
3.1.5 The Task Control Block Model, 95

3.2 Theoretical Foundations of Scheduling, 97
3.2.1 Scheduling Framework, 98
3.2.2 Round-Robin Scheduling, 99
3.2.3 Cyclic Code Scheduling, 100
3.2.4 Fixed-Priority Scheduling: Rate-Monotonic Approach, 102
3.2.5 Dynamic Priority Scheduling: Earliest Deadline

First Approach, 104
3.3 System Services for Application Programs, 106

3.3.1 Linear Buffers, 107
3.3.2 Ring Buffers, 109
3.3.3 Mailboxes, 110
3.3.4 Semaphores, 112
3.3.5 Deadlock and Starvation Problems, 114
3.3.6 Priority Inversion Problem, 118

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

3.3.7 Timer and Clock Services, 122
3.3.8 Application Study: A Real-Time Structure, 123

3.4 Memory Management Issues, 127
3.4.1 Stack and Task Control Block Management, 127
3.4.2 Multiple-Stack Arrangement, 128
3.4.3 Memory Management in the Task Control

Block Model, 129
3.4.4 Swapping, Overlaying, and Paging, 130

3.5 Selecting Real-Time Operating Systems, 133
3.5.1 Buying versus Building, 134
3.5.2 Selection Criteria and a Metric for Commercial Real-Time

Operating Systems, 135
3.5.3 Case Study: Selecting a Commercial Real-Time Operating

System, 138
3.5.4 Supplementary Criteria for Multi-Core and Energy-Aware

Support, 140
3.6 Summary, 142
3.7 Exercises, 143

References, 146

4 Programming Languages for Real-Time Systems 149

4.1 Coding of Real-Time Software, 150
4.1.1 Fitness of a Programming Language for Real-Time

Applications, 151
4.1.2 Coding Standards for Real-Time Software, 152

4.2 Assembly Language, 154
4.3 Procedural Languages, 156

4.3.1 Modularity and Typing Issues, 156
4.3.2 Parameter Passing and Dynamic

Memory Allocation, 157
4.3.3 Exception Handling, 159
4.3.4 Cardelli’s Metrics and Procedural Languages, 161

4.4 Object-Oriented Languages, 162
4.4.1 Synchronizing Objects and Garbage Collection, 162
4.4.2 Cardelli’s Metrics and Object-Oriented Languages, 164
4.4.3 Object-Oriented versus Procedural Languages, 165

4.5 Overview of Programming Languages, 167
4.5.1 Ada, 167
4.5.2 C, 169
4.5.3 C++, 170
4.5.4 C#, 171
4.5.5 Java, 172
4.5.6 Real-Time Java, 174
4.5.7 Special Real-Time Languages, 177

www.it-ebooks.info

http://www.it-ebooks.info/

x CONTENTS

4.6 Automatic Code Generation, 178
4.6.1 Toward Production-Quality Code, 178
4.6.2 Remaining Challenges, 180

4.7 Compiler Optimizations of Code, 181
4.7.1 Standard Optimization Techniques, 182
4.7.2 Additional Optimization Considerations, 188

4.8 Summary, 192
4.9 Exercises, 193

References, 195

5 Requirements Engineering Methodologies 197

5.1 Requirements Engineering for Real-Time Systems, 198
5.1.1 Requirements Engineering as a Process, 198
5.1.2 Standard Requirement Classes, 199
5.1.3 Specifi cation of Real-Time Software, 201

5.2 Formal Methods in System Specifi cation, 202
5.2.1 Limitations of Formal Methods, 205
5.2.2 Finite State Machines, 205
5.2.3 Statecharts, 210
5.2.4 Petri Nets, 213

5.3 Semiformal Methods in System Specifi cation, 217
5.3.1 Structured Analysis and Structured Design, 218
5.3.2 Object-Oriented Analysis and the Unifi ed

Modeling Language, 221
5.3.3 Recommendations on Specifi cation Approach, 224

5.4 The Requirements Document, 225
5.4.1 Structuring and Composing Requirements, 226
5.4.2 Requirements Validation, 228

5.5 Summary, 232
5.6 Exercises, 233
5.7 Appendix 1: Case Study in Software Requirements

Specifi cation, 235
5.7.1 Introduction, 235
5.7.2 Overall Description, 238
5.7.3 Specifi c Requirements, 245
References, 265

6 Software Design Approaches 267

6.1 Qualities of Real-Time Software, 268
6.1.1 Eight Qualities from Reliability to Verifi ability, 269

6.2 Software Engineering Principles, 275
6.2.1 Seven Principles from Rigor and Formality

to Traceability, 275
6.2.2 The Design Activity, 281

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

6.3 Procedural Design Approach, 284
6.3.1 Parnas Partitioning, 284
6.3.2 Structured Design, 286
6.3.3 Design in Procedural Form Using Finite

State Machines, 292
6.4 Object-Oriented Design Approach, 293

6.4.1 Advantages of Object Orientation, 293
6.4.2 Design Patterns, 295
6.4.3 Design Using the Unifi ed Modeling Language, 298
6.4.4 Object-Oriented versus Procedural Approaches, 301

6.5 Life Cycle Models, 302
6.5.1 Waterfall Model, 303
6.5.2 V-Model, 305
6.5.3 Spiral Model, 306
6.5.4 Agile Methodologies, 307

6.6 Summary, 311
6.7 Exercises, 312
6.8 Appendix 1: Case Study in Designing Real-Time

Software, 314
6.8.1 Introduction, 314
6.8.2 Overall Description, 315
6.8.3 Design Decomposition, 316
6.8.4 Requirements Traceability, 371
References, 375

7 Performance Analysis Techniques 379

7.1 Real-Time Performance Analysis, 380
7.1.1 Theoretical Preliminaries, 380
7.1.2 Arguments Related to Parallelization, 382
7.1.3 Execution Time Estimation from

Program Code, 385
7.1.4 Analysis of Polled-Loop and Coroutine Systems, 391
7.1.5 Analysis of Round-Robin Systems, 392
7.1.6 Analysis of Fixed-Period Systems, 394
7.1.7 Analysis of Nonperiodic Systems, 396

7.2 Applications of Queuing Theory, 398
7.2.1 Single-Server Queue Model, 398
7.2.2 Arrival and Processing Rates, 400
7.2.3 Buffer Size Calculation, 401
7.2.4 Response Time Modeling, 402
7.2.5 Other Results from Queuing Theory, 403

7.3 Input/Output Performance, 405
7.3.1 Buffer Size Calculation for Time-Invariant Bursts, 405
7.3.2 Buffer Size Calculation for Time-Variant Bursts, 406

www.it-ebooks.info

http://www.it-ebooks.info/

xii CONTENTS

7.4 Analysis of Memory Requirements, 408
7.4.1 Memory Utilization Analysis, 408
7.4.2 Optimizing Memory Usage, 410

7.5 Summary, 411
7.6 Exercises, 413

References, 415

8 Additional Considerations for the Practitioner 417

8.1 Metrics in Software Engineering, 418
8.1.1 Lines of Source Code, 419
8.1.2 Cyclomatic Complexity, 420
8.1.3 Halstead’s Metrics, 421
8.1.4 Function Points, 423
8.1.5 Feature Points, 427
8.1.6 Metrics for Object-Oriented Software, 428
8.1.7 Criticism against Software Metrics, 428

8.2 Predictive Cost Modeling, 429
8.2.1 Basic COCOMO 81, 429
8.2.2 Intermediate and Detailed COCOMO 81, 431
8.2.3 COCOMO II, 433

8.3 Uncertainty in Real-Time Systems, 433
8.3.1 The Three Dimensions of Uncertainty, 434
8.3.2 Sources of Uncertainty, 435
8.3.3 Identifying Uncertainty, 437
8.3.4 Dealing with Uncertainty, 438

8.4 Design for Fault Tolerance, 438
8.4.1 Spatial Fault-Tolerance, 440
8.4.2 Software Black Boxes, 443
8.4.3 N-Version Programming, 443
8.4.4 Built-in-Test Software, 444
8.4.5 Spurious and Missed Interrupts, 447

8.5 Software Testing and Systems Integration, 447
8.5.1 Testing Techniques, 448
8.5.2 Debugging Approaches, 454
8.5.3 System-Level Testing, 456
8.5.4 Systems Integration, 458
8.5.5 Testing Patterns and Exploratory Testing, 462

8.6 Performance Optimization Techniques, 465
8.6.1 Scaled Numbers for Faster Execution, 465
8.6.2 Look-Up Tables for Functions, 467
8.6.3 Real-Time Device Drivers, 468

8.7 Summary, 470
8.8 Exercises, 471

References, 473

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

9 Future Visions on Real-Time Systems 477

9.1 Vision: Real-Time Hardware, 479
9.1.1 Heterogeneous Soft Multi-Cores, 481
9.1.2 Architectural Issues with Individual Soft Cores, 483
9.1.3 More Advanced Fieldbus Networks and Simpler

Distributed Nodes, 484
9.2 Vision: Real-Time Operating Systems, 485

9.2.1 One Coordinating System Task and Multiple Isolated
Application Tasks, 486

9.2.2 Small, Platform Independent Virtual Machines, 487
9.3 Vision: Real-Time Programming Languages, 488

9.3.1 The UML++ as a Future “Programming Language”, 489
9.4 Vision: Real-Time Systems Engineering, 491

9.4.1 Automatic Verifi cation of Software, 491
9.4.2 Conservative Requirements Engineering, 492
9.4.3 Distance Collaboration in Software Projects, 492
9.4.4 Drag-and-Drop Systems, 493

9.5 Vision: Real-Time Applications, 493
9.5.1 Local Networks of Collaborating Real-Time Systems, 494
9.5.2 Wide Networks of Collaborating Real-Time Systems, 495
9.5.3 Biometric Identifi cation Device with Remote Access, 495
9.5.4 Are There Any Threats behind High-Speed Wireless

Communications?, 497
9.6 Summary, 497
9.7 Exercises, 499

References, 500

Glossary 503

About the Authors 535

Index 537

www.it-ebooks.info

http://www.it-ebooks.info/

 PREFACE

xv

 This book is an introductory text about real - time systems — systems where
timeliness is a crucial part of the correctness of the system. Real - time software
designers must be familiar with computer architecture and organization, oper-
ating systems and related services, programming languages, systems and soft-
ware engineering, as well as performance analysis and optimization techniques.
The text provides a pragmatic discussion of these subjects from the perspective
of the real - time systems designer. Because this is a staggering task, depth is
occasionally sacrifi ced for breadth. Nevertheless, thoughtful suggestions for
additional literature are provided where depth has been sacrifi ced due to the
available page budget or other reasons.

 This book is intended for junior – senior level and graduate computer science,
computer engineering and electrical engineering students, as well as practicing
software, systems and computer engineers. It can be used as a graduate level
text if it is supplemented with an advanced reader or a focused selection of
scholarly articles on a specifi c topic (which could be gathered from the up - to -
 date bibliographies of this edition). Our book is especially useful in an indus-
trial setting for new real - time systems designers who need to get “ up to speed ”
very quickly. Earlier editions of this book have been used in this way to teach
short courses for several industrial clients. Finally, we intend for the book to
be a desk reference of long - lasting value, even for experienced real - time
systems designers and project managers.

 The reader is assumed to have basic knowledge in programming in one of
the more popular languages, but other than this, the prerequisites for this text
are minimal. Some familiarity with discrete mathematics is helpful in under-
standing some of the formalizations, but it is not essential.

www.it-ebooks.info

http://www.it-ebooks.info/

xvi PREFACE

 Since there are several preferred languages for real - time systems design,
such as Ada, C, C ++ , C#, and increasingly, Java, it would be unjust to focus this
book on one language, say C, when the theory and framework should be lan-
guage independent. However, for uniformity of discussion, certain points are
illustrated, as appropriate, in generic assembly language and C.

 While the provided program codes are not intended to be ready - to - use, they
can be easily adapted with a little tweaking for use in a real system.

 This book is organized into nine chapters that are largely self - contained.
Thus, the material can be rearranged or omitted depending on the background
and interests of the instructor or reader. It is advised, however, that Chapter
 1 would be explored fi rst, because it contains an introduction to real - time
systems as well as the necessary terminology.

 Each of the chapters contains both easy and more challenging exercises
that stimulate the reader to confront actual problems. The exercises, however,
cannot serve as a substitute for carefully planned laboratory work or practical
experience.

 The fi rst chapter provides an overview of the nature of real - time systems.
Much of the basic vocabulary relating to real - time systems is developed along
with a discussion of the main challenges facing the real - time system designer.
Besides, a brief historical review is given. The purpose of this chapter is to
foreshadow the rest of the book as well as quickly acquaint the reader with
pertinent terminology.

 The second chapter presents a detailed review of central computer archi-
tecture concepts from the perspective of the real - time systems designer.
Specifi cally, the impact of advanced architectural features on real - time perfor-
mance is discussed. The remainder of the chapter outlines different memory
technologies, input/output techniques, and peripheral support for embedded
systems. The intent here is to increase the reader ’ s awareness of the impact of
the computer architecture on various design considerations.

 Chapter 3 provides the core of the text for those who are building practical
real - time systems. This comprehensive chapter describes the three principal
real - time kernel services: scheduling/dispatching, intertask communication/
synchronization, and memory management. It also covers special problems
inherent in these designs, such as deadlock and priority inversion.

 Chapter 4 begins with a discussion of specifi c language features desirable
in good software engineering practice in general and real - time systems design
in particular. An evaluative review of several widely used programming lan-
guages in real - time systems design, with respect to these features, follows. Our
intent is to provide explicit criteria for rating a language ’ s ability to support
real - time systems and to alert the user to the possible drawbacks of using each
language in real - time applications.

 In Chapter 5 , the nature of requirements engineering is fi rst discussed. Then
a collection of rigorous techniques in real - time system specifi cation is pre-
sented with illustrative examples. Such rigorous methods are particularly
useful when automatic design and code - generation approaches are to be used

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE xvii

later in the development life cycle. Next, structured and object - oriented meth-
odologies are discussed as alternative paradigms for requirements writing. At
the end of this chapter, an extensive case study is provided.

 Chapter 6 surveys several commonly applied design specifi cation tech-
niques used in both structured and object - oriented design. An emphasis on
their applicability to real - time systems is made throughout. No single tech-
nique is a silver bullet, and the reader is encouraged to adopt his or her own
formulation of specifi cation techniques for the given application. A compre-
hensive design case study is also provided.

 Chapter 7 discusses performance analysis techniques based on diverse esti-
mation approaches. The proposed toolset is fully usable even before it is pos-
sible to perform any direct measurements. Moreover, a pragmatic discussion
on the use of classical queuing theory for analyzing real - time systems is pro-
vided. Input/output performance issues are considered with an emphasis on
buffer - size calculation. Finally, a focused analysis of memory utilization in
real - time systems is presented.

 Chapter 8 discusses additional software engineering considerations, includ-
ing the use of software metrics and techniques for improving the fault -
tolerance and overall reliability of real - time systems. Later in the chapter,
different techniques for improving reliability through rigorous testing are
discussed. Systems integration and performance optimization issues are also
considered.

 In Chapter 9 , we look to the future of real - time systems hardware, software,
and applications. Much of this chapter is speculative, and we had great fun
imagining things yet to come and the way things ought to be with respect to
real - time systems technology. This chapter forms a fruitful basis for class dis-
cussions, debates, and student projects.

 When our book is used in a university course, typically students are asked
to build a real - time multitasking system of their choice. Usually, it is a game
on a PC, but some students can be expected to build embedded hardware
controllers of moderate complexity. The authors ’ assignment to the reader
would be to build such a game or simulation, using at least the coroutine
model. The application should be useful or at least pleasing, so some sort of a
game is a good choice. The mini - project should take no more than 20 hours
and cover all phases of the software life cycle model discussed in the text.
Hence, those readers who have never built a real - time system will have the
benefi t of the instructive experience.

 Real - time systems engineering is based on more than 50 years of experience
and global contributions by numerous individuals and organizations. Rather
than clutter the text with endless citations for the origin of each idea, the
authors chose to cite only the key ideas where the reader would want to seek
out the source for further reading. Some of the text is adapted from two other
books written by the fi rst author on software engineering and computer archi-
tecture, Laplante (2003) and Gilreath and Laplante (2003), respectively. Where
this has been done, it is so noted.

www.it-ebooks.info

http://www.it-ebooks.info/

xviii PREFACE

 Many solid theoretical treatments of real - time systems exist, and where
applicable, they are noted. Nonetheless, these books or journal articles are
sometimes too theoretical for practicing software engineers and students who
are often impatient to wade through the derivations for the resultant payoff.
They want results that they can use now in the trenches, and they want to see
how they can be used, not just know that they exist. In this text, an attempt is
made to distill the most valuable of the theoretical results, combined with
practical experience and insight to provide a toolkit for the practitioner.

 This book contains extensive bibliographies at the end of each chapter.
Where verbatim phrases were used, and where a fi gure came from another
source, the authors tried to cite it appropriately. However, if any were inad-
vertently overlooked, the authors wish to correct the unfortunate error. Please
notify the authors if you fi nd any errors of omission, commission, citation, and
so forth by e - mail, at plaplante@psu.edu or seppo.ovaska@aalto.fi , and they
will be corrected at the next possible opportunity.

 Since 1992, thousands of copies of the fi rst three editions of this book have
been sold to the college text and professional markets throughout the world.
The only thing more gratifying than its adoption at such prestigious universi-
ties as Carnegie Mellon University, the University of Illinois at Urbana -
 Champaign, Princeton University, the United States Air Force Academy,
Polytechnic University, and many others around the world, has been the enthu-
siastic feedback received from numerous individuals thankful for the infl uence
that the book has had on them. The continuing international success of the
fi rst three editions along with recent technological advancements demanded
that a fourth edition be produced.

 The most fundamental change in the fourth edition is a new co - author, Dr.
Seppo Ovaska, whose vast experience greatly complements that of the fi rst
author and adds a strong and timely international perspective.

 The fourth edition addresses the important changes that have occurred in
the theory and practice in the construction of real - time systems since the
publishing of the third edition in 2004. Chapters 1 – 8 have been carefully
revised to incorporate new material, correction of errors, and elimination of
outdated material. Moreover, Chapter 9 is a brand - new chapter devoted to
future visions on real - time systems. Totally new or substantially revised discus-
sions include:

 • Multidisciplinary design challenges
 • Birth and evolution of real - time systems
 • Memory technologies
 • Architectural advancements
 • Peripheral interfacing
 • Distributed real - time architectures
 • System services for application programs
 • Supplementary criteria for multi - core and energy - aware support

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE xix

 • Automatic code generation
 • Life cycle models
 • Arguments related to parallelization
 • Uncertainty in real - time systems
 • Testing patterns and exploratory testing
 • Real - time device drivers
 • Future visions on real - time systems

 While approximately 30% of previous material has been discarded, another
40% has been added, resulting in a unique and modern text. In addition,
several new examples have been included to illustrate various important
points. Hence, it is with pride and a sense of accomplishment that we are pre-
senting this timely and carefully composed book to students and practicing
engineers.

 REFERENCES

 W. F. Gilreath and P. A. Laplante , Computer Architecture: A Minimalist Approach .
 Norwell, MA : Kluwer Academic Publishers , 2003 .

 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,
 2003 .

P hillip A. Laplante

West Chester, Pennsylvania

Seppo J. Ovaska

Hyvink ä ä , Finland

August 2011

www.it-ebooks.info

http://www.it-ebooks.info/

 ACKNOWLEDGMENTS

xxi

 Phil Laplante wishes to thank his dear friend Dr. Seppo Ovaska for being the
perfect collaborator. Easy to work with, Seppo ’ s industriousness, experience,
insight, patience, and attention to detail perfectly complemented Phil ’ s
strengths and weaknesses. The vast majority of differences between the third
and fourth editions are due to Seppo ’ s hard work. As a result of Seppo ’ s con-
tributions, the fourth edition is far superior to any previous edition of this
book. And this book is now as much his vision and legacy, as the fi rst three
editions were mine.

 Phil also wishes to thank his wife Nancy and his children Christopher and
Charlotte for putting up with the seemingly endless work on this manuscript
and too many other projects to mention over these many years.

 Seppo: I am grateful to my wife Helena and my sons Sami and Samu for
everything we have experienced together. Although it is a tiny gesture com-
pared with all that you have given to me, I humbly dedicate this book to you.
And fi nally, Phil, it was a true pleasure to work with you in this exciting and
rewarding book project.

 P.A.L.
 S.J.O.

www.it-ebooks.info

http://www.it-ebooks.info/

 1
FUNDAMENTALS OF
REAL- TIME SYSTEMS

1

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

 The term “ real time ” is used widely in many contexts, both technical and con-
ventional. Most people would probably understand “ in real time ” to mean “ at
once ” or “ instantaneously. ” The Random House Dictionary of the English
Language (2nd unabridged edition, 1987), however, defi nes “ realtime ” as per-
taining to applications in which the computer must respond as rapidly as
required by the user or necessitated by the process being controlled . These defi -
nitions, and others that are available, are quite different, and their differences
are often the cause of misunderstanding between computer, software and
systems engineers, and the users of real - time systems. On a more pedantic
level, there is the issue of the appropriate writing of the term “ real - time. ”
Across technical and pedestrian literature, various forms of the term, such as
real time , real - time , and realtime may appear. But to computer, software, and
systems engineers the preferred form is real - time , and this is the convention
that we will follow throughout this text.

 Consider a computer system in which data need to be processed at a regular
rate. For example, an aircraft uses a sequence of accelerometer pulses to
determine its position. Systems other than avionic ones may also require a
rapid response to events that occur at nonregular rates, such as handling an
overtemperature failure in a nuclear power plant. Even without defi ning the
term “ real - time, ” it is probably understood that those events demand timely
or “ real - time ” processing.

www.it-ebooks.info

http://www.it-ebooks.info/

2 FUNDAMENTALS OF REAL-TIME SYSTEMS

 Now consider a situation in which a passenger approaches an airline check -
 in counter to pick up his boarding pass for a certain fl ight from New York to
Boston, which is leaving in fi ve minutes. The reservation clerk enters appropri-
ate information into the computer, and a few seconds later a boarding pass is
printed. Is this a real - time system?

 Indeed, all three systems — aircraft, nuclear power plant, and airline
reservations — are real - time, because they must process information within a
specifi ed interval or risk system failure. Although these examples may provide
an intuitive defi nition of a real - time system, it is necessary to clearly compre-
hend when a system is real - time and when it is not.

 To form a solid basis for the coming chapters, we fi rst defi ne a number of
central terms and correct common misunderstandings in Section 1.1 . These
defi nitions are targeted for practitioners, and thus they have a strong practical
point - of - view. Section 1.2 presents the multidisciplinary design challenges
related to real - time systems. It is shown that although real - time systems design
and analysis are subdisciplines of computer systems engineering, they have
essential connections to various other fi elds, such as computer science and
electrical engineering — even to applied statistics. It is rather straightforward
to present different approaches, methods, techniques, or tools for readers, but
much more diffi cult to convey the authors ’ insight on real - time systems to the
audience. Nevertheless, our intention is to provide some insight in parallel with
specifi c tools for the practitioner. Such insight is built on practical experiences
and adequate understanding of the key milestones in the fi eld. The birth of
real - time systems, in general, as well as a selective evolution path related to
relevant technological innovations, is discussed in Section 1.3 . Section 1.4 sum-
marizes the preceding sections on fundamentals of real - time systems. Finally,
Section 1.5 provides exercises that help the reader to gain basic understanding
on real - time systems and associated concepts.

 1.1 CONCEPTS AND MISCONCEPTIONS

 The fundamental defi nitions of real - time systems engineering can vary depend-
ing on the resource consulted. Our pragmatic defi nitions have been collected
and refi ned to the smallest common subset of agreement to form the vocabu-
lary of this particular text. These defi nitions are presented in a form that is
intended to be most useful to the practicing engineer, as opposed to the aca-
demic theorist.

 1.1.1 Defi nitions for Real - Time Systems

 The hardware of a computer solves problems by repeated execution of
machine - language instructions, collectively known as software. Software, on
the other hand, is traditionally divided into system programs and application
programs.

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 3

 System programs consist of software that interfaces with the underlying
computer hardware, such as device drivers, interrupt handlers, task schedulers,
and various programs that act as tools for the development or analysis of
application programs. These software tools include compilers, which translate
high - level language programs into assembly code; assemblers, which convert
the assembly code into a special binary format called object or machine code;
and linkers/locators, which prepare the object code for execution in a specifi c
hardware environment. An operating system is a specialized collection of
system programs that manage the physical resources of the computer. As such,
a real - time operating system is a truly important system program (Anh and
Tan, 2009).

 Application programs are programs written to solve specifi c problems, such
as optimal hall - call allocation of an elevator bank in a high - rise building, inertial
navigation of an aircraft, and payroll preparation for some industrial company.
Certain design considerations play a role in the design of system programs and
application software intended to run in real - time environments.

 The notion of a “ system ” is central to software engineering, and indeed to
all engineering, and warrants formalization.

 Figure 1.1. A general system with inputs and outputs.

System

Mapping Function..
. ..

.

Inputs Outputs

Input Space Output Space

 Defi nition: System

 A system is a mapping of a set of inputs into a set of outputs.

 When the internal details of the system are not of particular interest, the
mapping function between input and output spaces can be considered as a
black box with one or more inputs entering and one or more outputs exiting
the system (see Fig. 1.1). Moreover, Vernon lists fi ve general properties that
belong to any “ system ” (Vernon, 1989):

 1. A system is an assembly of components connected together in an orga-
nized way.

 2. A system is fundamentally altered if a component joins or leaves it.
 3. It has a purpose.
 4. It has a degree of permanence.
 5. It has been defi ned as being of particular interest.

www.it-ebooks.info

http://www.it-ebooks.info/

4 FUNDAMENTALS OF REAL-TIME SYSTEMS

 Figure 1.2. A real - time control system including inputs from a camera and multiple
sensors, as well as outputs to a display and multiple actuators.

Real-Time

Control System

... ...

Camera Display

Sensors Actuators

 Figure 1.3. A classic representation of a real - time system as a sequence of schedulable
jobs.

Real-Time

System

...

Job 1

Schedule

Job 2

Job 3

Job 4

Job n

[Job 3, Job 1, Job n, ...]

 Every real - world entity, whether organic or synthetic, can be modeled as a
system. In computing systems, the inputs represent digital data from hardware
devices or other software systems. The inputs are often associated with sensors,
cameras, and other devices that provide analog inputs, which are converted to
digital data, or provide direct digital inputs. The digital outputs of computer
systems, on the other hand, can be converted to analog outputs to control
external hardware devices, such as actuators and displays, or used directly
without any conversion (Fig. 1.2).

 Modeling a real - time (control) system, as in Figure 1.2 , is somewhat differ-
ent from the more traditional model of the real - time system as a sequence of
jobs to be scheduled and performance to be predicted, which is comparable
with that shown in Figure 1.3 . The latter view is simplistic in that it ignores the
usual fact that the input sources and hardware under control may be highly
complex. In addition, there are other, “ sweeping ” software engineering con-
siderations that are hidden by the model shown in Figure 1.3 .

 Look again at the model of a real - time system shown in Figure 1.2 . In its
realization, there is some inherent delay between presentation of the inputs
(excitation) and appearance of the outputs (response). This fact can be formal-
ized as follows:

 Defi nition: Response Time

 The time between the presentation of a set of inputs to a system and the
realization of the required behavior, including the availability of all associ-
ated outputs, is called the response time of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 5

 How fast and punctual the response time needs to be depends on the charac-
teristics and purpose of the specifi c system.

 The previous defi nitions set the stage for a practical defi nition of a real - time
system.

 Defi nition: Real - Time System (II)

 A real - time system is one whose logical correctness is based on both the
correctness of the outputs and their timeliness.

 Defi nition: Failed System

 A failed system is a system that cannot satisfy one or more of the require-
ments stipulated in the system requirements specifi cation.

 Defi nition: Real - Time System (I)

 A real - time system is a computer system that must satisfy bounded response -
 time constraints or risk severe consequences, including failure.

 But what is a “ failed ” system? In the case of the space shuttle or a
nuclear power plant, for example, it is painfully obvious when a failure has
occurred. For other systems, such as an automatic bank teller machine, the
notion of failure is less obvious. For now, failure will be defi ned as the
 “ inability of the system to perform according to system specifi cation, ” or,
more precisely:

 Because of this defi nition of failure, rigorous specifi cation of the system oper-
ating criteria, including timing constraints, is necessary. This matter is discussed
later in Chapter 5 .

 Various other defi nitions exist for “ real - time, ” depending on which source
is consulted. Nonetheless, the common theme among all defi nitions is that the
system must satisfy deadline constraints in order to be correct. For instance,
an alternative defi nition might be:

 In any case, by making unnecessary the notion of timeliness, every system
becomes a real - time system.

 Real - time systems are often reactive or embedded systems. Reactive
systems are those in which task scheduling is driven by ongoing interaction
with their environment; for example, a fi re - control system reacts to certain
buttons pressed by a pilot. Embedded systems can be defi ned informally as
follows:

www.it-ebooks.info

http://www.it-ebooks.info/

6 FUNDAMENTALS OF REAL-TIME SYSTEMS

 For example, a modern automobile contains many embedded processors that
control airbag deployment, antilock braking, air conditioning, fuel injection,
and so forth. Today, numerous household items, such as microwave ovens, rice
cookers, stereos, televisions, washing machines, even toys, contain embedded
computers. It is obvious that sophisticated systems, such as aircraft, elevator
banks, and paper machines, do contain several embedded computer systems.

 The three systems mentioned at the beginning of this chapter satisfy the
criteria for a real - time system. An aircraft must process accelerometer data
within a certain period that depends on the specifi cations of the aircraft; for
example, every 10 ms. Failure to do so could result in a false position or veloc-
ity indication and cause the aircraft to go off - course at best or crash at worst.
For a nuclear reactor thermal problem, failure to respond swiftly could result
in a meltdown. Finally, an airline reservation system must be able to handle a
surge of passenger requests within the passenger ’ s perception of a reasonable
time (or before the fl ights leave the gate). In short, a system does not have to
process data at once or instantaneously to be considered real - time; it must
simply have response times that are constrained appropriately.

 When is a system real - time? It can be argued that all practical systems are
ultimately real - time systems. Even a batch - oriented system — for example,
grade processing at the end of a semester or a bimonthly payroll run — is real -
 time. Although the system may have response times of days or even weeks
(e.g., the time that elapses between submitting the grade or payroll informa-
tion and issuance of the report card or paycheck), it must respond within a
certain time or there could be an academic or fi nancial disaster. Even a word -
 processing program should respond to commands within a reasonable amount
of time or it will become torturous to use. Most of the literature refers to such
systems as soft real - time systems.

 Defi nition: Hard Real - Time System

 A hard real - time system is one in which failure to meet even a single dead-
line may lead to complete or catastrophic system failure.

 Defi nition: Soft Real - Time System

 A soft real - time system is one in which performance is degraded but not
destroyed by failure to meet response - time constraints.

 Defi nition: Embedded System

 An embedded system is a system containing one or more computers (or
processors) having a central role in the functionality of the system, but the
system is not explicitly called a computer.

 Conversely, systems where failure to meet response - time constraints leads to
complete or catastrophic system failure are called hard real - time systems.

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 7

 Firm real - time systems are those systems with hard deadlines where some
arbitrarily small number of missed deadlines can be tolerated.

 TABLE 1.1. A Sampling of Hard, Firm, and Soft Real - Time Systems

 System Real - Time
Classifi cation

 Explanation

 Avionics weapons delivery
system in which pressing
a button launches an
air - to - air missile

 Hard Missing the deadline to launch the
missile within a specifi ed time
after pressing the button may
cause the target to be missed,
which will result in catastrophe

 Navigation controller for
an autonomous weed -
 killer robot

 Firm Missing a few navigation deadlines
causes the robot to veer out from
a planned path and damage some
crops

 Console hockey game Soft Missing even several deadlines will
only degrade performance

 Defi nition: Firm Real - Time System

 A fi rm real - time system is one in which a few missed deadlines will not lead
to total failure, but missing more than a few may lead to complete or cata-
strophic system failure.

 As noted, all practical systems minimally represent soft real - time systems.
Table 1.1 gives an illustrative sampling of hard, fi rm, and soft real - time systems.

 There is a great deal of latitude for interpretation of hard, fi rm, and soft
real - time systems. For example, in the automated teller machine, missing too
many deadlines will lead to signifi cant customer dissatisfaction and potentially
even enough loss of business to threaten the existence of the bank. This
extreme scenario represents the fact that every system can often be character-
ized any way — soft, fi rm, or hard — real - time by the construction of a support-
ing scenario. The careful defi nition of systems requirements (and, hence,
expectations) is the key to setting and meeting realistic deadline expectations.
In any case, it is a principal goal of real - time systems engineering to fi nd ways
to transform hard deadlines into fi rm ones, and fi rm ones into soft ones.

 Since this text is mostly concerned with hard real - time systems, it will use
the term real - time system to mean embedded, hard real - time system, unless
otherwise noted.

 It is typical, in studying real - time systems, to consider the nature of time,
because deadlines are instants in time. Nevertheless, the question arises,
 “ Where do the deadlines come from? ” Generally speaking, deadlines are
based on the underlying physical phenomena of the system under control. For

www.it-ebooks.info

http://www.it-ebooks.info/

8 FUNDAMENTALS OF REAL-TIME SYSTEMS

example, in animated displays, images must be updated at least 30 frames per
second to provide continuous motion, because the human eye can resolve
updating at a slower rate. In navigation systems, accelerations must be read at
a rate that is a function of the maximum velocity of the vehicle, and so on. In
some cases, however, real - world systems have deadlines that are imposed on
them, and are based on nothing less than guessing or on some forgotten and
possibly eliminated requirement. The problem in these cases is that undue
constraints may be placed on the systems. This is a primary maxim of real - time
systems design — to understand the basis and nature of the timing constraints
so that they can be relaxed if necessary. In cost - effective and robust real - time
systems, a pragmatic rule of thumb could be: process everything as slowly as
possible and repeat tasks as seldom as possible .

 Many real - time systems utilize global clocks and time - stamping for synchro-
nization, task initiation, and data marking. It must be noted, however, that all
clocks keep somewhat inaccurate time — even the offi cial U.S. atomic clock must
be adjusted regularly. Moreover, there is an associated quantization error with
clocks, which may need to be considered when using them for time - stamping.

 In addition to the degree of “ real - time ” (i.e., hard, fi rm, or soft), also, the
punctuality of response times is important in many applications. Hence, we
defi ne the concept of real - time punctuality:

 Example: Where a Response Time Comes From

 An elevator door (Pasanen et al., 1991) is automatically operated, and it
may have a capacitive safety edge for sensing possible passengers between
the closing door blades. Thus, the door blades can be quickly reopened
before they touch the passenger and cause discomfort or even threaten the
passenger ’ s safety.

 What is the required system response time from when it recognizes that
a passenger is between the closing door blades to the instant when it starts
to reopen the door?

 Defi nition: Real - Time Punctuality

 Real - time punctuality means that every response time has an average value,
tR , with upper and lower bounds of tR + εU and tR − εL , respectively, and
εU , εL → 0 + .

 In all practical systems, the values of εU and εL are nonzero, though they may
be very small or even negligible. The nonzero values are due to cumulative
latency and propagation - delay components in real - time hardware and soft-
ware. Such response times contain jitter within the interval t ∈ [−εL , +εU]. Real -
 time punctuality is particularly important in periodically sampled systems with
high sampling rates, for example, in video signal processing and software radio.

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 9

 Figure 1.4. A partial program fl owchart showing a conditional branch as a change in
fl ow of control.

Branch

?

 This response time consists of fi ve independent components (their pre-
sumably measured numerical values are for illustration purpose only):

 Sensor Response Time : t S_min = 5 ms, t S_max = 15 ms, t S_mean = 9 ms.

 Hardware Response Time : t HW_min = 1 μ s, t HW_max = 2 μ s, t HW_mean = 1.2 μ s.

 System Software Response Time : t SS_min = 16 μ s, t SS_max = 48 μ s, t SS_mean = 37 μ s.

 Application Software Response Time : t AS_min = 0.5 μ s, t AS_max = 0.5 μ s,
 t AS_mean = 0.5 μ s.

 Door Drive Response Time : t DD_min = 300 ms, t DD_max = 500 ms,
 t DD_mean = 400 ms.

 Now, we can calculate the minimum, maximum, and mean values of the
composite response time: t min ≈ 305 ms, t max ≈ 515 ms, and t mean ≈ 409 ms.

 Thus, the overall response time is dominated by the door - drive response
time containing the required deceleration time of the moving door blades.

 In software systems, a change in state results in a change in the fl ow - of - control
of the computer program. Consider the fl owchart in Figure 1.4 . The decision
block represented by the diamond suggests that the stream of program instruc-
tions can take one of two alternative paths, depending on the response
in question. case , if - then , and while statements in any programming
language represent a possible change in fl ow - of - control. Invocation of proce-
dures in Ada and C represent changes in fl ow - of - control. In object - oriented

www.it-ebooks.info

http://www.it-ebooks.info/

10 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.2. Taxonomy of Events and Some Typical Examples

 Periodic Aperiodic Sporadic

 Synchronous Cyclic code Conditional branch Divide - by - zero
(trap) interrupt

 Asynchronous Clock interrupt Regular, but not
fi xed - period interrupt

 Power - loss alarm

 These items will be discussed further in Chapters 2 and 3 .

languages, instantiation of an object or the invocation of a method causes the
change in sequential fl ow - of - control. In general, consider the following
defi nition.

 Defi nition: Event

 Any occurrence that causes the program counter to change nonsequentially
is considered a change of fl ow - of - control, and thus an event.

 In scheduling theory, the release time of a job is similar to an event.

 Defi nition: Release Time

 The release time is the time at which an instance of a scheduled task is
ready to run, and is generally associated with an interrupt.

 Events are slightly different from jobs in that events can be caused by inter-
rupts, as well as branches.

 An event can be either synchronous or asynchronous. Synchronous events
are those that occur at predictable times in the fl ow - of - control, such as that
represented by the decision box in the fl owchart of Figure 1.4 . The change in
fl ow - of - control, represented by a conditional branch instruction, or by the
occurrence of an internal trap interrupt, can be anticipated.

 Asynchronous events occur at unpredictable points in the fl ow - of - control
and are usually caused by external sources. A real - time clock that pulses regu-
larly at 5 ms is not a synchronous event. While it represents a periodic event,
even if the clock were able to tick at a perfect 5 ms without drift, the point
where the tick occurs with the fl ow - of - control is subject to many factors. These
factors include the time at which the clock starts relative to the program and
propagation delays in the computer system itself. An engineer can never count
on a clock ticking exactly at the rate specifi ed, and so any clock - driven event
must be treated as asynchronous.

 Events that do not occur at regular periods are called aperiodic. Furthermore,
aperiodic events that tend to occur very infrequently are called sporadic. Table
 1.2 characterizes a sampling of events.

 For example, an interrupt generated by a periodic external clock represents
a periodic but asynchronous event. A periodic but synchronous event is one

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 11

represented by a sequence of invocation of software tasks in a repeated, cir-
cular fashion. A typical branch instruction that is not part of a code block and
that runs repeatedly at a regular rate represents a synchronous but aperiodic
event. A branch instruction that happens infrequently, say, on the detection of
some exceptional condition, is both sporadic and synchronous. Finally, inter-
rupts that are generated irregularly by an external device are classifi ed as
either asynchronous aperiodic or sporadic, depending on whether the inter-
rupt is generated frequently or not with respect to the system clock.

 In every system, and particularly in an embedded real - time system, main-
taining overall control is extremely important. For any physical system, certain
states exist under which the system is considered to be out of control; the
software controlling such a system must therefore avoid these states. For
example, in certain aircraft guidance systems, rapid rotation through a 180 °
pitch angle can cause loss of gyroscopic control. Hence, the software must be
able to anticipate and avert all such scenarios.

 Another characteristic of a software - controlled system is that the processor
continues to fetch, decode, and execute instructions correctly from the program
area of memory, rather than from data or other unwanted memory regions.
The latter scenario can occur in poorly tested systems and is a catastrophe
from which there is almost no hope of recovery.

 Software control of any real - time system and associated hardware is main-
tained when the next state of the system, given the current state and a set of
inputs, is predictable. In other words, the goal is to anticipate how a system
will behave in all possible circumstances.

 Defi nition: Deterministic System

 A system is deterministic, if for each possible state and each set of inputs,
a unique set of outputs and next state of the system can be determined.

 Event determinism means the next states and outputs of a system are known
for each set of inputs that trigger events. Thus, a system that is deterministic
is also event deterministic. Although it would be diffi cult for a system to be
deterministic only for those inputs that trigger events, this is plausible, and so
event determinism may not imply determinism.

 It is interesting to note that while it is a signifi cant challenge to design
systems that are completely event deterministic, and as mentioned, it is pos-
sible to inadvertently end up with a system that is nondeterministic, it is defi -
nitely hard to design systems that are deliberately nondeterministic. This
situation arises from the utmost diffi culties in designing perfect random
number generators. Such deliberately nondeterministic systems would be
desirable, for example, as casino gaming machines.

 Finally, if in a deterministic system the response time for each set of outputs
is known, then the system also exhibits temporal determinism.

www.it-ebooks.info

http://www.it-ebooks.info/

12 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.3. CPU Utilization (%) Zones

 Utilization (%) Zone Type Typical Application

< 26 Unnecessarily safe Various
 26 – 50 Very safe Various
 51 – 68 Safe Various
 69 Theoretical limit Embedded systems
 70 – 82 Questionable Embedded systems
 83 – 99 Dangerous Embedded systems
 100 Critical Marginally stressed systems
> 100 Overloaded Stressed systems

 A side benefi t of designing deterministic systems is that guarantees can be
given that the system will be able to respond at any time, and in the case of
temporally deterministic systems, when they will respond. This fact reinforces
the association of “ control ” with real - time systems.

 The fi nal and truly important term to be defi ned is a critical measure of
real - time system performance. Because the central processing unit (CPU)
continues to fetch, decode, and execute instructions as long as power is applied,
the CPU will more or less frequently execute either no - ops or instructions that
are not related to the fulfi llment of a specifi c deadline (e.g., noncritical “ house-
keeping ”). The measure of the relative time spent doing nonidle processing
indicates how much real - time processing is occurring.

 Defi nition: CPU Utilization Factor

 The CPU utilization or time - loading factor, U , is a relative measure of the
nonidle processing taking place.

 A system is said to be time - overloaded if U > 100%. Systems that are too
highly utilized are problematic, because additions, changes, or corrections
cannot be made to the system without risk of time - overloading. On the other
hand, systems that are not suffi ciently utilized are not necessarily cost - effective,
because this implies that the system was overengineered and that costs could
likely be reduced with less expensive hardware. While a utilization of 50% is
common for new products, 80% might be acceptable for systems that do not
expect growth. However, 70% as a target for U is one of the most celebrated
and potentially useful results in the theory of real - time systems where tasks
are periodic and independent — a result that will be examined in Chapter 3 .
Table 1.3 gives a summary of certain CPU utilizations and typical situations
in which they are associated.

U is calculated by summing the contribution of utilization factors for each
(periodic or aperiodic) task. Suppose a system has n ≥ 1 periodic tasks, each
with an execution period of pi , and hence, execution frequency, fi = 1/ pi . If task
i is known to have (or has been estimated to have) a worst- case execution time
of ei , then the utilization factor, ui , for task i is

www.it-ebooks.info

http://www.it-ebooks.info/

CONCEPTS AND MISCONCEPTIONS 13

 u e pi i i= . (1.1)

 Furthermore, the overall system utilization factor is

 U u e pi

i

n

i i

i

n

= =
= =
∑ ∑

1 1

. (1.2)

 Note that the deadline for a periodic task i , d i , is a critical design factor that
is constrained by e i . The determination of e i , either prior to, or after the code
has been written, can be extremely diffi cult, and often impossible, in which
case estimation or measuring must be used. For aperiodic and sporadic tasks,
 u i is calculated by assuming a worst - case execution period, usually the minimum
possible time between corresponding event occurrences. Such approximations
can infl ate the utilization factor unnecessarily or lead to overconfi dence
because of the tendency to “ not worry ” about its excessive contribution. The
danger is to discover later that a higher frequency of occurrence than budgeted
has led to a time - overload and system failure.

 The utilization factor differs from CPU throughput, which is a measure
of the number of machine - language instructions per second that can
be processed based on some predetermined instruction mix. This type of mea-
surement is typically used to compare CPU throughput for a particular
application.

 Example: Calculation of the CPU Utilization Factor

 An individual elevator controller in a bank of high - rise elevators has the
following software tasks with execution periods of p i and worst - case execu-
tion times of e i , i ∈ {1, 2, 3, 4}:

 Task 1 : Communicate with the group dispatcher (19.2 K bit/s data rate
and a proprietary communications protocol); p 1 = 500 ms, e 1 = 17 ms.

 Task 2 : Update the car position information and manage fl oor - to - fl oor
runs, as well as door control; p 2 = 25 ms, e 2 = 4 ms.

 Task 3 : Register and cancel car calls; p 3 = 75 ms, e 3 = 1 ms.

 Task 4 : Miscellaneous system supervisions; p 4 = 200 ms, e 4 = 20 ms.

 What is the overall CPU utilization factor?

 U e pi i

i

= = + + + ≈
=
∑

1

4 17
500

4
25

1
75

20
200

0 31.

 Hence, the utilization percentage is 31%, which belongs to the “ very safe ”
zone of Table 1.3 .

www.it-ebooks.info

http://www.it-ebooks.info/

14 FUNDAMENTALS OF REAL-TIME SYSTEMS

 The choice of task deadlines, estimation and reduction of execution
times, and other factors that infl uence CPU utilization will be discussed in
Chapter 7 .

 1.1.2 Usual Misconceptions

 As a part of truly understanding the nature of real - time systems, it is important
to address a number of frequently cited misconceptions. These are summarized
as follows:

 1. Real - time systems are synonymous with “ fast ” systems.
 2. Rate - monotonic analysis has solved “ the real - time problem. ”
 3. There are universal, widely accepted methodologies for real - time systems

specifi cation and design.
 4. There is no more a need to build a real - time operating system, because

many commercial products exist.
 5. The study of real - time systems is mostly about scheduling theory.

 The fi rst misconception, that real - time systems must be fast, arises from the
fact that many hard real - time systems indeed deal with deadlines in the tens
of milliseconds, such as the aircraft navigation system. In a typical food -
 industry application, however, pasta - sauce jars can move along the conveyor
belt past a fi lling point at a rate of one every fi ve seconds. Furthermore, the
airline reservation system could have a deadline of 15 seconds. These latter
deadlines are not particularly fast, but satisfying them determines the success
or failure of the system.

 The second misconception is that rate - monotonic systems provide a simple
recipe for building real - time systems. Rate - monotonic systems — a periodic
system in which interrupt (or software task) priorities are assigned such that
the faster the rate of execution, the higher the priority — have received a lot
of attention since the 1970s. While they provide valuable guidance in the
design of real - time systems, and while there is abundant theory surrounding
them, they are not a panacea. Rate - monotonic systems will be discussed in
great detail in Chapter 3 .

 What about the third misconception? Unfortunately, there are no univer-
sally accepted and infallible methods for the specifi cation and design of real -
 time systems. This is not a failure of researchers or the software industry, but
is because of the diffi culty of discovering universal solutions for this demand-
ing fi eld. After nearly 40 years of research and development, there is still no
methodology available that answers all of the challenges of real - time specifi ca-
tion and design all the time and for all applications.

 The fourth misconception is that there is no more a need to build a real -
 time operating system from scratch. While there are a number of cost - effective,
popular, and viable commercial real - time operating systems, these, too, are not

www.it-ebooks.info

http://www.it-ebooks.info/

MULTIDISCIPLINARY DESIGN CHALLENGES 15

a panacea. Commercial solutions have certainly their place, but choosing when
to use an off - the - shelf solution and choosing the right one are challenges that
will be considered in Chapter 3 .

 Finally, while it is scholarly to study scheduling theory, from an engineering
standpoint, most published results require impractical simplifi cations and
clairvoyance in order to make the theory work. Because this is a textbook for
practicing engineers, it avoids any theoretical results that resort to these
measures.

 1.2 MULTIDISCIPLINARY DESIGN CHALLENGES

 The study of real - time systems is a truly multidimensional subdiscipline of
computer systems engineering that is strongly infl uenced by control theory,
operations research, and, naturally, software engineering. Figure 1.5 depicts
some of the disciplines of computer science, electrical engineering, systems
engineering, and applied statistics that affect the design and analysis of
real - time systems. Nevertheless, those representative disciplines are not the
only ones having a relationship with real - time systems. Because real - time
systems engineering is so multidisciplinary, it stands out as a fascinating study
area with a rich set of design challenges. Although the fundamentals of real -
 time systems are well established and have considerable permanence, real -
 time systems is a lively developing area due to evolving CPU architectures,
distributed system structures, versatile wireless networks, and novel applica-
tions, for instance.

 Figure 1.5. A variety of disciplines that affect real - time systems engineering.

Real-Time
Systems

Software
Engineering

Programming
Languages

Operating
Systems

Data
Structures

Algorithms

Operations
Research

Queuing
Theory

Computer
Architecture

Control
Theory

Systems
Theory

www.it-ebooks.info

http://www.it-ebooks.info/

16 FUNDAMENTALS OF REAL-TIME SYSTEMS

 1.2.1 Infl uencing Disciplines

 The design and implementation of real - time systems requires attention to
numerous practical issues. These include:

 • The selection of hardware and system software, and evaluation of the
trade - off needed for a competitive solution, including dealing with
distributed computing systems and the issues of concurrency and
synchronization.

 • Specifi cation and design of real - time systems, as well as correct and inclu-
sive representation of temporal behavior.

 • Understanding the nuances of the high - level programming language(s)
and the real - time implications resulting from their optimized compilation
into machine - language code.

 • Optimizing (with application - specifi c objectives) of system fault tolerance
and reliability through careful design and analysis.

 • The design and administration of adequate tests at different levels of
hierarchy, and the selection of appropriate development tools and test
equipment.

 • Taking advantage of open systems technology and interoperability. An
open system is an extensible collection of independently written applica-
tions that cooperate to function as an integrated system. For example,
several versions of the open operating system, Linux, have emerged for
use in various real - time applications (Abbott, 2006). Interoperability can
be measured in terms of compliance with open system standards, such as
the real - time CORBA (common object request broker architecture) stan-
dard (Fay - Wolfe et al., 2000).

 • Finally, estimating and measuring response times and (if needed) reducing
them. Performing a schedulability analysis, that is, determining and guar-
anteeing deadline satisfaction, a priori .

 Obviously, the engineering techniques used for hard real - time systems can be
used in the engineering of all other types of systems as well, with an accom-
panying improvement of performance and robustness. This alone is a signifi -
cant reason to study the engineering of real - time systems.

 1.3 BIRTH AND EVOLUTION OF REAL - TIME SYSTEMS

 The history of real - time systems, as characterized by important developments
in the United States, is tied inherently to the evolution of the computer.
Modern real - time systems, such as those that control nuclear power plants,
military weapons systems, or medical monitoring equipment, are sophisticated,
yet many still exhibit characteristics of those pioneering systems developed in
the 1940s through the 1960s.

www.it-ebooks.info

http://www.it-ebooks.info/

BIRTH AND EVOLUTION OF REAL-TIME SYSTEMS 17

 1.3.1 Diversifying Applications

 Embedded real - time systems are so pervasive and ubiquitous that they are
even found in household appliances, sportswear, and toys. A small sampling
of real - time domains and corresponding applications is given in Table 1.4 . An
excellent example of an advanced real - time system is the Mars Exploration
Rover of NASA shown in Figure 1.6 . It is an autonomous system with extreme
reliability requirements; it receives commands and sends measurement data
over radio - communications links; and performs its scientifi c missions with the
aid of multiple sensors, processors, and actuators.

 In the introductory paragraphs of this chapter, some real - time systems were
mentioned. The following descriptions provide more details for each system,
while others provide additional examples. Clearly, these descriptions are not
rigorous specifi cations. The process of specifying real - time systems unambigu-
ously but concisely is discussed in Chapter 5 .

 Consider the inertial measurement system for an aircraft. The software
specifi cation states that the software will receive x , y , and z accelerometer
pulses at a 10 ms rate from special hardware. The software will determine the
acceleration components in each direction, and the corresponding roll, pitch,
and yaw of the aircraft.

 The software will also collect other information, such as temperature at a
1 - second rate. The task of the application software is to compute the actual
velocity vector based on the current orientation, accelerometer readings, and
various compensation factors (such as for temperature effects) at a 40 ms rate.
The system is to output true acceleration, velocity, and position vectors to a
pilot ’ s display every 40 ms, but using a different clock.

 TABLE 1.4. Typical Real - Time Domains
and Diverse Applications

 Domain Applications

 Aerospace Flight control
 Navigation
 Pilot interface

 Civilian Automotive systems
 Elevator control
 Traffi c light control

 Industrial Automated inspection
 Robotic assembly line
 Welding control

 Medical Intensive care monitors
 Magnetic resonance imaging
 Remote surgery

 Multimedia Console games
 Home theaters
 Simulators

www.it-ebooks.info

http://www.it-ebooks.info/

18 FUNDAMENTALS OF REAL-TIME SYSTEMS

 These tasks execute at four different rates in the inertial measurement
system, and need to communicate and synchronize. The accelerometer read-
ings must be time - relative or correlated; that is, it is not allowed to mix an x
accelerometer pulse of discrete time instant k with y and z pulses of instant
k + 1. These are critical design issues for this system.

 Next, consider a monitoring system for a nuclear power plant that will be
handling three events signaled by interrupts. The fi rst event is triggered by any
of several signals at various security points, which will indicate a security
breach. The system must respond to this signal within one second. The second
and most important event indicates that the reactor core has reached an over-
temperature. This signal must be dealt with within 1 millisecond (1 ms). Finally,
an operator ’ s display is to be updated at approximately 30 times per second.
The nuclear - power - plant system requires a reliable mechanism to ensure that
the “ meltdown imminent ” indicator can interrupt any other processing with
minimal latency.

 As another example, recall the airline reservation system mentioned earlier.
Management has decided that to prevent long lines and customer dissatisfac-
tion, turnaround time for any transaction must be less than 15 seconds, and no
overbooking will be permitted. At any time, several travel agents may try to
access the reservations database and perhaps book the same fl ight simultane-
ously. Here, effective record - locking and secure communications mechanisms

Figure 1.6. Mars Exploration Rover; a solar - powered, autonomous real - time system
with radio - communications links and a variety of sensors and actuators. Photo courtesy
of NASA.

www.it-ebooks.info

http://www.it-ebooks.info/

BIRTH AND EVOLUTION OF REAL-TIME SYSTEMS 19

are needed to protect against the alteration of the database containing the
reservation information by more than one clerk at a time.

 Now, consider a real - time system that controls all phases of the bottling of
jars of pasta sauce as they travel along a conveyor belt. The empty jars are
fi rst microwaved to disinfect them. A mechanism fi lls each jar with a precise
serving of specifi c sauce as it passes beneath. Another station caps the fi lled
bottles. In addition, there is an operator ’ s display that provides an animated
rendering of the production line activities. There are numerous events trig-
gered by exceptional conditions, such as the conveyor belt jamming and a
bottle overfl owing or breaking. If the conveyor belt travels too fast, the bottle
will move past its designated station prematurely. Therefore, there is a wide
range of events, both synchronous and asynchronous, to be dealt with.

 As a fi nal example, consider a system used to control a set of traffi c lights
at a four - way traffi c intersection (north - , south - , east - , and west - bound traffi c).
This system controls the lights for vehicle and pedestrian traffi c at a four - way
intersection in a busy city like Philadelphia. Input may be taken from cameras,
emergency - vehicle transponders, push buttons, sensors under the ground, and
so on. The traffi c lights need to operate in a synchronized fashion, and yet
react to asynchronous events — such as a pedestrian pressing a button at a
crosswalk. Failure to operate in a proper fashion can result in automobile
accidents and even fatalities.

 The challenge presented by each of these systems is to determine the appro-
priate design approach with respect to the multidisciplinary issues discussed
in Section 1.2 .

 1.3.2 Advancements behind Modern Real - Time Systems

 Much of the theory of real - time systems is derived from the surrounding dis-
ciplines shown in Figure 1.5 . In particular, certain aspects of operations
research (i.e., scheduling), which emerged in the late 1940s, and queuing theory
in the early 1950s, have infl uenced most of the more theoretical results.

 Martin published one of the fi rst and certainly the most infl uential early
book on real - time systems (Martin, 1967). Martin ’ s book was soon followed
by several others (e.g., Stimler, 1969), and the infl uence of operations research
and queuing theory can be seen in these works. It is also educational to study
these texts in the context of the great limitations of the hardware of the time.

 In 1973, Liu and Layland published their seminal work on rate - monotonic
theory (Liu and Layland, 1973). Over the last nearly 40 years, signifi cant refi ne-
ment of this theory has made it a practical theory for use in designing real - time
systems.

 The 1980s and 1990s saw a proliferation of theoretical work on improving
predictability and reliability of real - time systems, and on solving problems
related to multitasking systems. Today, a rather small group of experts contin-
ues to study pure issues of scheduling and performance analysis, while a larger
group of generalist systems engineers tackles broader issues relating to the

www.it-ebooks.info

http://www.it-ebooks.info/

20 FUNDAMENTALS OF REAL-TIME SYSTEMS

implementation of practical systems. An important paper by Stankovic et al.
(Stankovic et al., 1995) described some of the diffi culties in conducting research
on real - time systems — even with signifi cant restriction of the system, most
problems relating to scheduling are too diffi cult to solve by analytic
techniques.

 Instead of any single “ groundbreaking ” technology, the new millennium
saw a number of important advancements in hardware, viable open - source
software for real - time systems, powerful commercial design and implementa-
tion tools, and expanded programming language support. These advancements
have in some ways simplifi ed the construction and analysis of real - time systems
but on the other hand introduced new problems because of the complexities
of systems interactions and the masking of many of the underlying subtleties
of time constraints.

 The origin of the term real- time computing is unclear. It was probably fi rst
used either with project Whirlwind, a fl ight simulator developed by IBM for
the U.S. Navy in 1947, or with SAGE, the Semiautomatic Ground Environment
air defense system developed for the U.S. Air Force in the late 1950s. Both of
these projects qualify as real - time systems even by today ’ s defi nitions. In addi-
tion to its real - time contributions, the Whirlwind project included the fi rst use
of ferrite core memory (“ fast ”) and a form of high - level language compiler
that predated Fortran.

 Other early real - time systems were used for airline reservations, such as
SABRE (developed for American Airlines in 1959), as well as for process
control, but the advent of the national space program provided even greater
opportunities for the development of more advanced real - time systems for
spacecraft control and telemetry. It was not until the 1960s that rapid develop-
ment of such systems took place, and then only as signifi cant nonmilitary
interest in real - time systems become coupled with the availability of equip-
ment adapted to real - time processing.

 Low - performance processors and particularly slow and small memories
handicapped many of the earliest systems. In the early 1950s, the asynchronous
interrupt was introduced and later incorporated as a standard feature in the
Univac Scientifi c 1103A. The middle 1950s saw a distinct increase in the speed
and complexity of large - scale computers designed for scientifi c computation,
without an increase in physical size. These developments made it possible to
apply real - time computation in the fi eld of control systems. Such hardware
improvements were particularly noticeable in IBM ’ s development of SAGE.

 In the 1960s and 1970s, advances in integration levels and processing speeds
enhanced the spectrum of real - time problems that could be solved. In 1965
alone, it was estimated that more than 350 real - time process control systems
existed (Martin, 1967).

 The 1980s and 1990s have seen, for instance, distributed systems and non -
 von Neumann architectures utilized in real - time applications.

 Finally, the late 1990s and early 2000s have set new trends in real - time
embedded systems in consumer products and Web - enabled devices. The avail-

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 21

ability of compact processors with limited memory and functionality has reju-
venated some of the challenges faced by early real - time systems designers.
Fortunately, around 60 years of experience is now available to draw upon.

 Early real - time systems were written directly in microcode or assembly
language, and later in higher - level languages. As previously noted, Whirlwind
used an early form of high - level language called an algebraic compiler to
simplify coding. Later systems employed Fortran, CMS - 2, and JOVIAL, the
preferred languages in the U.S. Army, Navy, and Air Force, respectively.

 In the 1970s, the Department of Defense (DoD) mandated the develop-
ment of a single language that all military services could use, and that provided
high - level language constructs for real - time programming. After a careful
selection and refi nement process, the Ada language appeared as a standard in
1983. Shortfalls in the language were identifi ed, and a new, improved version
of the language, Ada 95, appeared in 1995.

 Today, however, only a small number of systems are developed in Ada. Most
embedded systems are written in C or C ++ . In the last 10 years, there has been
a remarkable increase in the use of object - oriented methodologies, and lan-
guages like C ++ and Java in embedded real - time systems. The real - time aspects
of programming languages are discussed later in Chapter 4 .

 The fi rst commercial operating systems were designed for the early main-
frame computers. IBM developed the fi rst real - time executive, the Basic
Executive, in 1962, which provided diverse real - time scheduling. By 1963, the
Basic Executive II had disk - resident system and user programs.

 By the mid - 1970s, more affordable minicomputer systems could be found
in many engineering environments. In response, a number of important real -
 time operating systems were developed by the minicomputer manufacturers.
Notable among these were the Digital Equipment Corporation (DEC) family
of real - time multitasking executives (RSX) for the PDP - 11, and Hewlett -
 Packard ’ s Real - Time Executive (RTE) series of operating systems for its HP
2000 product line.

 By the late 1970s and early 1980s, the fi rst real - time operating systems
for microprocessor - based applications appeared. These included RMX -
 80, MROS 68K, VRTX, and several others. Over the past 30 years, many
commercial real - time operating systems have appeared, and many have
disappeared.

 A selective summary of landmark events in the fi eld of real - time systems
in the United States is given in Table 1.5 .

 1.4 SUMMARY

 The deep - going roots of real - time systems were formed during the historical
years of computers and computing — before the microprocessor era. However,
the fi rst “ boom ” of real - time systems took place around the beginning of 1980s,
when appropriate microprocessors and real - time operating systems became

www.it-ebooks.info

http://www.it-ebooks.info/

22 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.5. Landmarks in Real - Time Systems History in the United States

 Year Landmark Developer Development Innovations

 1947 Whirlwind IBM Flight simulator Ferrite core
memory
(“ fast ”),
high - level
language

 1957 SAGE IBM Air defense Designed for
real - time

 1958 Scientifi c
1103A

 Univac General purpose Asynchronous
interrupt

 1959 SABRE IBM Airline reservation “ Hub - go - ahead ”
policy

 1962 Basic
Executive

 IBM General purpose Diverse real - time
scheduling

 1963 Basic
Executive II

 IBM General purpose Disk - resident
system/user
programs

 1970s RSX, RTE DEC, HP Real - time
operating
systems

 Hosted by
minicomputers

 1973 Rate -
 monotonic
system

 Liu and
Layland

 Fundamental
theory

 Upper bound on
utilization for
schedulable
systems

 1970s
and
1980s

 RMX - 80,
MROS 68K,
VRTX, etc.

 Various Real - time
operating
systems

 Hosted by
microprocessors

 1983 Ada 83 U.S. DoD Programming
language

 For mission -
 critical
embedded
systems

 1995 Ada 95 Community Programming
language

 Improved version
of Ada 83

 2000s – – Various advances
in hardware,
open - source, and
commercial
system software
and tools

 A continuously
growing range
of innovative
applications
that can be
 “ real - time ”

available (to be used in embedded systems) for an enormous number of elec-
trical, systems, as well as mechanical and aerospace engineers. These practicing
engineers did not have much software or even computer education, and, thus,
the initial learning path was laborious in most fi elds of industry. In those early
times, the majority of real - time operating systems and communications proto-

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 23

cols were proprietary designs — applications people were developing
both system and application software themselves. But the situation started
to improve with the introduction of more effective high - level language
compilers, software debugging tools, communications standards, and, gradu-
ally, also methodologies and associated tools for professional software
engineering.

 What is left from those pioneering years approximately 30 years ago? Well,
the foundation of real - time systems is still remarkably the same. The core
issues, such as the different degrees of real - time and deterministic require-
ments, as well as real - time punctuality, are continuing to set major design
challenges. Besides, the basic techniques of multitasking and scheduling, and
the accompanying inter - task communication and synchronization mechanisms,
are used even in modern real - time applications. Hence, real - time systems
knowledge has a long lifetime. Nonetheless, much fruitful development is
taking place in real - time systems engineering worldwide: new specifi cation and
design methods are introduced; innovative processor and system architectures
become available and practical; fl exible and low - cost wireless networks gain
popularity; and numerous novel applications appear continuously, for example,
in the fi eld of ubiquitous computing.

 We can fairly conclude that real - time systems engineering is a sound and
timely topic for junior - senior level, graduate, and continuing education; and it
offers growing employment potential in various industries. In the coming
chapters, we will cover a broad range of vital themes for practicing engineers
(see Fig. 1.7). While the emphasis is on software issues, the fundamentals of
real - time hardware are carefully outlined as well. Our aim is to provide a
comprehensive text to be used also in industrial settings for new real - time
system designers, who need to get “ up to speed ” quickly. That aim is high-
lighted in this fourth edition of Real - Time Systems Design and Analysis , with
the descriptive subtitle Tools for the Practitioner .

 Figure 1.7. Composition of this unique text from nine complementary chapters.

2. Hardware for
Real-Time Systems

7. Performance
Analysis Techniques

6. Software Design
Approaches

9. Future Visions
on Real-Time

Systems

1. Fundamentals of
Real-Time Systems

3. Real-Time
Operating Systems

4. Programming
Languages for

Real-Time Systems

5. Requirements
Engineering

Methodologies

Real-Time Systems
Design and Analysis+

8. Additional
Considerations for

the Practitioner

www.it-ebooks.info

http://www.it-ebooks.info/

24 FUNDAMENTALS OF REAL-TIME SYSTEMS

 1.5 EXERCISES

1.1. Consider a payroll processing system for an elevator company. Describe
three different scenarios in which the system can be justifi ed as hard,
fi rm, or soft real - time.

1.2. Discuss whether the following are hard, fi rm, or soft real - time systems:

(a) The Library of Congress print - manuscript database system.
(b) A police database that provides information on stolen automobiles.
(c) An automatic teller machine in a shopping mall.
(d) A coin - operated video game in some amusement park.
(e) A university grade - processing system.
(f) A computer - controlled routing switch used at a telephone company

branch exchange.

1.3. Consider a real - time weapons control system aboard a fi ghter aircraft.
Discuss which of the following events would be considered synchronous
and which would be considered asynchronous to the real - time comput-
ing system.

(a) A 5 - ms, externally generated clock interrupt.
(b) An illegal - instruction - code (trap) interrupt.
(c) A built - in - test memory failure.
(d) A discrete signal generated by the pilot pushing a button to fi re a

missile.
(e) A discrete signal indicating “ low on fuel. ”

1.4. Describe a system that is completely nonreal - time, that is, there are no
bounds whatsoever for any response time. Do such systems exist in
reality?

1.5. For the following systems concepts, fi ll in the cells of Table 1.2 with
descriptors for possible events. Estimate event periods for the periodic
events.

(a) Elevator group dispatcher: this subsystem makes optimal hall - call
allocation for a bank of high - speed elevators that service a 40 - story
building in a lively city like Louisville.

(b) Automotive control: this on - board crash avoidance system uses data
from a variety of sensors and makes decisions and affects behavior
to avoid collision, or protect the occupants in the event of an immi-
nent collision. The system might need to take control of the auto-
mobile from the driver temporarily.

1.6. For the real - time systems in Exercise 1.2, what are reasonable response
times for all those events?

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 25

1.7. For the example systems introduced (inertial measurement, nuclear -
 power - plant monitoring, airline reservation, pasta bottling, and traffi c -
 light control) enumerate some possible events and note whether they
are periodic, aperiodic, or sporadic. Discuss reasonable response times
for the events.

1.8. In the response - time example of Section 1.1 , the time from observing a
passenger between the closing door blades and starting to reopen the
elevator door varies between 305 and 515 ms. How could you further
justify if these particular times are appropriate for this situation?

1.9. A control system is measuring its feedback quantity at the rate of 100 μ s.
Based on the measurement, a control command is computed by a heu-
ristic algorithm that uses complex decision making. The new command
becomes available 27 – 54 μ s (rather evenly distributed) after each sam-
pling moment. This considerable jitter introduces harmful distortion to
the controller output. How could you avoid (reduce) such a jitter? What
(if any) are the drawbacks of your solution?

1.10. Reconsider the CPU utilization factor example of Section 1.1 . How short
could the execution period of Task 1, e1 , be made to maintain the CPU
utilization zone no worse than “ questionable ” (Table 1.3)?

 REFERENCES

 D. Abbott , Linux for Embedded and Real - Time Applications , 2nd Edition . Burlington,
MA : Newnes , 2006 .

 T. N. B. Anh and S. - L. Tan , “ Real - time operating systems for small microcontrollers , ”
IEEE Micro , 29 (5), pp. 30 – 45 , 2009 .

 V. Fay - Wolfe et al., “ Real - time CORBA , ” IEEE Transactions on Parallel and Distributed
Systems , 11 (10), pp. 1073 – 1089 , 2000 .

 C. L. Liu and J. W. Layland , “ Scheduling algorithms for multi - programming in a hard
real - time environment , ” Journal of the ACM , 20 (1), pp. 46 – 61 , 1973 .

 J. Martin , Design of Real - Time Computer Systems . Englewood Cliffs, NJ : Prentice - Hall ,
 1967 .

 J. Pasanen , P. Jahkonen , S. J. Ovaska , H. Tenhunen , and O. Vainio , “ An integrated digital
motion control unit , ” IEEE Transactions on Instrumentation and Measurement ,
 40 (3), pp. 654 – 657 , 1991 .

 J. A. Stankovic , M. Spuri , M. Di Natale , and G. C. Buttazzo , “ Implications of classical
scheduling results for real - time systems , ” IEEE Computer , 28 (6), pp. 16 – 25 , 1995 .

 S. Stimler , Real - Time Data - Processing Systems . New York : McGraw - Hill , 1969 .
 P. Vernon , “ Systems in engineering , ” IEE Review , 35 (10), pp. 383 – 385 , 1989 .

www.it-ebooks.info

http://www.it-ebooks.info/

 2
HARDWARE FOR
REAL- TIME SYSTEMS

27

 There is an obvious need for basic hardware understanding among software
and system engineers, particularly when embedded real - time systems are
designed or analyzed. This chapter provides a focused introduction to funda-
mental hardware - related issues from the real - time point of view. Hence, it also
forms a useful overview for hardware - oriented practitioners. In real - time
systems, multi - step and time - variant delay paths from inputs (excitations) to
outputs (responses) create considerable timing and latency challenges that
should be understood and properly managed, for example, when designing
real - time software or integrating software with hardware. Such challenges are
naturally of different complexity and importance depending on the specifi c
application we are dealing with. There is a wide array of large - scale and more
compact real - time applications from global airline reservation and booking
systems to emerging ubiquitous computing. In the same way, the hardware
platforms may vary considerably from networked multi - core workstations to
single 8 - bit or even 4 - bit microcontrollers. While the hardware - specifi c issues
are rather abstract for application programmers developing software for
workstation environments, they are truly concrete for system programmers
and individuals working with embedded microcontrollers or digital signal
processors.

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

28 HARDWARE FOR REAL-TIME SYSTEMS

 Computing hardware together with networking solutions are dynamic fi elds
of research and development; advanced processor architectures — even recon-
fi gurable ones — and high - speed wireless networks are providing exciting
opportunities for product innovators and designers. However, such hardware
advancements make it typically harder to achieve real - time punctuality ; in
many cases, the mean performance is greatly improved, but the statistical
response - time distributions become signifi cantly wider. This is particularly true
with the latest processor architectures, memory hierarchies, distributed system
confi gurations, and ultra - low power constraints. In addition, real - time operat-
ing systems are major sources of similar uncertainty. The increasing uncer-
tainty in response times may degrade the robustness and performance, for
instance, in time - critical control systems with high sampling rates. Of course,
it is always necessary to ask if real - time punctuality is really needed, and the
answer depends solely on the nature of the application — whether it must
behave as a hard, fi rm, or soft real - time system. The different degrees or
strengths of “ real - time ” are defi ned in Chapter 1 .

 In Section 2.1 , we fi rst give an introduction to a basic processor architecture,
the rudimentary von Neumann architecture. Implementations of this reference
architecture are setting a baseline for achievable real - time punctuality. Next,
memory hierarchies and their essential contributions to response - time uncer-
tainties are discussed in Section 2.2 . Section 2.3 presents the widespread
advancements in processor architectures. While in most of the cases, remark-
able performance improvements are attained compared with the reference
architecture, the worst - case real - time punctuality degrades drastically with
multi - stage and multiple pipelines. Peripheral interfacing techniques and inter-
rupt processing alternatives are discussed in Section 2.4 . The emphasis of that
discussion is on latency and priority issues. Section 2.5 compares two comput-
ing platforms, microprocessor and microcontroller, from the applications point
of view. An introductory discussion on fi eldbus systems and time - triggered
architectures is provided in Section 2.6 . Those distributed and heterogeneous
systems may have strict timing specifi cations, which could benefi t from fault -
 tolerant clock synchronization within all nodes. Section 2.7 summarizes the
preceding sections on real - time hardware. Finally, Section 2.8 provides a rich
collection of exercises on real - time hardware.

 While this chapter emphasizes the specifi c real - time characteristics of proces-
sor architectures and peripheral interfacing techniques, more general presenta-
tions on computer architectures and interfacing are available in the “ classic ”
books, Hennessy and Patterson (2007) and Garrett (2000) , respectively.

 2.1 BASIC PROCESSOR ARCHITECTURE

 In the following subsections, we fi rst present a basic processor architecture
and defi ne some principal terminology on computer architectures, instruction
processing, and input/output (I/O) organizations. That introduction forms a

www.it-ebooks.info

http://www.it-ebooks.info/

BASIC PROCESSOR ARCHITECTURE 29

sound basis for latter sections of this chapter devoted to architectural and
other hardware advancements.

 2.1.1 Von Neumann Architecture

 The traditional von Neumann computer architecture, also known as the
Princeton architecture, is used in numerous commercial processors and can be
depicted with only three elements: a central processing unit (CPU), a system
bus, and memory. Figure 2.1 illustrates such an architecture, where the CPU
is connected through the system bus to the memory. In a more detailed view,
the system bus is actually a set of three individual buses: address, data, and
control. Of those parallel buses, the address bus is unidirectional and con-
trolled by the CPU; the data bus is bidirectional and transfers instructions as
well as data; and the control bus is a heterogeneous collection of independent
control, status, clock, and power lines. A processor in a real - time application
has a group of 4, 8, 16, 24, 32, 64, or even more data lines that collectively form
the data bus. On the other hand, the width of the address bus is usually
between 16 and 32 bits. In the basic von Neumann architecture, the I/O regis-
ters are said to be memory mapped, because they are accessed in the same
way as regular memory locations. As an example of the many implementation
options for practical von Neumann computers, the data bus protocol can be
either synchronous or asynchronous; the former providing simpler implemen-
tation structure, and the latter one being more fl exible with respect to different
access times of memory and I/O devices.

 The CPU is the core unit where instruction processing takes place; it con-
sists of a control unit, an internal bus, and a datapath, as illustrated in Figure
 2.2 . Moreover, the datapath contains a multi - function arithmetic - logic unit
(ALU), and a bank of work registers, as well as a status register. The control
unit interfaces to the system bus through a program counter register (PCR)
that addresses the external memory location from which the next instruction
is going to be fetched to an instruction register (IR). Each fetched instruction
is fi rst decoded in the control unit, where the particular instruction code is
identifi ed. After identifying the instruction code, the control unit commands
the datapath appropriately like a Mealy - type fi nite state machine; an operand
is loaded from memory, a specifi c ALU function is activated with a set of

 Figure 2.1. Von Neumann computer architecture without an explicit input/output
element.

CPU Memory

System Bus

www.it-ebooks.info

http://www.it-ebooks.info/

30 HARDWARE FOR REAL-TIME SYSTEMS

operands, and its result is fi nally stored to memory. While integer data can
usually be stored in 1, 2, or 4 bytes, fl oating - point quantities typically occupy
4 or more bytes of memory. The bank of work registers forms a fast interface
buffer between the ALU and memory. Status register ’ s individual bits or fl ags
are updated according to the result of previous ALU operation and current
CPU state. Specifi c status fl ags, such as “ zero ” and “ carry/borrow, ” are used
for implementing conditional branch instructions and extended - precision
additions/subtractions. There is an internal clock and other signals used for
timing and data transfer, and numerous hidden registers that are found inside
the CPU, but are not shown in Figure 2.2 .

 This architectural framework offers several design parameters to be tai-
lored for application - specifi c requirements and implementation constraints:
instruction set, control unit, ALU functions, size of the register bank, bus
widths, and clock rate. Although the von Neumann architecture is used com-
monly in various processors, it is sometimes considered a serious limitation
that instructions and data are accessible only sequentially using the single
system bus. On the other hand, such a straightforward bus structure is compact
to implement.

 2.1.2 Instruction Processing

 Instruction processing consists of multiple consecutive phases taking a varying
number of clock cycles to complete. These independent phases form jointly an

 Figure 2.2. Internal structure of a simplifi ed CPU. The Instruction Access and Data
Access are merged pairwise to form the common address and data buses.

Control Unit

Datapath

Internal Bus

ALU

Registers

PCR

IR

Instruction

Access

Data

Access

Central Processing Unit

Address

Bus

Data

Bus

www.it-ebooks.info

http://www.it-ebooks.info/

BASIC PROCESSOR ARCHITECTURE 31

instruction cycle. In this text, we assume a fi ve - phase instruction cycle: Fetch
instruction, Decode instruction, Load operand, Execute ALU function, and
 Store result. Figure 2.3 shows a timing diagram of the sequential instruction
cycle. The duration of an instruction cycle depends on the instruction itself;
multiplication is typically more time - consuming than a simple register - to -
register move. In addition, not all instructions need active Load, Execute, and/
or Store phases, but those missing phases are either skipped or fi lled with idle
clock cycles.

 Every instruction is represented by its unique binary code that is stored in
the memory, and a stream of such codes forms a machine - language program.
In the following paragraphs, however, we are going to use mnemonic codes
for instructions instead of binary codes. These mnemonic instruction codes are
better known as assembly - language instructions, and they exist just for making
our life easier — the CPU uses binary codes only. To understand the specifi cs
of instruction processing, it is benefi cial to give a brief introduction to assembly -
 language instructions. We can say that an instruction set describes a processor ’ s
functionality. It is also intimately connected to the processor ’ s architecture.

 When dealing with assembly - language programming, we have to know the
existing instruction set, as well as the available addressing modes and work
registers. A generic instruction has the following format:

 op - code operand_1, operand_2, operand_3

 Here, the op - code represents an assembly - language instruction code, which
is followed by three operands. It should be noted that the physical length of
an entire instruction (in bytes or words) depends on the number of operands.
And instructions with integer operands are in general preferable over instruc-
tions with fl oating - point operands. Practical instructions may have one, two,
three, or no operands, depending on their function. Illustrative examples of
such instructions are given below (the mnemonic codes here are typical and
vary from one processor to another):

 INC R1 ; Increment the content of work register R1.
 ADD R1, R2 ; Add the contents of R1 and R2 , and store the sum

to R1.

 Figure 2.3. Sequential instruction cycle with fi ve phases.

Clock Cycles

Fetch

Decode

Load

Execute

Store

www.it-ebooks.info

http://www.it-ebooks.info/

32 HARDWARE FOR REAL-TIME SYSTEMS

SUB R1, R2, R3 ; Subtract the content of R3 from R2 , and store the
result to R1.

NOP ; No operation, just increment the program counter
register.

 Depending on the maximum number of operands, a particular processor is
said to have a one - address form, two - address form, or three - address form. In
the above case, all the operands refer to the contents of certain work registers.
Hence, this addressing mode is called register direct . To make it convenient to
implement common data structures, such as vectors and matrices, some kind
of indirect or indexed addressing mode is usually available. Register indirect
addressing mode uses one of the work registers for storing a pointer (address)
to a data structure located in memory:

ADD R1, [R2] ; Add the content of R1 to the content of a memory
location that is pointed by the address in R2 , and store
the sum to R1.

 In addition to the basic register - direct and register - indirect addressing
modes, every processor offers at least direct and immediate addressing modes
as well:

INC &memory ; Increment the content of memory location memory .
ADD R1, 5 ; Add the content of R1 to number 5, and store the sum

to R1 .

 Real - world processors have often a moderate collection of addressing modes
and a comprehensive set of instructions. This evidently leads to considerable
burden in the instruction - decoding phase, because every instruction with a
different addressing mode is considered as an individual instruction when
the instruction code is identifi ed. For instance, the single ADD instruction is
seen as four individual instructions if the four addressing modes that were
discussed above are available. After identifying the instruction code, the
control unit creates an appropriate command sequence for executing that
instruction.

 There are two principal techniques for implementing the control unit:
microprogramming and hard - wired logic. In microprogramming, every instruc-
tion is defi ned by a microprogram consisting of a sequence of primitive hard-
ware commands, microinstructions, for activating appropriate datapath
functions and complementary suboperations. It is, in principle, straightforward
to construct machine - language instructions by microprogramming, but such
microinstruction sequences tend to use several clock cycles. This may become
an obstacle with complicated instructions, which would require a relatively
large number of clock cycles. Users of commercial processors do not have
access to the microprogram memory, but it is confi gured permanently by those

www.it-ebooks.info

http://www.it-ebooks.info/

BASIC PROCESSOR ARCHITECTURE 33

who implement the instruction set. In processors with either a small instruction
set or a demand for very fast instruction processing, the control unit is regu-
larly implemented using hard - wired logic that consists of combinatorial and
sequential digital circuits. This low - level implementation alternative takes
more space per instruction compared with microprogramming, but it can offer
noticeably faster instruction execution. Nonetheless, it is more diffi cult to
create or modify machine - language instructions when a hard - wired control
unit is used. As we will see later when advanced processor architectures are
discussed, both microprogramming and hard - wired logic are used widely in
modern commercial processors. This situation is mainly an implementation
issue related to the size and complexity of the instruction set.

 In previous paragraphs, we presented the basic instruction - processing prin-
ciple that consists of fi ve consecutive phases and no parallelism. Actually, it
appears to rely on implicit thinking that consecutive instructions in a program
have both internal and mutual dependency, which prevents any kind of
instruction - level parallelism. This unrealistic constraint makes the utilization
rate of ALU resources poor, and, therefore, it is relieved signifi cantly in
advanced computer architectures. Even with this reference architecture, it is
still possible to increase computing performance by using wide internal and
system buses, high clock rate, and a large bank of work registers to reduce the
need for (slower) external memory access. These straightforward enhance-
ments have a direct connection to hardware constraints: desired dimensions
of the integrated circuit and the used fabrication technology. Besides, from the
real - time systems viewpoint (response times and their punctuality), such
enhancements are all well behaving.

 To conserve energy and make software “ green, ” many modern processors
have a slowdown mode. Specifi c instructions can lower the circuit voltage and
clock frequency, thereby slowing the computer and using less power and gen-
erating less heat. The use of this feature is especially challenging to real - time
designers, who must worry about meeting deadlines and the variation in task
execution time.

 2.1.3 Input/Output and Interrupt Considerations

 Every computer system needs input and output ports to bring in excitations
and to feed out corresponding responses. There always exists some interaction
between a computer and its operating environment or users. This relationship
is of paramount importance in embedded systems. In real - time systems,
such I/O actions have a critical requirement; they are often strictly
time - constrained.

 The von Neumann architecture of Figure 2.1 does not contain any I/O
block, but the input and output registers are assumed to exist in the regular
memory space — inside the memory block. Therefore, from the CPU ’ s view-
point, those I/O - specifi c registers form tiny memory segments with only a few
pseudo - memory locations corresponding, for instance, to mode, status, and

www.it-ebooks.info

http://www.it-ebooks.info/

34 HARDWARE FOR REAL-TIME SYSTEMS

data registers of confi gurable I/O ports. With memory - mapped I/O, I/O ports
can be operated through all instructions that have a memory operand. This
could be advantageous when implementing effi cient device drivers.

 Programmed I/O is a commonly used alternative to memory - mapped I/O.
In this scheme, a slightly enhanced bus architecture offers a separate address
space for I/O registers; the standard system bus is still used as an interface
between the CPU and I/O ports, but now there is an additional control signal
 “ Memory/IO ” for distinguishing between memory and I/O accesses. Moreover,
separate IN and OUT instructions are needed for accessing the I/O registers.
There are different practices for realizing such instructions, but the following
example shows a typical case where a certain work register is used for keeping
the I/O data:

 IN R1, & port ; Read the content of port and store it to R1.
 OUT & port, R1 ; Write the content of R1 to port.

 In low - end microcontrollers with a small address space, the main advantage
of programmed I/O is the saving of limited address space for memory com-
ponents only. On the other hand, in high - end microcontrollers and powerful
microprocessors, it is benefi cial to place the slower I/O ports in a different
address space than the faster memory components. In that way, no compro-
mises are needed when specifying the speed of system bus. Figure 2.4 depicts
the enhanced von Neumann architecture with separate memory and I/O
elements.

 An interrupt is an external hardware signal that initiates an event. Interrupts
are used to signal that an I/O transfer was completed or needs to be initiated.
While I/O ports are crucial for any computer system, it can be stated that
interrupts are crucial at least in any hard real - time system. Hardware inter-

 Figure 2.4. Von Neumann architecture with slightly enhanced system bus for pro-
grammed input/output.

CPU Memory

Enhanced

System Bus

Input/Output

www.it-ebooks.info

http://www.it-ebooks.info/

BASIC PROCESSOR ARCHITECTURE 35

rupts make it possible to give prompt service to important events occurring in
the operating environment. The interrupt principle works fi ne as long as the
number of (nearly) simultaneous interrupt requests is very low and the cor-
responding interrupt processing times are very short. Therefore, it should be
carefully planned which devices or sensors are given a right to interrupt. Only
the most time - critical events deserve such a privilege, as other events could
possibly be recognized by periodic polling instead. In general, there exist two
types of hardware interrupts: maskable interrupts and nonmaskable interrupts.
Maskable interrupts are commonly used for such events that occur during
regular operating conditions; and nonmaskable interrupts are reserved for
extremely critical events that require immediate action, such as an alarm of a
rapidly approaching power loss.

 Although interrupts are often associated with truly prompt service, there
are a few latency elements in the interrupt recognition and service process.
These obviously reduce the real - time punctuality and make the response times
somewhat nondeterministic. A typical interrupt service process is as follows:

 • The interrupt - request line is activated.
 • The interrupt request is latched by the CPU hardware (∼).
 • The processing of the ongoing instruction is completed (∼).
 • The content of program counter register (PCR) is pushed to stack.
 • The content of status register (SR) is pushed to stack.
 • The PCR is loaded with the interrupt handler ’ s address.
 • The interrupt handler is executed (∼).
 • The original content of SR is popped from stack.
 • The original content of PCR is popped from stack.

 The three specifi c steps of this interrupt - service process, denoted with a tilde,
are sources of variable - length latency. While interrupt - request latching takes
often no more than a single clock cycle, it may require any time between zero
and the maximum length of the instruction cycle to complete the ongoing
instruction. And the execution of the interrupt handler code needs naturally
multiple instruction cycles. Solely in rare instances, certain block - oriented
instructions, such as memory - to - memory block moves that take a great deal
of time to complete, may need to be interruptible to reduce interrupt latency.
However, interrupting such instructions could potentially lead to serious data
integrity problems. Latency uncertainties are becoming even more severe with
the advancement of computer and memory architectures. Thus, it can be con-
cluded that the rudimentary von Neumann architecture with purely sequential
instruction processing sets a baseline for real - time punctuality from the hard-
ware point of view.

 Processors provide two instructions for enabling and disabling maskable
interrupts, which we will call enable priority interrupt (EPI) and disable prior-
ity interrupt (DPI), respectively. These are atomic instructions that should,

www.it-ebooks.info

http://www.it-ebooks.info/

36 HARDWARE FOR REAL-TIME SYSTEMS

however, be used cautiously in real - time applications, because real - time punc-
tuality may be severely compromised when interrupts are disabled. It is recom-
mended to allow the use of EPI and DPI by system programmers only, and
deny their usage totally from application programmers.

 Finally, it should be noted that not all interrupts are initiated externally, but
the CPU may have a special instruction for initiating software interrupts itself.
Software interrupts are convenient when creating operating system services
and device drivers, for instance. In addition, internal interrupts, or traps, are
generated by execution exceptions, such as arithmetic overfl ow, divide - by - zero,
or illegal instruction code.

 2.2 MEMORY TECHNOLOGIES

 An understanding of central characteristics of current memory technologies
is necessary when designing and analyzing real - time systems. This is particu-
larly important, for example, with such embedded applications where the CPU
utilization factor is planned to remain within the “ dangerous ” zone of 83 – 99%
(see Chapter 1). In those almost time - overloaded systems, the worst - case
access latency of hierarchical memory architecture may cause aperiodically
missed deadlines with considerable delay. The following subsections contain
behavioral and qualitative discussions that are slanted toward software and
system engineers rather than hardware designers. A thorough treatment of
memories and memory systems for embedded applications is available in
Peckol (2008) .

 2.2.1 Different Classes of Memory

Volatile RAM versus nonvolatile ROM is the traditional distinction between
the two principal groups of semiconductor memory, where RAM states for
random - access memory and ROM for read - only memory. For years, this dis-
tinction was crisp, as long as the ROM devices were purely of such type that
their contents were “ programmed ” either during the manufacturing process
of the memory chip or at the application factory. Today, the borderline between
RAM and ROM groups is no longer that clear because the commonly used
ROM classes, EEPROM and Flash, can be rewritten without a special pro-
gramming unit; they are thus in - system programmable. Although there are
many different classes of memory within the two main groups, only the most
important ones are introduced below. Figure 2.5 depicts the ordinary interface
lines of a generic memory component.

 Electrically erasable programmable ROM (EEPROM) and its close rela-
tive Flash are based on the dynamic fl oating - gate principle, and they both can
be rewritten in a similar way as RAM devices. However, the erasing and
writing process of those ROM - type devices is much slower than in the case of
RAM; the rewrite cycle of an EEPROM can be up to 100 times slower than

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY TECHNOLOGIES 37

its corresponding read cycle. Moreover, each memory cell can typically be
rewritten for 100,000 – 1,000,000 times only, because the stressful rewriting
process wears the memory cells of EEPROM and Flash components. The basic
1 - bit memory cells are confi gured in an array to form a practical memory
device. While individual memory locations can be rewritten sparsely with
EEPROMs, Flash memories can only be erased in large blocks. Thus, these
rewritable ROMs, which may hold their data for approximately 10 years, are
by no means rivals of RAM devices, but they are intended for different pur-
poses. EEPROMs are normally used as a nonvolatile program and parameter
storage, and Flash memory is used for storing both application programs and
large data records. The nonrewritable mask - programmed ROM is still used as
a low - cost program memory in certain standardized applications with a very
large production volume. Finally, it should be mentioned that ROM - type
memories are slower to read than typical RAM devices. Therefore, in many
real - time applications, it may be viable or even necessary to run programs
from faster RAM instead of ROM. Another common practice is to load the
application program from a movable Flash memory card (or a USB memory
stick) to RAM memory for execution. In that way, the Flash device behaves
as a rugged and low - cost mass memory for embedded systems.

 There are two classes of RAM devices: static RAM (SRAM) and dynamic
RAM (DRAM). Either or both of these classes are used also in real - time
systems. A single SRAM - type memory cell needs typically six transistors to
implement a bistate fl ip - fl op structure, while a DRAM cell can be imple-
mented with a single transistor and capacitor only. Hence, if we compare
memories of same size and similar fabrication technology, SRAMs are, by their
structure, more space intensive and more expensive, but faster to access, and
DRAMs are very compact and cheaper, but slower to access. Due to an inher-
ent charge leakage in their storage capacitors, DRAMs must be refreshed
regularly to avoid any loss of data; the refresh period should be no slower than
3 – 4 ms. The refreshing circuitry increases logically the dimensions of DRAM

 Figure 2.5. Interface lines of a generic memory component (Write is not used with
ROM devices). The memory capacity is 2 m + 1 × (n + 1) bits.

Generic MemoryAddress Bus

A0–Am

Data Bus

D0–Dn

Read

(Write) Chip Select

m + 1
2 × (n + 1)

Bits

www.it-ebooks.info

http://www.it-ebooks.info/

38 HARDWARE FOR REAL-TIME SYSTEMS

chips, but that is not usually a critical issue, because individual DRAM devices
contain much more memory than SRAM devices, and, thus, the relative pro-
portion of refreshing circuitry is tolerable. An analogous control circuitry
exists also in EEPROMs and Flash memories for managing the higher - voltage
erase - and - write process.

 When designing a RAM subsystem for some real - time application, there is
a basic rule of thumb that if you need a large memory, then use DRAM; but
if your memory needs are no more than moderate, SRAM is the recommended
alternative — particularly with small embedded systems. Nevertheless, the
practice is not always that straightforward, because there may exist the so -
 called CPU – memory gap — “ the increasingly large disparity between the
memory latency and bandwidth required to execute instructions effi ciently
versus the latency and bandwidth the external memory system can actually
deliver ” (Hadimioglu et al., 2004). In other words, the CPU ’ s fastest bus cycle
may be (much) shorter than the minimum access time of available memory
components. If that is the case, the CPU cannot run at full speed when access-
ing the slower memory. This creates a CPU – memory bottleneck in high -
 performance applications; and it can be relieved by hierarchical memory
organizations. In lower - performance applications, the possible confl ict can be
overcome simply by extending the length of bus cycle to match it to the access
time specifi cations of memory components.

 2.2.2 Memory Access and Layout Issues

 Memory access principles are intimately connected to the specifi c computing
hardware. Nonetheless, they cannot be ignored even by real - time software or
system engineers. It is not suffi cient to be aware of the CPU ’ s architecture and
peak performance only, because of the CPU – memory bottleneck introduced
above. Quite often, the system bus is not operated at its full speed due to limi-
tations set by the memory access time. This is affecting negatively to the
response times of a real - time system. Memory - read access time is the essential
time delay between enabling an addressed memory component and having
the requested data available on the data bus. This is illustrated in the timing
diagram of Figure 2.6 , which uses the signals of a generic memory component
(Fig. 2.5). Memory - write access time is defi ned correspondingly. The typical
read and write cycles contain handshaking between the CPU and the memory
device. And the time to complete the handshaking is dependent on the electri-
cal characteristics of the CPU, system bus, and memory device.

 When determining the length of a suitable bus cycle, we need to know the
worst - case access times of memory and I/O ports, as well as the latencies of
address decoding circuitry and possible buffers on the system bus. With a
synchronous bus protocol, it is possible to add wait states (or additional clock
cycles) to the default bus cycle, and adapt it dynamically to the possibly dif-
ferent access times of memory and I/O components. Asynchronous system
buses do not need such wait states, because the data transfer between CPU

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY TECHNOLOGIES 39

and memories or I/O ports is based on a handshaking - type protocol. Both bus
protocols are used in commercial processors.

 Another critical constraint may sometimes be the overall power consump-
tion of the real - time hardware, which is growing with increasing CPU clock
rate. From that point of view, the clock rate should be as low as possible and
memories as slow as possible. Thus, the appropriate bus - cycle length is an
application - specifi c parameter — maybe a critical one in battery - powered
embedded systems.

 To the real - time software engineer, the memory and I/O layout or map is
of great importance. Consider, for instance, a 16 - bit embedded microprocessor
that supports a 32 - bit address space organized, as shown in Figure 2.7 . These
starting and ending addresses are arbitrary, but could be representative of a

 Figure 2.6. Timing diagram of a memory - read bus cycle. The angles “ < > ” shown in the
data and address buses indicate that multiple lines with different logic states are
involved during this period.

Address Bus
A0–Am

Data Bus
D0–Dn

Read

Write

Chip Select

Memory-Read Access Time

Clock Cycles

 Figure 2.7. Typical memory map showing allocated regions (not to scale). Note, a large
proportion of the memory space is not allocated for any specifi c purpose.

Program

Configuration

Data

Memory-Mapped I/O

00000000

0001FFFF

00040000

00047FFF

00080000

0008FFFF

FFFFF000

FFFFF7FF

ROM

EEPROM

SRAM

I/O Registers

www.it-ebooks.info

http://www.it-ebooks.info/

40 HARDWARE FOR REAL-TIME SYSTEMS

particular embedded system. For example, such a map might be consistent with
the memory organization of an elevator controller.

 In our imaginary elevator controller, the executable program code resides
in memory addresses 00000000 through 0001FFFF hexadecimal . This standard
control system has such a high production volume that it is practical to use
mask - programmed ROM devices (128 K words). Miscellaneous confi guration
data, possibly related to various factory settings and installation - specifi c
parameters, are stored at locations 00040000 through 00047FFF in EEPROM
(32 K words) that can be rewritten during service or maintenance visits.
Locations 00080000 through 0008FFFF are SRAM memory (64 K words), and
they are used for the real - time operating system ’ s data structures and general -
 purpose data storage. Finally, the upper locations FFFFF000 through FFFFF7FF
(2 K memory locations) contain addresses associated with interface modules
that are accessed through memory - mapped I/O, such as parallel inputs and
outputs for various status and command signals; fi eldbus connections for serial
communication with the group dispatcher and car computer; RS - 232C inter-
face for a service terminal; and real - time clock and timer/counter functions.
This memory map is fi xing the freely relocatable addresses of the system and
application software to the physical hardware environment.

 Before going to the important discussion on hierarchical memory architec-
tures, it is benefi cial to bring up some categories of DRAM according to the
mode of data access. While the basic DRAM device is meant to be randomly
accessible, the different DRAM modules offer signifi cant performance
improvement in special data - access modes that are designed for rapid access
of consecutive memory locations. These types of devices utilize such techniques
as row access, access pipelining, synchronized interface, and access interleav-
ing, for narrowing the CPU – memory gap. These advanced modes are highly
valuable when the memory organization is hierarchical, and fast loading of
data blocks to cache memory from the DRAM - based main memory is needed.
On the other hand, the remarkable speed improvement is not actually realized
if advanced DRAM modules are accessed randomly. Thus, the DRAM modules
are used mostly in workstation environments, where large main memories are
needed. Below is a sampled evolution path of DRAM modules with advanced
access modes in their order of appearance (from the late eighties to 2007):

 • Fast page mode (FPM) DRAM
 • Extended data output (EDO) DRAM
 • Synchronous DRAM (SDRAM)
 • Direct Rambus DRAM (DRDRAM)
 • Double data rate 3 synchronous DRAM (DDR3 SDRAM)

 In such real - time systems, which are implemented on regular offi ce or more
reliable industrial PCs, the advanced DRAM modules are naturally used at
the level of main memory. Typical applications include a centralized monitor-

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY TECHNOLOGIES 41

ing system for a bank of elevators and a distributed airline reservation and
booking system. Under specifi c circumstances, the most advanced DRAM
modules may offer minimum access times comparable with those of fast
SRAMs.

 2.2.3 Hierarchical Memory Organization

 The CPU – memory gap started to build up gradually in the early 1980s, and
already in the nineties, the CPU clock rates were increasing 60% per year,
while the access times of DRAM modules were improving less than 10% per
year. Hence, the troublesome performance gap was continuously widening. A
somewhat similar situation existed also with high - performance microcon-
trollers and digital signal processors, although their smaller memory subsys-
tems are typically assembled of SRAMs and ROM - type devices. A vast
majority of low - end microcontrollers, however, do not suffer the CPU – memory
bottleneck at all, because their clock rates are no higher than a few tens of
MHz. But in the early 2000s, the increase of CPU clock rates was practically
saturated due to the overly high power consumption and severe heat problems
associated with multi - GHz processors. While the fastest possible memory is
desired in real - time systems, often, cost dictates the technology that can be
used.

 An effi cient way to relieve the CPU – memory gap is to implement a cache
memory between the main memory and the CPU. Cache memories rely on
the locality of reference principle. Locality of reference refers to the address
distance in memory between consecutive code or data accesses. If the code or
data fetched tends to reside close in memory, then the locality of reference is
high. Conversely, when programs execute instructions that are scattered local-
ity of reference is low. Well - written programs in procedural languages tend to
execute sequentially within code modules and within the body of instruction
loops, and hence have usually a high locality of reference. While this is not
necessarily true for object - oriented code, problematic portions of such code
can often be linearized. For example, arrays tend to be stored in blocks in
sequence, with elements commonly accessed sequentially. When software is
executed in a linear sequential fashion, instructions are in sequence and there-
fore are stored in nearby memory locations, thus yielding a high locality of
reference.

 Locality of reference forms a powerful basis for hierarchical memory orga-
nizations, which can effectively utilize the advanced DRAM modules with fast
block - access capabilities for loading of sequential instruction codes or data
from DRAM (main memory) to SRAM (cache). A cache is a relatively small
storage of fast memory where frequently used instructions and data are kept.
The cache also contains a swiftly accessible list of memory blocks (address
tags) that are currently in the cache. Each memory block can hold a small
number of instruction codes or data, typically no more than a few hundred
words.

www.it-ebooks.info

http://www.it-ebooks.info/

42 HARDWARE FOR REAL-TIME SYSTEMS

 Figure 2.8. Hierarchical memory organization with two cache levels, L1 and L2,
between the CPU and main memory.

CPU

Cache L1

Cache L2

Main Memory

 The basic operation of the cache is as follows. Suppose the CPU requests the
content of a DRAM location. First, the cache controller checks the address tags
to see if the particular location is in the cache. If present, the data is immediately
retrieved from the cache, which is signifi cantly faster than a fetch from main
memory. However, if the needed data is not in the cache, the cache contents
must be written back and the required new block loaded from main memory to
the cache. The needed data is then delivered from the cache to the CPU, and the
address tags are updated correspondingly by the cache controller.

 Cache design considerations include: access time, cache size, block size,
mapping function (e.g., direct - mapped; set associative; fully associative), block
replacement algorithm (e.g., fi rst - in - fi rst - out , FIFO ; least - recently used , LRU),
write policy (e.g., should altered data be written immediately through or wait
for block replacement), number of caches (e.g., there can be separate data and
instruction caches, or an instruction cache only), and number of cache levels
(typically 1 – 3). A thorough discussion on these design considerations is avail-
able in Patterson and Hennessy (2009) . Figure 2.8 illustrates a three - level
memory hierarchy with cache levels L1 and L2.

 Example: Performance Estimation of Cache Structures

 What performance benefi t could a practical cache provide? Consider a two -
 level memory hierarchy with a single 8 K cache built inside the CPU.
Assume a noncached memory reference costs 100 ns, whereas an access
from the cache takes only 20 ns. Now assume that the cache hit ratio is 73%
(and miss ratio 27%). Then the average access time would be

 τAVG ns ns ns_ . . .1 0 73 20 0 27 100 42= ⋅ + ⋅ ≈

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURAL ADVANCEMENTS 43

 Because access time for cache is faster than for main memory, performance
benefi ts are a function of the cache hit ratio, that is, the percentage of time
that the needed instruction code or data is found in the cache. A low hit ratio
can result in worse performance than if the cache did not actually exist. That
is, if data required is not found in the cache, then some cache block needs to
be written back (if any data were altered) and replaced by a memory block
containing the required data. This overhead can become signifi cant when the
hit ratio is poor. Therefore, a low hit ratio can degrade performance. Hence,
if the locality of reference is low, a low number of cache hits would be expected,
degrading real - time performance.

 Another drawback of using a cache is that the effective access time is non-
deterministic; it is impossible to know a priori what the cache contents and
hence the overall access time will be. In the above two examples, the effective
access time varies between 20 and 100 ns with averages 42 and 32 ns, respec-
tively. Thus, response times in a real - time system with hierarchical memory
organization contain a cache - originated element of nondeterminism. In mul-
titasking real - time systems, frequent switching between different software
tasks as well as aperiodically serviced interrupts, do temporarily violate the
locality of reference leading to high probability of cache misses.

 In some embedded processors, it is possible to load a time - critical code
sequence permanently to the instruction cache, and thus reduce the possible
nondeterminism in its execution time. This is a potential option in many digital
signal processing, control, and image processing applications requiring strict
real - time punctuality.

 2.3 ARCHITECTURAL ADVANCEMENTS

 CPU architectures have evolved remarkably since the introduction of the fi rst
microprocessors. The limitations of the sequential instruction cycle of the basic
von Neumann architecture have caused various architectural enhancements
to evolve. Most of these enhancements are built on the assumption of
high locality of reference that is valid most of the time with a high probability.
While the steady development of design automation and integrated - circuit
technologies has made it possible to design and integrate more and more
functionality to a single chip, architectural innovators have exploited this
capability to introduce new forms of parallelism into instruction processing.

 Next, we consider a three - level memory hierarchy with an 8 K upper
level cache built inside the CPU and an external 128 K lower level cache.
Assume the access times of 20 and 60 ns, respectively, and the cost of non-
cached memory reference is 100 ns. The upper level hit rate is again 73%,
and the lower level hit rate is 89%. Now the average access time would be

 τAVG ns ns 100 ns ns_2 0 73 20 0 27 0 89 60 0 27 0 11 32= ⋅ + ⋅ ⋅ + ⋅ ⋅ ≈

www.it-ebooks.info

http://www.it-ebooks.info/

44 HARDWARE FOR REAL-TIME SYSTEMS

Thus, an understanding of advanced computer architectures is essential to the
real - time systems engineer. While it is not our intent to provide a comprehen-
sive review of computer architectures, a discussion of the most important
issues is necessary.

 In Section 2.1 , we presented a sequential instruction cycle: Fetch instruction
(F), Decode instruction (D), Load operand (L), Execute ALU function (E),
and Store result (S). That instruction cycle contains two kinds of memory
references, instruction fetching and data loading/storing. In the classical von
Neumann architecture of Figure 2.1 or 2.4 , the F and L/S phases are not inde-
pendent of each other, because they are sharing the single system bus. Therefore,
in pipelined architectures to be discussed shortly, it would be benefi cial to have
separate buses for instructions and data to be able to perform simultaneous F
and L/S phases. On the other hand, two parallel address/data buses occupy a
sizeable chip area — but that is the price to be paid for the improved perfor-
mance. Such architecture is called the Harvard architecture, and it became fi rst
popular in digital signal processors. Many modern CPUs comprise both
Harvard and von Neumann characteristics: the separate on - chip instruction
and data caches have a Harvard - type interface, while the common off - chip
cache memory is interfaced through a single system bus. Thus, this kind of
hybrid architecture is internally Harvard but externally von Neumann (i.e.,
Princeton).

 In the Harvard architecture, it is possible to have different bus widths for
instruction and data transfer. For example, the instruction bus could be 32 bits
wide and the data bus only 16 bits wide. Moreover, the instruction - address bus
could have 20 bits and the data - address bus 24 bits. That would mean 2 M
words of instruction memory and 16 M words of data memory. Hence, the
architectural designer has fl exibility when specifying the bus structures. Figure
 2.9 depicts the Harvard architecture with parallel instruction and data access
capabilities. From the real - time systems viewpoint, the basic Harvard architec-
ture represents a well - behaved enhancement; it does not introduce any addi-

 Figure 2.9. Harvard architecture with different bus widths.

CPU

Instruction

Memory

Instruction-Address
IA0–IAj

Data

Memory

Instructions
ID0–IDk

Data-Address
DA0–DAm

Data
DD0–DDn

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURAL ADVANCEMENTS 45

tional latency or nondeterminism to the instruction cycle. It could even be seen
as a potential relief to the CPU – memory bottleneck; but that is not the way
the Harvard architecture is presently utilized.

 Today, both the Harvard and von Neumann architectures include a number
of enhancements increasing the level of parallelism in instruction processing.
The most important architectural enhancements are discussed below. In spite
of their great average - case benefi ts, they typically degrade the timing predict-
ability and worst - case performance as discussed in Thiele and Wilhelm (2004) .

 2.3.1 Pipelined Instruction Processing

 Pipelining imparts implicit execution parallelism in the different phases of
processing an instruction, and hence aims to increase the instruction through-
put. Suppose execution of an instruction consists of the fi ve phases discussed
above (F – D – L – E – S). In the sequential (nonpipelined) execution suggested in
Section 2.1 , one instruction can be processed through a single phase at a time.
With pipelining, multiple instructions can be processed in different phases
simultaneously, improving processor performance correspondingly.

 For example, consider the fi ve - stage pipeline of Figure 2.10 . The upper
picture shows the sequential execution of the fetch, decode, load, execute, and
store phases of two instructions, which requires 10 clock cycles. Beneath that
sequence is another set of the same two instructions, plus four more instruc-
tions, with overlapping processing of the individual F – D – L – E – S phases. This
pipeline works perfectly if the instruction phases are all of equal length, and
every instruction needs the same amount of time to complete. If we assume
that one pipeline stage takes one clock cycle, the fi rst two instructions are
completed in only six clock cycles, and the remaining instructions are com-
pleted within the 10 clock cycles. Under ideal conditions with a continuously
full pipeline, a new instruction is completed at the rate of one clock cycle. In
general, the best possible instruction completion time of an N - stage pipeline
is 1/ N times the completion time of the nonpipelined case. Therefore, the ALU

 Figure 2.10. Pipelined instruction processing in a fi ve - stage pipeline.

Clock Cycles

F D L E S
F D L E S

F D L E S
F D L E S

F D L E S
F D L E S

F D L E S
F D L E S

www.it-ebooks.info

http://www.it-ebooks.info/

46 HARDWARE FOR REAL-TIME SYSTEMS

and other CPU resources are utilized more effectively. It should be mentioned,
however, that pipeline architecture requires buffer registers between the dif-
ferent stages of instruction processing. That causes an additional delay to a
pipelined instruction cycle compared with the nonpipelined cycle, where tran-
sitions from one phase to another may be direct without intermediate buffer
writing and reading.

 Another disadvantage of pipelining is that it can actually degrade perfor-
mance in certain situations. Pipelining is a form of speculative execution in
that the instructions that are prefetched are assumed to be the next sequential
instructions. Speculative execution works well if the locality of reference
remains high. If an instruction in the pipeline is a conditional branch instruc-
tion, the succeeding instructions in the pipeline may not be valid, and the
pipeline must be fl ushed (the pipeline registers and fl ags are all reset) and
refi lled one stage at a time. To avoid probabilistically the negative effect of
pipeline fl ushing/refi lling, many processors have advanced branch prediction
and speculation capability. A similar, but unpredictable, situation arises with
external interrupts. In addition, data and input dependencies between con-
secutive machine - language instructions can slow pipeline fl owthrough by
requiring temporary stalls or wasted clock cycles.

 Higher - level pipelines, or superpipelines, can be constructed if the instruc-
tion cycle is decomposed further. For example, a six - stage pipeline can be
constructed, consisting of a fetch stage, two decode stages (needed to support
indirect addressing modes), an execute stage, a write - back stage (which fi nds
completed operations in the buffer and frees corresponding functional units),
and a commit stage (in which the validated results are written back to memory).
In practice, there exist superpipelines with much more than 10 stages in high -
 performance CPUs with GHz - level clock rates. Superpipelines with short
stage - lengths offer, in principle, short interrupt latencies. However, that poten-
tial benefi t is typically buried behind unavoidable cache misses and necessary
pipeline fl ushing/refi lling when the locality of instruction reference is severely
violated. Extensive pipelining is thus a source of signifi cant nondeterminism
in real - time systems.

 2.3.2 Superscalar and Very Long Instruction Word Architectures

 Superscalar architectures further increase the level of speculation in instruc-
tion processing. They have at least two parallel pipelines for improving the
instruction throughput. One of those pipelines may be reserved for fl oating -
 point instructions only, while all other instructions are processed in a separate
pipeline or even in multiple pipelines. Figure 2.11 illustrates the operation of
two superscalar pipelines with fi ve stages. Those pipelines are supported with
highly redundant ALU and other hardware resources. Theoretically, the
instruction completion time in a K - pipeline architecture with N - stage pipelines
may be as short as 1/(K · N) times the completion time of the nonpipelined
case — hence more than one instruction may be completed in a single clock

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURAL ADVANCEMENTS 47

cycle. Such a parallel scheme would work fi ne if the executed instructions were
fully independent of each other and the branch prediction ability was perfect.
Nonetheless, that is not usually the case with real - world programs, and, there-
fore, the average utilization rate of parallel resources is far from 100%. If
compared with an architecture with a single pipeline or superpipeline, a multi -
 pipeline CPU has even a greater variance between the best - and worst - case
performances.

 Superscalar CPUs are complex integrated - circuit implementations, not just
because they have extensive functional redundancy, but also due to the sophis-
ticated interdependency checking and dispatching logic. The hardware com-
plexity may still increase if out - of - order instruction execution is used for
maximizing the utilization rate of expensive ALU resources. Thus, superscalar
processors are mainly used in workstations and nonreal - time applications. It
is diffi cult to build a deterministic embedded system on a superscalar platform,
although it could offer a very high peak performance.

 Very long instruction word (VLIW) architecture is similar to the supersca-
lar architecture in the sense that they both have extensive hardware redun-
dancy for supporting parallel processing of instructions. However, there is a
fundamental difference in the process of checking the interdependency
between consecutive instructions and dispatching them optimally to appropri-
ate functional units. While the superscalar architecture relies completely on
hardware - based (on - line) dependency checking and dispatching, the VLIW
architecture does not need any hardware resources for those purposes. The
high - level language compilers of VLIW processors handle both the depen-
dency checking and dispatching tasks offl ine, and very long instruction codes
(typically at least 64 bits) are composed of multiple regular instruction codes.
Since only mutually independent instructions can be combined, any two
accessing the data bus cannot. In VLIW architectures, there is no online specu-
lation in instruction dispatching, but the instruction - processing behavior is well
predictable.

 Figure 2.11. Superscalar architecture with two parallel instruction pipelines.

Clock Cycles

F D L E S
F D L E S

F D L E S
F D L E S

F D L E S
F D L E S

F D L E S
F D L E S

www.it-ebooks.info

http://www.it-ebooks.info/

48 HARDWARE FOR REAL-TIME SYSTEMS

 It should be noted, however, that the effi ciency of VLIW architecture
depends solely on the capabilities of the advanced compiler and the properties
of the native instruction set. Compiler support for VLIW processors is studied
in Yan and Zhang (2008) . The compiler ’ s code - generation process becomes
very challenging with a number of parallelization goals and inter - dependency
constraints. Therefore, the application programmer should assist the compiler
in the diffi cult dispatching problem by tailoring the critical algorithms for the
specifi c VLIW platform. In general, programs written for one VLIW processor
are rather poorly transferable to other VLIW environments. While superscalar
CPUs are used in general - purpose computing applications, VLIW CPUs are
usually customized for some specifi c class of applications, such as multimedia
processing, and they are used even in real - time systems.

 2.3.3 Multi - Core Processors

 As an architectural innovation, a processor with multiple interconnected cores
or CPUs is nothing new. For a long time, such parallel architectures were
considered special ones until the introduction of general - purpose multi - core
processors in the early years of 2000. Those special architectures were used
for different number - crunching applications, such as fi nite - element modeling
or multimodal optimization using population - based algorithms. Today, multi -
 core processors are used in high - end real - time systems with high computa-
tional burden or strict requirements for task concurrency.

 What are the driving forces behind the substantial multi - core develop-
ments? By the early 2000s, it became evident that the development of CPU
architectures could no more be dependent on the continuously growing clock
rates. Superpipelined architectures with 20 or even 30 pipeline stages assumed
clock rates at the multi - GHz level. On the other hand, such very high clock
frequencies greatly increase the power consumption of CPU chips, and that
leads unavoidably to serious problems with the heat generated. It is a major
challenge to keep the high - speed chips cool enough with costly and space -
 hungry cooling accessories. Without adequate cooling, those chips would
destroy themselves in a short time. In addition, sub - ns clock periods create
diffi cult data synchronization problems within large integrated circuits. Hence,
there appears to be a consensus among the leading CPU manufactures to
maintain the highest clock rates below 2 – 3 GHz and put emphasis on the
development of multi - core architectures. With the continuing evolution of
integrated - circuit fabrication technology, it is still possible to increase the
number of gate equivalents on state - of - the - art processor chips. Currently, the
term “ multi - core ” refers to processors with two (dual - core), four (quad - core),
or eight identical cores, but the number of parallel cores is going to increase
along with the advancement of integrated - circuit technology.

 In multi - core processors, each individual core has usually a private cache
memory, or separate instruction and data caches. These small on - chip caches
are interfaced to a larger on - chip cache memory that is common to all cores.

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURAL ADVANCEMENTS 49

A representative multi - core architecture is depicted in Figure 2.12 . An inte-
grated multi - core processor needs a smaller footprint on the printed circuit
board than a comparable implementation with multiple separate cores would
require, which is quite an advantage in many applications.

 The introduction of standard multi - core processors presents opportunities
for parallel processing to a huge group of research and development (R & D)
engineers in nearly all application domains. Nonetheless, serious R & D work
leading to novel contributions in any parallel environment requires a complete
collection of software tools for supporting the entire development process, and
for creating multitasking real - time systems that could use the whole potential
of true task concurrency. Moreover, software engineers should learn to design
their algorithms for parallelism; otherwise, the potential of multi - core archi-
tectures remains largely unused. Manual load balancing between different
cores is an important task that needs both human expertise and appropriate
tools for performance analysis.

 It is time consuming to port existing single - CPU software effi ciently to a
multi - core environment. This challenge will certainly reduce the application
companies ’ interests in switching to multi - core processors in matured real - time
applications, like elevator bank control or cell phone exchanges, which could
undoubtedly benefi t from such switching.

 The nondeterministic instruction processing in multi - core architectures
is caused primarily by the underlying memory hierarchy, pipelining, and pos-
sible superscalar features. On the other hand, the opportunity for task concur-
rency is certainly of great interest to engineers developing real - time systems.
Lastly, it should be remembered that punctual and fast inter - core communica-
tion is a key issue when developing high - performance parallel systems. The

 Figure 2.12. Quad - core processor architecture with individual on - chip caches and a
common on - chip cache (“ I ” = instruction and “ D ” = data).

Common I/D Cache

Core 1

I & D
Caches

Core 2 Core 3 Core 4

System Bus

Internal Cache Bus

I & D
Caches

I & D
Caches

I & D
Caches

Quad-Core Processor

www.it-ebooks.info

http://www.it-ebooks.info/

50 HARDWARE FOR REAL-TIME SYSTEMS

communications channel is a well - known bottleneck in multi - processor
systems. We will return to the parallelization challenges in Chapter 7 , where
Amdahl ’ s law is presented. It establishes a theoretical foundation for estimat-
ing the speedup when the number of parallel cores increases. The limit of
parallelism in terms of speedup appears to be a software property, not a hard-
ware one.

 2.3.4 Complex Instruction Set versus Reduced Instruction Set

 Complex instruction set computers (CISC) supply relatively sophisticated
functions as part of the native instruction set. This gives the high - level lan-
guage compiler a rich variety of machine - language instructions with which to
produce effi cient system or application code. In this way, CISC - type processors
seek to increase execution speed and minimize memory usage. Moreover, in
those early years, when assembly language still had an important role in real -
 time programming, CISC architectures with sophisticated instructions reduced
and simplifi ed the programmer ’ s coding effort.

 The traditional CISC philosophy is based on the following nine
principles:

 1. Complex instructions take multiple clock cycles.
 2. Practically any instruction can reference memory.
 3. No instruction pipelining.
 4. Microprogrammed control unit.
 5. Large number of instructions.
 6. Instructions are of variable format and length.
 7. Great variety of addressing modes.
 8. Single set of work registers.
 9. Complexity handled by the microprogram and hardware.

 Besides, obvious memory savings are realized because implementing sophis-
ticated functions in high - level language would require many words of program
memory. Finally, functions written in microcode always execute faster than
those coded in some high - level language.

 In a reduced instruction set computer (RISC), each instruction takes only
one clock cycle. Usually, RISCs employ little or no microcode. This means
that the instruction - decode procedure can be implemented as a fast digital
circuitry, rather than a slower microprogram. In addition, reduced chip com-
plexity allows for more work registers within the same chip area. Effective use
of register - direct instructions can decrease the number of slower memory
fetches.

 The more recent RISC criteria are a complementary set of the nine prin-
ciples to CISC. These are:

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURAL ADVANCEMENTS 51

 1. Simple instructions taking one clock cycle.
 2. Memory access by load/store instructions only.
 3. Highly pipelined instruction processing.
 4. Hard - wired control unit.
 5. Small number of instructions.
 6. Instructions are of fi xed format and length.
 7. Few addressing modes.
 8. Multiple sets of work registers.
 9. Complexity handled by compilers and software.

 A more quantitative defi nition of RISC is available in Tabak (1991) . Any
RISC - type architecture could be viewed as a processor with a minimal number
of vertical microinstructions, in which programs are directly executed in the
hardware. Without any microcode interpreter, all instruction operations can
be completed in a single (hard - wired) “ microinstruction. ”

 RISC has fewer instructions; hence, operations that are more complicated
must be implemented by composing a sequence of simple instructions. When
this is some frequently used operation, the compiler ’ s code generator can use
a preoptimized template of instruction sequence to create code as if it were
that complex instruction. RISC needs naturally more memory for the sequences
of instructions that form a complex instruction. CISC, on the other hand, uses
more clock cycles to execute the microinstructions used to implement the
complex instruction within the native instruction set.

 RISCs have a major advantage in real - time systems in that the average
instruction execution time is shorter than for CISCs. The reduced instruction
execution time leads to shorter interrupt latency and thus shorter response
times. Moreover, RISC instruction sets tend to help compilers to generate
faster code. Because the instruction set is signifi cantly limited, the number of
special cases that the compiler must consider is considerably reduced, thus
permitting a greater variety of code optimization approaches.

 On the downside, RISC processors are usually associated with caches and
elaborate multistage pipelines. Generally, these architectural enhancements
improve the average - case performance of the processor by shortening the
effective memory access times for frequently accessed instruction codes and
data. However, in the worst case, response times are increased because low
cache hit ratios and frequent pipeline fl ushing can degrade performance.
Nonetheless, the greatly improving average - case performance at the expense
of degraded worst - case performance is often tolerable at least in fi rm and soft
real - time applications. Lastly, it should be mentioned that modern CISC - type
processors share some principles of RISC architectures; for instance, virtually
all CISC processors contain some form of instruction pipelining. Thus, the
borderline between CISC and RISC is not crisp at all. A specifi c CPU archi-
tecture belongs to the CISC category if it fulfi lls most of the nine CISC prin-
ciples; the same applies with the RISC defi nition.

www.it-ebooks.info

http://www.it-ebooks.info/

52 HARDWARE FOR REAL-TIME SYSTEMS

 2.4 PERIPHERAL INTERFACING

 Peripheral, sensor, and actuator interfacing (Patrick and Fardo, 2000) is a
central area of real - time hardware that is developing much slower than, for
instance, memory subsystems and processor architectures. While the latter
ones seem to be under incessant evolution, the peripheral interfacing princi-
ples have remained largely the same for decades. The fundamental practices
for input and output handling are still the same as in the late seventies:

 • Polled I/O
 • Interrupt - driven I/O
 • Direct memory access

 In a polled I/O system, the status of the I/O device is checked periodically, or,
at least, regularly. Therefore, such I/O activity is software controlled; only
accessible status and data registers are needed in the hardware side. An
obvious advantage of such an approach is its simplicity, but, on the other hand,
it loads the CPU due to possibly unnecessary status requests. Typically, only a
minority of status requests leads to either input or output transactions with
the data register. This unnecessary loading could be reduced by less frequent
polling of the I/O status. However, that would increase the worst - case I/O
latency. Hence, an appropriate polling interval is an application - specifi c com-
promise between the desired CPU utilization factor and allowed I/O latency.

 Figure 2.13 depicts a generic peripheral interface unit (PIU) with three
internal registers. In addition to the status and data registers, there is a con-
fi guration register for selecting the desired operation mode. Actually, the

 Figure 2.13. Interface lines of a generic peripheral input/output unit with three internal
registers.

Generic PIUAddress Bus

A0–Ar

Data Bus

D0–Dn

Read

Write

Chip Select

Interrupt

Input/Output

Status

Register

Data

Register

Configuration

Register
Reset

www.it-ebooks.info

http://www.it-ebooks.info/

PERIPHERAL INTERFACING 53

programmable PIU is, in some cases, a special - purpose processor that can
manage independently such complicated functions as a communications
network protocol or multichannel pulse - width modulation. Hence, advanced
PIUs may relieve the CPU loading signifi cantly in embedded real - time appli-
cations. Application programmers should not have direct access to PIUs, but
they are used through device drivers that belong to system software. These
device drivers hide the hardware - specifi c details from application program-
mers, and, in this way, make it easier to port the application code to another
hardware environment with somewhat different peripheral interface devices.
This situation can be found in embedded systems that have a long life cycle.
For example, the lifetime of a high - rise elevator control system may be around
25 years — this sets a notable challenge for the availability of spare parts, and,
sometimes, new hardware has to be developed for the existing application
software.

 The next two subsections present the operating principles of interrupt -
 driven I/O and direct memory access, which can greatly improve the I/O
performance of real - time systems.

 2.4.1 Interrupt - Driven Input/Output

 Interrupt - driven I/O processing has remarkable advantages over the straight-
forward polled I/O: the service latency can, in general, be reduced and made
less uncertain without increasing the loading of the CPU. In Section 2.1 , we
already presented a typical interrupt service process in a case when interrupts
are enabled and only a single interrupt request is active at a time. However,
in many practical situations, there might appear multiple interrupt requests
simultaneously. This raises two obvious questions: How to identify the various
interrupt sources, and in which order should the interrupts be serviced? There
are standard procedures for identifying the interrupting peripherals, as well as
for determining their service order. Some of those procedures are practical
with small real - time systems, while others are particularly effective in larger -
 scale systems. Nonetheless, they are usually not visible to application program-
mers, but are managed in the system software.

 In small real - time systems with no more than a moderate number of pos-
sible interrupt sources, it is often practical to identify the interrupting periph-
eral by polling the status registers of all PIUs. A status register contains
typically some fl ag that is set when the particular PIU is requesting an inter-
rupt. Moreover, by selecting the static polling order suitably, certain high -
 priority peripherals may always be serviced before some lower - priority ones.
And, if needed, the polling order could be modifi ed dynamically to provide
rotating priorities, for instance.

 When the number of interrupting peripherals is large, it is no longer feasible
to identify and prioritize interrupts using the simple polling scheme. Vectored
interrupt handling is a convenient technique for larger real - time systems,
because it moves the interrupt identifi cation burden from system software to

www.it-ebooks.info

http://www.it-ebooks.info/

54 HARDWARE FOR REAL-TIME SYSTEMS

real - time hardware. Figure 2.14 illustrates the interrupt identifi cation process
with a vectored interrupt. The cost of using a vectored interrupt is in the more
complex CPU and PIU hardware. Besides, some priority interrupt controller
is needed to manage the priorities of individual interrupt sources.

 A CPU that supports vectored interrupts has usually a substantial number
of interrupt vectors available. If the number of vectors is 256, there could be
256 distinguishable interrupt sources. In most cases, however, not all the avail-
able interrupt vectors are needed in a real - time application. Still, it is recom-
mended to write interrupt service routines for those unused interrupt codes
as well. But why? In some operating environments, electromagnetic interfer-
ence (EMI) radiation, charged particles, and various disturbances and noise
may cause spurious problems by inverting some bits in main memory, in reg-
isters, or on the system bus. These kinds of problems are sometimes classifi ed
as “ single - event upsets ” (Laplante, 1993). The results of such problems can be
catastrophic. For example, if even a single bit in the interrupt vector is inverted,
the altered interrupt code may correspond to such an interrupt that is not in
use (a phantom interrupt), and, thus, does not have an interrupt service routine.
The effect can lead to a system crash. Fortunately, there is a simple solution
to this crash problem: every interrupt vector should have a corresponding
service routine, and in the case of phantom interrupts, it is just a return - from -
 interrupt or RETI instruction. It is advisable, though, that some phantom -
 interrupt counter in a nonvolatile memory is incremented as well. The value
of such a counter could be monitored during the early phase of the product
life cycle; if the hardware is properly designed and implemented, the counter
should never be incremented. Unfortunately, while any real - time hardware
should be designed to fulfi ll certain electromagnetic compatibility (EMC) and
radiation hardening standards (Morgan, 1994), and appropriate software pre-
vention techniques are available to deal with single event upsets (Laplante,

 Figure 2.14. Interrupt - identifi cation procedure between the CPU and PIU using vec-
tored interrupt.

PIU CPU

Interrupt Request

Interrupt Acknowledge

Interrupt Vector Interrupt Vector

Vector Table

Interrupt Handler’s

Address

Time

www.it-ebooks.info

http://www.it-ebooks.info/

PERIPHERAL INTERFACING 55

 1993), unrealistic cost/schedule pressure and inadequate system testing often
lead to the kinds of problems just described.

 A priority interrupt controller (PIC) is used for prioritizing different inter-
rupts when the vectored - interrupt scheme is used for identifying them. PICs
have multiple interrupt inputs that are coming from PIUs (or directly from
peripherals), and a single interrupt output that is going to the CPU. Some
processors may even have a built - in PIC function. These programmable devices
provide the ability to dynamically prioritize and mask interrupts of different
priority levels. Each interrupt can be independently set to be either edge
(rising or falling) or level triggered, depending on the needs of the attached
peripheral. Edge - triggered interrupts are used with very long or very short
interrupt pulses, and when overlapping interrupt requests on a single line are
not possible. Level - triggered interrupts, on the other hand, are used more
seldom — only when overlapping interrupt requests on a single line are
expected — because edge - triggered interrupts are time - wise more precise.
Figure 2.15 depicts the handling of multiple interrupts with an external PIC.
The procedure contains 10 main steps (assuming that interrupts are enabled):

 1. The PIC receives several simultaneous interrupt requests.
 2. The PIC processes fi rst the request with highest priority.
 3. The CPU receives an interrupt request from the PIC.
 4. The CPU completes the currently executing instruction.
 5. The CPU stores the content of the program counter register (PCR) to

memory.
 6. The CPU acknowledges the interrupt to the PIC.
 7. The PIC sends the interrupt vector to the CPU.
 8. The CPU loads the corresponding interrupt - handler address to the

PCR.

 Figure 2.15. Handling multiple interrupts with an external priority interrupt controller;
the circled numbers are referring to the 10 - step procedure described in the text.

PIC CPU

Interrupt 1

Memory

Interrupt 2

Interrupt 3

Interrupt
Request PCR

Return
Location

Handler
Location

..

.

Interrupt N

1.
3.

5.1.

8.

2.

4.Interrupt
Acknowledge

6.

Interrupt
Vector

7. 9.

10.

www.it-ebooks.info

http://www.it-ebooks.info/

56 HARDWARE FOR REAL-TIME SYSTEMS

 9. The CPU executes the interrupt handler.
 10. The CPU reloads the original PCR content from memory.

 Although interrupt - driven I/O is an effective technique for (hard/fi rm) real -
 time systems, it ought to be remembered that the privilege to interrupt should
be given to time - critical I/O events only. Otherwise, a large number of concur-
rent interrupt requests may sporadically lead to excessive response times. A
complementary discussion on interrupt - related issues is available in Ball
 (2002) .

 2.4.2 Direct Memory Access

 While interrupt - driven I/O handling is effective when the number of trans-
ferred data bytes or words between memory and I/O ports is reasonably small,
it becomes ineffective if large blocks of data are transferred. Each data element
must fi rst be read from memory or an input port into the CPU ’ s work register
and then written to an output port or a memory location. Such block - transfer
processes take place regularly, for example, with communications networks,
graphics controllers, and hard - disk interfaces — or even between two memory
segments. To eliminate the time - consuming circulation of data through the
CPU, another I/O handling practice, direct memory access (DMA), is
available. In DMA, access to the computer ’ s memory is given to other devices
in the system without any CPU intervention. That is, data is transferred directly
between main memory and some external device. Here, a separate DMA
controller is required unless the DMA - handling circuitry is integrated into
the CPU itself. Because no CPU participation is required, data transfer is
faster than in polled or interrupt - driven I/O. Therefore, DMA is often the best
I/O method for real - time systems; and it is becoming increasingly widespread
due to extensive use of communications networks and distributed system
architectures, for instance. Some real - time systems have even multiple DMA
channels.

 An I/O device requests DMA transfer by activating a DMA - request signal
(D_REQ). This makes the DMA controller issue a bus - request signal (B_
REQ) for the CPU. The CPU fi nishes its present bus cycle and activates a
bus - acknowledgment signal (B_ACK). After recognizing the active B_ACK
signal, the DMA controller activates a DMA - acknowledgment signal (D_
ACK), instructing the I/O device to begin data transfer. When the transfer is
completed, the DMA controller deactivates the B_REQ signal, giving buses
back to the CPU (Fig. 2.16).

 The DMA controller is responsible for assuring that only one device can
place data on the bus at any one time through bus arbitration. This essential
arbitration procedure resembles the interrupt prioritization discussed above.
If two or more devices attempt to gain control of the bus simultaneously, bus
contention occurs. When some device already has control of the bus and
another device obtains access, a collision occurs. The DMA controller prevents

www.it-ebooks.info

http://www.it-ebooks.info/

PERIPHERAL INTERFACING 57

collisions by requiring each device to issue the D_REQ signal that must be
acknowledged with the D_ACK signal. Until the D_ACK signal is given to
the requesting device, its connection to the system bus remains in a high -
 impedance condition. Any device that is in the high - impedance state (i.e.,
disconnected) cannot affect the data bits on the memory data bus. Once the
D_ACK signal is given to the requesting device, its memory - bus lines become
active, and data transfer occurs similarly as with the CPU. For each data trans-
fer occasion, the DMA controller needs a memory address specifying where
the data block exists or where it will be placed, and the amount of transferable
bytes or words. Such information is programmed to the control registers of
the DMA controller by the CPU (a function of system software).

 During a DMA transfer, the ordinary CPU data - transfer processes cannot
proceed. At this point, the CPU could proceed solely with nonbus - related
activities until the DMA controller releases the buses or until it gives up and
issues a bus time - out signal (after some predetermined time). Yet a CPU with
a cache memory may still execute instructions for some time during a DMA
transfer. From the real - time viewpoint, a long DMA cycle is somewhat similar
to the condition when interrupts are disabled, because the CPU cannot provide
service for any interrupts until the DMA cycle is over. This may be critical in
real - time systems with high sampling rates and strict response - time require-
ments. To tackle the problem, a single transfer cycle of a large data block can
be split to several shorter transfer cycles by using a cycle - stealing mode instead
of the full - block mode. In the cycle - stealing mode, no more than a few bus
cycles are used at a time for DMA transfer. Hence, the interrupt - service
latency does not become unreasonably long when transferring a large block
of data using DMA.

 In certain hard real - time applications, however, the use of DMA is avoided
by placing a dual - port SRAM (or DPRAM) device between a block - oriented
I/O device and the CPU. The DPRAM contains a single memory array with

 Figure 2.16. Establishing a data - transfer connection between an I/O device and main
memory using DMA.

CPU DMA Controller

B_REQ

B_ACK

D_REQ

I/O Device

D_ACK

Time

DMA Controller
Controls System Bus

CPU Controls
System Bus

www.it-ebooks.info

http://www.it-ebooks.info/

58 HARDWARE FOR REAL-TIME SYSTEMS

private bus connections for both the primary CPU and some I/O processor.
Hence, the primary CPU is never giving the control of its system bus to any
other device; but block - oriented data transfer takes place in the dual - port
memory without disturbing the CPU. Dual - port SRAMs are used widely with
communications networks and graphics controllers.

 2.4.3 Analog and Digital Input/Output

 Real - time system designers should be aware of certain characteristics of I/O
signals and functions, which are associated with timing and accuracy. There is
a variety of I/O categories, particularly in embedded real - time systems. The
core categories are outlined below:

 • Analog
 • Digital parallel
 • Digital pulse
 • Digital serial
 • Digital waveform

 In the following paragraphs, a discussion of this important topic is provided
with a few hardware examples. We point out key issues related to analog and
digital I/O signals and their trouble - free interfacing. A supplementary presen-
tation on specifi c peripheral interface units is available in Ball (2002) and
Vahid and Givargis (2002) , for instance.

 Analog - to - digital conversion, or A/D circuitry, converts continuous - time
(analog) signals from various devices and sensors into discrete - time (digital)
ones. Similar circuitry can be used to convert pressure, sound, torque, and
other current or voltage inputs from sensors and transducers by using a variety
of conversion schemes. The output of A/D circuitry is a discrete - time and
quantized version of the analog signal being monitored. At each sampling
moment, the A/D circuitry makes available an n - bit approximation that rep-
resents a quantized version of the signal. This data can be passed on to the
real - time computer system using any of the three I/O handling methods.
Samples of the original continuous - amplitude waveform are treated in appli-
cation programs as scaled integer numbers.

 The fundamental aspect in the use of A/D circuitry for time - varying signals
is the sampling rate. In order to convert a continuous - time signal into a
discrete - time form without loss of any information, samples of the analog
signal must be taken at a rate of at least twice that of the highest frequency
component of the signal (the Nyquist – Shannon sampling theorem). Hence, a
signal with a highest frequency component at 500 Hz must be sampled at least
1000 times per second. This implies that software tasks serving A/D circuitry
must run at the same rate, or risk losing information. Besides, high punctuality
of consecutive sampling moments is essential in many control and signal pro-

www.it-ebooks.info

http://www.it-ebooks.info/

PERIPHERAL INTERFACING 59

cessing applications. These considerations form an intrinsic part of the design
process for the scheduling of software tasks. In most control applications,
however, the applied sampling rate is 5 – 10 times higher than the minimum
rate. One reason for this is the common noise content in the measured signal,
which should be low - pass fi ltered to avoid violation of the sampling theorem,
leading to harmful aliasing. Nonetheless, traditional band - selective fi lters
always introduce some delay (or phase shift) to the fi ltered primary signal
(Vainio and Ovaska, 1997), and that could reduce the controllability of the
plant or process. By using a higher sampling rate, the control performance can
often be improved, and the aliasing effect reduced without using a highly
selective low - pass fi lter. Fortunately, in many monitoring and audio signal -
 processing applications, a moderate phase delay is tolerable, and appropriate
low - pass fi lters can thus be used in front of A/D converters.

 It should be noted, however, that the Nyquist – Shannon sampling theorem
does not consider the nonlinear quantization effect at all. While pure sampling
with an adequate sampling rate is a truly reversible operation, quantization
always introduces some irreversible error to the digital signal. One additional
bit of quantization resolution corresponds approximately to a 6 dB increase
in the signal - to - noise ratio (SNR) of the digitized signal (Garrett, 2000). The
number of bits in A/D converters is typically 8 – 16 in control applications,
but can be more than 20 in hi - fi audio systems, for example. Figure 2.17 illus-
trates the varying quantization error in a simplifi ed case with a 3 - bit A/D
converter. In a real - time system, the A/D - converter ’ s resolution is usually
a compromise between the application ’ s accuracy requirements and the

 Figure 2.17. Quantization of an analog ramp signal using a 3 - bit A/D converter. The
quantization error varies between − 1/2 LSB (least signifi cant bit) and + 1/2 LSB, and it
is thus proportional to the number of bits in the conversion process.

Analog Input

.
.

.
.

.
.

.

000 .
001

010

100

101

110

0 1 2 3 4 5 6 7 8

Maximum
Quantization Error

No
Quantization Error

D
ig

it
a
l
O

u
tp

u
t

011

111

www.it-ebooks.info

http://www.it-ebooks.info/

60 HARDWARE FOR REAL-TIME SYSTEMS

product ’ s cost pressure. Moreover, the accuracy of a practical A/D - conversion
channel is never the same as its resolution, but, typically, one or two least -
 signifi cant bits should be considered erroneous. That has to be remembered
when implementing control and signal - processing algorithms.

 Another design issue related to analog input channels is the occasional need
for truly simultaneous sampling of two or more measurement quantities. There
is usually an analog multiplexer in front of the A/D converter to provide
selectable measurement channels for a single A/D - converter. That is a compact
and low - cost solution, but cannot provide simultaneous sampling of multiple
quantities. An additional A/D converter would be a straightforward solution
to this problem, but it could be a relatively expensive option in many embed-
ded systems. Therefore, it is often practical to use individual sample - and - hold
(S & H) circuits in those measurement channels that require simultaneous sam-
pling. The CPU gives a concurrent “ sample ” command to those S & H circuits
that memorize their analog inputs for a short period of time. After this, all the
S & H outputs are converted sequentially to the digital form by the one A/D
converter. Although the digital samples become available one after another,
they still correspond to the same sampling moment.

 Digital - to - analog conversion, or D/A circuitry, performs the inverse function
of A/D circuitry; it converts a digital quantity to an analog one. D/A devices
are used to allow the computer to output analog currents or voltages based
on the digital version stored internally. Nevertheless, D/A converters are not
as common in real - time systems as A/D converters, because many actuators
and devices are commanded directly with digital signals. D/A converters are
sometimes included solely for providing real - time outputs of critical or select-
able intermediate results of computational algorithms. This may be useful
during the hardware - software integration and verifi cation phases of sophisti-
cated control and signal - processing algorithms. The communication with D/A
circuitry also uses one of the three I/O handling methods discussed.

 Digital I/O signals can be classifi ed into four categories: parallel, pulse,
serial, and waveform. Diverse parallel inputs are practical for reading the
status of on/off - type devices like electro - mechanical limit switches or relay
contacts in machine - automation applications, for instance. Parallel outputs are
used similarly for providing on/off commands to a variety of actuators, such
as fans or pumps, in building automation. While the PIU output ports need
some driver circuit to be able to sink/source high load currents, the input ports
must be protected against interferences that are corrupting the incoming
signals. Severe EMI levels are usual in industrial applications of real - time
systems (Patrick and Fardo, 2000). Typical input circuitry contains fi rst some
overvoltage suppressor for protecting the interface channel. It is followed by
an optical isolator that converts the voltage levels (e.g., from + 24/0 V I/O logic
to + 5/0 V CPU logic) and creates galvanic isolation between the I/O - ground
potential and the CPU ground. This is necessary for preventing electric cou-
pling of disturbances from the possibly harsh operating environment to the
sensitive computer system. After the galvanic isolation, on/off - type signals are

www.it-ebooks.info

http://www.it-ebooks.info/

PERIPHERAL INTERFACING 61

usually low - pass fi ltered by an RC fi lter to attenuate high - frequency distur-
bances and noise. Finally, the smoothened signal edge (rising or falling) is
restored by a Schmitt - trigger circuit containing some hysteresis. All this is
necessary to make sure that the digital input signal is of adequate quality
before feeding it to the PIU (Fig. 2.18). Furthermore, special attention should
be paid to such digital signals that cause interrupts directly, because a noisy
on/off edge may be interpreted as multiple edges, leading to a burst of false
interrupts instead of a single desired interrupt. Thus, the interface - hardware
requirements are very different in industrial environments from those ade-
quate in home or offi ce environments.

 But why is the protection of parallel input ports of interest to real - time
software engineers? Well, it is certainly straightforward to clean on/off - type
signals by using appropriate signal processing techniques, but, at the same time,
the transition edges (from “ on ” state to “ off ” state or vice versa) are necessar-
ily delayed. This increases the latency of excitation signals, as well as the
response time that is measured from the true transition moment to the cor-
responding output action. Hence, with time - critical events, all kinds of fi ltering
should be kept minimal to avoid intolerable hardware latency. This initial
latency component is accumulated with a possible chain of nondeterministic
latency components originating, for example, from a “ dangerous ” CPU utiliza-
tion factor, pipeline fl ushes, cache misses, sensor - network ’ s variable load, and
software - task scheduling. If adequate fi ltering cannot be afforded, then the
principal solution is to use shielded signal cables — or even optical fi bers — to
prevent disturbances from corrupting edge - critical signals. The same is also
valid with pulse - type inputs.

 Pulse and waveform outputs, on the other hand, also have accuracy require-
ments, because the widths of generated pulses have specifi c tolerances. This is
central when individual pulses are used for turning on/off devices or functions
for a precise duration of time. Moreover, in high - performance pulse - width
modulation, the tolerances of consecutive pulses may be rather strict. Both
pulses and waveforms are typically generated by some timer circuit; and
the timing accuracy depends on the reference frequency, as well as the length
of the counter register. In addition, there is a nondeterministic latency

 Figure 2.18. Block diagram of a digital input channel intended for an operating envi-
ronment with high EMI levels.

Overvoltage
Suppressor

PIU

Galvanic
Isolation

Lowpass
Filter

Schmitt-
Trigger

Delay Path for Rising/Falling Edges

On/Off
Signal

www.it-ebooks.info

http://www.it-ebooks.info/

62 HARDWARE FOR REAL-TIME SYSTEMS

component due to interrupt handling and software - task scheduling. This
latency should be taken into account when prioritizing different interrupts and
associated tasks in a real - time system. Similar considerations are needed with
pulse and waveform inputs.

 Serial digital I/O is used for transferring data over a single line instead of
multiple parallel lines (or a bus). Embedded systems often have two kinds of
serial links: a low - speed one for a local user interface, and a high - speed con-
nection to some longer - distance communications (or fi eldbus) network. While
the low - speed serial links do not set any challenges for the real - time software
engineer, the high - speed networks may demand a lot of computing perfor-
mance. Hence, the receiver/transmitter buffering and communications proto-
cols are often handled by a special - purpose processor, which is interfaced to
the main CPU by using DMA.

 Today, an increasing number of network connections are implemented
using some wireless medium — either an infrared or a radio connection. The
emerging wireless sensor networks use tiny computer nodes for performing
autonomous measurements in an environment where it is not possible to
provide an external power supply for those nodes. Therefore, the distributed
nodes are battery powered, and the battery lifetime should be maximized to
avoid impractical service of the nodes. This economy is accomplished by effec-
tively utilizing the CPU ’ s sleep mode; the communications protocol can adjust
how often the hardware is awakened for a communications session. The
awake – sleeping duty cycle is application dependent, and network latency is
clearly sacrifi ced over battery lifetime and vice versa. This ultra - low power
consumption is a new type of requirement for certain real - time systems.

 2.5 MICROPROCESSOR VERSUS MICROCONTROLLER

 Up to now, we have used the general term “ processor ” for the entire assort-
ment of processing units containing some kind of CPU — from high - performance
microprocessors to application - specifi c cores in systems on a chip. However,
under the processor class, there are two distinct subclasses, microprocessors
and microcontrollers, which deserve an introductory discussion. From the real -
 time systems viewpoint, microprocessors are currently used mainly in nonem-
bedded applications, while various microcontrollers are dominating the
embedded - systems fi eld. That has not always been the case, though. Therefore,
it is good to discuss the evolution paths of real - time processors, beginning from
the introduction of the fi rst microprocessor in the early 1970s. The purpose of
the following paragraphs is to provide some insight for understanding the few
divergent development paths of processor technology (Fig. 2.19).

 2.5.1 Microprocessors

 A microprocessor is an integrated circuit that contains the functions of a
complete CPU. At the time of its introduction — about 40 years ago — it opened

www.it-ebooks.info

http://www.it-ebooks.info/

MICROPROCESSOR VERSUS MICROCONTROLLER 63

totally new opportunities for the research and development community to
innovate and design intelligent systems and products. In this context, we adopt
the following defi nition for the term “ intelligence ” :

 Intelligence can be defi ned in terms of the capability of a system to adapt its
behavior to meet its goals in a range of environments (Fogel, 2006).

 The fi rst microprocessor decade was, in many ways, confusing, because the
microprocessor components and software development tools were in their
very infancy; and the users of those new microprocessors were more or less
self - educated without the benefi ts of experience. Still, by the mid - 1970s, the
fi rst microprocessor - based elevator control systems were successfully being
developed. Those early implementations were not intelligent according to the
defi nition, since they were just replacing certain relay - based logic by straight-
forward microprocessor code. Nonetheless, the introduction of microproces-
sors in embedded applications was certainly a turning point for that conservative
branch of industry. The same applies with countless other fi elds that gradually
started to benefi t from microprocessors and the exciting opportunity to create
novel functionality — or even machine intelligence — by software.

 When the instruction - processing throughput of microprocessors steadily
increased, and the memory and peripheral interface devices became more
advanced, the era of embedded systems was truly begun — that was in the early
1980s. At the beginning, the hardware clearly had a central role in all develop-
ment work, but by the middle of the 1980s, the logical need for proper software
engineering procedures and associated support tools started to emerge; real -
 time software development was no more just code writing. Today, we observe
that most of the real - time systems development effort in microprocessor envi-
ronments is software engineering, not hardware engineering. The used hard-
ware platforms are typically either standard offi ce PCs or industrial PCs with
special interface modules.

 Figure 2.19. Principal evolution paths of processor technology.

Processor

Microprocessor Microcontroller

Standard
Microcontroller

Custom
Microcontroller

Computer on
Chip

System on
Chip

www.it-ebooks.info

http://www.it-ebooks.info/

64 HARDWARE FOR REAL-TIME SYSTEMS

 From the early days, microprocessors have evolved signifi cantly, and the
architectural advancements discussed in Section 2.3 are available specifi cally
in the latest microprocessors. The foremost goal in the development of
microprocessors is the further increasing instruction - processing throughput.
In parallel with the innovative architectural developments, such as superpipe-
lining and superscalar processing with out - of - order execution, the use of
microprocessors in embedded systems has greatly diminished. The increased
nondeterminism in interrupt latency causes insuperable problems for
hard real - time systems. Nevertheless, many embedded applications could,
in principle, benefi t from the high instruction - processing throughput of
microprocessors.

 2.5.2 Standard Microcontrollers

 Soon after the introduction of the fi rst 8 - bit microprocessors, another develop-
ment path, microcontrollers, emerged. A microcontroller is an integrated
circuit containing a CPU, as well as an interconnected set of memory devices,
peripheral interface units, timers/counters, etc. Hence, the microcontroller can
take direct input from devices and sensors and directly control external actua-
tors. The need for “ single - chip computers ” became apparent as soon as the
fi rst embedded systems were designed that were based on microprocessors
and a set of external memory and I/O devices. Later on, when the microproces-
sor path utilized consistently the remarkable developments of integrated -
 circuit technology for advancing the CPU architecture, the microcontroller
path had its main emphasis on extending the available RAM and ROM spaces,
as well as the variety of peripheral interface units. To make the package
compact and inexpensive, some microcontrollers do not have an external
system bus that, on the other hand, would make it also possible to use external
memory and PIU devices. The CPU of a high - performance microcontroller
may have a short instruction pipeline, a clear - cut RISC architecture with a
duplicate set of work registers for interrupt handlers, and possibly Harvard
architecture. As a converged result of evolution, a modern microcontroller
could contain the following set of PIUs and memory devices:

 • EEPROM or Flash
 • SRAM
 • Analog - to - digital converter with a multiplexer
 • Direct - memory - access controller
 • Parallel inputs and outputs
 • Serial interface
 • Timers and counters
 • Pulse - width modulators
 • Watchdog timer

www.it-ebooks.info

http://www.it-ebooks.info/

MICROPROCESSOR VERSUS MICROCONTROLLER 65

 The list is not all encompassing, but it contains a representative collection of
functions that are available in numerous commercial microcontrollers.

 An interesting element, the watchdog timer, is worthy of an introduction,
because it can be used as a supervision unit in real - time systems, particularly
in those ones that operate autonomously. Many embedded systems are
equipped with a watchdog up - counter that is incremented periodically by a
clock signal. The counter must be cleared regularly by an appropriate pulse
before it overfl ows and generates a watchdog interrupt (this clearing action is
sometimes called “ petting the dog ”). In normal operating conditions, the appli-
cation software issues regularly a pulse via memory - mapped or programmed
I/O to clear the counter frequently enough.

 Watchdog timers are used to ensure that certain devices are serviced at
regular intervals, that certain software tasks execute according to their pre-
scribed rate, and that the CPU continues to function normally. To make sure
that a crashed real - time system can be recovered successfully, it is sometimes
wise to connect the watchdog timer ’ s interrupt output to the nonmaskable
interrupt line, or even to the line that is used to reset the whole system (Fig.
 2.20). In addition, whenever the watchdog interrupt is activated, a variable in
nonvolatile memory should be incremented to record such an abnormal event
that is always an indication of some software or hardware problem — or maybe
a system - level problem related to electro - magnetic interferences.

 The fi rst - generation microcontrollers were intended for general embedded
applications — their memory capacity and PIU selection were not tailored for
any specifi c fi eld of application. However, by the early 1980s, a variety of
application - specifi c microcontrollers started to emerge. Around this time, the
so - called digital signal processors also became available for data communica-
tions and other signal processing applications.

 Digital signal processors have a CPU architecture that supports fast pro-
cessing of a limited set of instructions, and provides short interrupt latency.
This capability is effectively accomplished by a RISC - type Harvard architec-
ture with truly parallel multiplication and addition units. The availability of
 multiplication - accumulation (MAC) instructions, which take only one clock
cycle to execute, is the key characteristic that ties such architecture to digital
signal processing (DSP) applications; because many DSP algorithms (e.g.,
convolution) contain a chain of multiplication - addition operations. Besides,
the sampling rates of those algorithms are often relatively high. More recently,
some digital signal processors with VLIW architectures have become available

 Figure 2.20. Block diagram of a watchdog timer with its inputs and output.

Watchdog Timer
To Interrupt or

System Reset

Clear

Clock

Up-Counter

www.it-ebooks.info

http://www.it-ebooks.info/

66 HARDWARE FOR REAL-TIME SYSTEMS

for specifi c DSP applications. Nonetheless, a typical digital signal processor is
nothing more than an application - specifi c microcontroller with a special -
 purpose CPU architecture and appropriate PIU and memory support.

 In addition to digital signal processors, there are also other application -
 specifi c microcontrollers for common application areas, such as automotive,
communications, graphics, motor control, robotics, and speech processing.
Moreover, in the mid - 1980s, an exceptional family of networkable microcon-
trollers, transputers, was introduced for creating parallel - processing imple-
mentations easily. A transputer contains a rather traditional von Neumann
CPU (either with or without fl oating - point support), but its novel instruction
set includes directives to send or receive data via four serial links that are con-
nected to other transputers (nodes). The transputers, though capable of acting
as a uniprocessor, are best utilized when connected together in a nearest -
 neighbor confi guration. Nonetheless, transputers never attained the true
acceptance of the global R & D community, and thus their production was
terminated. Although the transputer itself disappeared, its pioneering archi-
tectural innovations were adopted to a few networkable microcontrollers
available today. Those microcontrollers with automatically (by hardware)
updated network variables are used particularly in building automation and
elevator control applications (Loy et al., 2001). Perhaps the transputer concept
was introduced too early, when the potential of convenient networking over
various media was not yet recognized.

 Most microcontrollers are standard components, and a few billions of
them — mostly simple 8 - bit microcontrollers — are produced annually. Hence,
there are usually certain memory or PIU features of the off - the - shelf micro-
controller that are not (fully) utilized in a specifi c real - time system. This inef-
fectiveness could be avoided by creating product - specifi c custom
microcontrollers. That is, indeed, taking place when developing particular high -
 volume products, as we will see shortly.

 2.5.3 Custom Microcontrollers

 Custom microcontrollers (or core processors) began to appear in the late
1980s for applications like high - speed telephone modems, and for miscella-
neous systems where low - power consumption is a major issue. For example,
while the availability of SRAM in a standard microcontroller would be 2 K
words, a core processor could contain 1234 words of memory to fulfi ll the exact
needs of an imaginary software implementation. Thus, the memory array
would be approximately 40% smaller, and the chip size would be reduced
correspondingly. This potential benefi t is realizable only if the production
volume of the core processor is large enough to compensate for the high
design expenses of the custom integrated circuit (Vahid and Givargis, 2002).
Such designs can be seen as computers on chip (Fig. 2.19), and they require
an extensive verifi cation phase, because the fi nal design does not offer fl exibil-
ity to make modifi cations. However, if the core processor contains EEPROM

www.it-ebooks.info

http://www.it-ebooks.info/

MICROPROCESSOR VERSUS MICROCONTROLLER 67

or Flash blocks for program code, it is possible to modify the software within
the limits of fi xed memory space. The CPU of a core processor is either some
version of a standard CPU or a special custom design.

 Moreover, some (dynamically) reconfi gurable processor architectures have
recently been proposed in fi eld - programmable gate array (FPGA) environ-
ments (Hauck and Dehon, 2007). FPGAs provide new opportunities for inno-
vating real - time systems with fl exible computing performance. The confi gurable
FPGA technology provides for the construction of a custom microcontroller
with an application - specifi c CPU, memory, and I/O — even for products with
low or moderate production volume, because the FPGAs are standard com-
ponents that are confi gured by application designers. Figure 2.21 illustrates the
general architecture of FPGA devices. In addition to buffering I/O cells and
basic logic cells, containing elementary combinatorial and sequential logic, an
FPGA may include more advanced cells, such as:

 • Multiplier
 • Tri - state bus
 • CPU core
 • SRAM and ROM
 • Interface support for external DRAM modules
 • Application - specifi c immaterial - property (IP) blocks provided by the

FPGA manufacturer

 Figure 2.21. Conceptual architecture of an FPGA device with 6 logic cells (Mayer -
 Baese, 2007). In reality, the number of logic cells may be even more than 100,000.

Programmable
Connections

Routing
Logic Cell

I/O Cell

www.it-ebooks.info

http://www.it-ebooks.info/

68 HARDWARE FOR REAL-TIME SYSTEMS

 Systems on chip take the core - processor approach even further by integrating
on the same chip functionalities other than pure digital blocks (Saleh et al.,
 2006). A system on chip, or SoC, may contain analog - signal, analog - power,
mixed analog - digital, radio - frequency, or micro - electro - mechanical blocks, as
well. Thus, the design and fabrication of an SoC device may become a major
challenge and a signifi cant expense. A digital camera is a typical real - time
application where practically all electronics are integrated on a single SoC; it
is produced in high quantities, it must be compact, and its power consumption
should be low. In cases when it is not feasible or possible to design and manu-
facture an SoC due to the presence of overly diverse integrated - circuit tech-
nologies, a relevant alternative might be a system in package, or SiP, where a
few heterogeneous chips are placed in a single package. Both SoC and SiP
devices are particularly attractive for novel ubiquitous - computing applica-
tions, where sensors and real - time computation are intimately integrated into
everyday activities and objects (Poslad, 2009).

 2.6 DISTRIBUTED REAL - TIME ARCHITECTURES

 As soon as embedded control systems began to emerge in the 1970s, the need
for distributed real - time architectures became obvious in many applications.
The main motivators behind spatial distribution over serial communications
interfaces were typically: considerable savings in wiring expenses, fl exibility in
designing and upgrading large - scale systems, and making computing power
available where it is needed. In the beginning, different subsystems were inter-
connected point - to - point via asynchronous serial links that were using some
proprietary communications protocol. Such implementations offered low data
rates, and it was diffi cult to modify them, because the primary CPU was also
handling the low - level communications protocol; there was often moderate
overlapping between the application software and the communications proto-
col. No multi - level layering of the communications protocol or special - purpose
communications processors yet existed. Still, by the early 1980s, an elevator
bank control system with eight elevators could contain 11 microprocessor
subsystems that were communicating over two bus - type serial links at the data
rate of 19.2 K bit/s. And, those microprocessors were of same type as the CPU
of the fi rst IBM PC.

 2.6.1 Fieldbus Networks

 Appropriate layering breaks the communications protocol into multiple pieces
that are easier to design and implement than a fl at protocol. Hence, in modern
communications networks, the concept of layering is fundamental, and it
usually follows the seven - layer open systems interconnection (OSI) model
(Wetteroth, 2002):

www.it-ebooks.info

http://www.it-ebooks.info/

DISTRIBUTED REAL-TIME ARCHITECTURES 69

 1. Physical (bits): Conveys the bit stream across the network.
 2. Data Link (frames): Builds data packets and synchronizes traffi c.
 3. Network (packets): Routes data to the proper destination.
 4. Transport (segments): Error checking and delivery verifi cation.
 5. Session (data): Opens, coordinates, and closes sessions.
 6. Presentation (data): Converts data from one format to another.
 7. Application (data): Defi nes communications partners.

 The use of OSI model makes it possible to change the data transfer medium
(copper wire, optical fi ber, wireless radio, or wireless infrared) and other prop-
erties of the protocol stack independently. In this section, we discuss the
fi eldbus networks that form a layered communications platform for distrib-
uted systems.

 Fieldbus is a general name for communications protocols intended for real -
 time control systems (Mahalik, 2003), and there are several standard protocols
used, for example, in automotive and factory automation applications. An
example of fi eldbus networks is the widespread controller area network
(CAN), which was originally intended for automotive applications, but became
widely used in industrial applications as well. The data rates with CAN are up
to 1 M bit/s, and the protocol is supported by special - purpose microcontrollers
that can handle independently the whole communications session. Such CAN
controllers could communicate with the primary CPU through a dual - port
RAM. Fieldbus networks are similar to regular computer networks existing in
offi ce environments (e.g., the Ethernet), but they are designed to support time -
 critical data transfer in operating environments with high EMI level. However,
there are also industrial modifi cations of the prevalent Ethernet network, and
thus the borderline between offi ce and fi eldbus networks is becoming blurred.

 Fieldbus networks may be implemented using a variety of topologies (or
physical structures), such as bus, ring, star, and tree (Fig. 2.22), depending on
the nature and requirements of the particular application. These solutions
offer fl exibility for architectural designers. In large - scale systems, the number
of nodes in a fi eldbus network may be from hundreds to thousands. And in
the case of the elevator bank control system previously mentioned, well over
100 nodes containing a microcontroller could nowadays be communicating
over a few LON - type networks (bus topology and 78 K bit/s data rate) (Loy
et al., 2001).

 In addition to the clear advantages of distribution, networking creates a
challenge for real - time system designers to work with: the inherent message
transfer delay and its variation due to time - variant load on the transmission
medium. These constraints may become a signifi cant component in composite
response times, and make the synchronization of distributed software tasks
problematic.

 The delay issue becomes critical in closed - loop control systems, which must
provide satisfactory performance and guaranteed stability at all times. There

www.it-ebooks.info

http://www.it-ebooks.info/

70 HARDWARE FOR REAL-TIME SYSTEMS

are two principal approaches for designing networked control systems (Chow
and Tipsuwan, 2001). The fi rst approach consists of multiple subsystems, in
which each subsystem contains a set of sensors and actuators, as well as the
control algorithm itself. Another approach is to connect sensors and actuators
directly to the fi eldbus network. In the latter case, the control algorithm is
located in a separate node and it performs closed - loop control over the
network. Such control systems are called network - based control systems, and
they must tolerate the message transfer delays and their variation. Traditional
control - system designs assume strictly periodic sampling of inputs and outputs;
otherwise, the robustness and performance of the control system may degrade
drastically. There are robust design techniques and stochastic control methods
for tackling the delay problem, but the problem has been solved only in unde-
manding special cases — no generic solution exists.

 If the communications platform could provide minimal and predictable
delays in all practical conditions, the use of special algorithms would not be
necessary. To achieve this goal, it is sometimes essential to provide two fi eldbus
connections between certain nodes: a regular channel and a priority channel.

 Figure 2.22. Bus (a), ring (b), star (c), and tree (d) topologies used commonly in fi eld-
bus networks.

(a)

(b)

(c) (d)

www.it-ebooks.info

http://www.it-ebooks.info/

DISTRIBUTED REAL-TIME ARCHITECTURES 71

The “ regular ” fi eldbus network carries most of the data transmission load,
while the “ priority ” connection is reserved for the most urgent and delay -
 sensitive messages only. This straightforward solution is naturally a complexity
issue that decreases the system ’ s reliability and increases material and assem-
bly costs. Therefore, it would be valuable to have a communications architec-
ture and corresponding protocol that would guarantee punctuality in message
transfer.

 2.6.2 Time - Triggered Architectures

 Synchronous communications architecture with a common clock would
provide a reliable platform for distributed real - time systems. However, it is
not trivial to synchronize multiple nodes precisely when the physical distance
between individual nodes may vary drastically. The time - triggered architecture
(TTA), developed by Kopetz and others, can be used for implementing dis-
tributed hard real - time systems (Kopetz, 1997). The TTA models a distributed
real - time system as a set of independent nodes interconnected by a real - time
communications network (Fig. 2.23), and it is based on fault - tolerant clock
synchronization. Each node consists of a communications controller and a host
computer, which are provided with a global, synchronized clock. Furthermore,
every node is truly autonomous, but communicates with other nodes over a
replicated broadcast channel (in fact, two redundant channels). Therefore,
each individual node in the TTA should be designed as a self - suffi cient real -
 time system. Such synchronous architecture provides a very reliable and pre-
dictable mechanism for communications between nodes. In addition, a
TTA - based system is fault tolerant, because should a node fail, the failure can
be detected by another node that could assume, at least in principle, the failed
node ’ s responsibilities.

 Figure 2.23. Time - triggered architecture with three nodes and two redundant broad-
cast channels.

Redundant Broadcast Channels

Host

Computer 1

Communications
Controller

Host

Computer 2

Communications
Controller

Host

Computer 3

Communications
Controller

www.it-ebooks.info

http://www.it-ebooks.info/

72 HARDWARE FOR REAL-TIME SYSTEMS

 Using time - division multiple access (TDMA), each node is allocated a fi xed
time slot in which it can send information on the broadcast channel to one or
more receiving nodes, through a unique addressing scheme. It is thus possible
to predict the latency of all messages on the channel, which guarantees hard
real - time message delivery. Furthermore, since the messages are sent at a
predetermined point in time, the latency jitter (or uncertainty) is minimal.
Hence, time - triggered architectures can achieve real - time punctuality. By com-
paring the known point in time at which a particular message was sent and
when it is received, host computers can synchronize their clocks with suffi cient
accuracy. Nonetheless, it is not possible to synchronize distributed clocks
exactly, and thus there is always residual phase difference between the clocks
of different nodes. This unavoidable condition is overcome by introducing a
sparse timing lattice within the entire distributed system. The uniform spacing
of the lattice is chosen such that the temporal order of any two observations
taken anywhere in a time - triggered system can be reestablished from their
time stamps (Kopetz, 1995).

 Coordinated communications between the nodes of a TTA is implemented
by the corresponding time - triggered protocol (TTP). The TTP is a dual - channel
protocol with 25 M bit/s data rate on each redundant channel. Multiple manu-
facturers provide TTP communications controllers as integrated circuits or IP.
There are two versions of the TTP available: the comprehensive TTP/C
intended for safety - critical, hard real - time applications (Kopetz, 1997); and the
simplifi ed TTP/A for low - cost fi eldbus applications (Kopetz, 2000).

 The time - triggered architecture has been used successfully in numerous
safety - and reliability - critical automotive and avionics applications, for instance.
Such human - involved applications must contain ultra - dependable real - time
systems to minimize the risk for a catastrophic failure. Therefore, ultra -
 dependable systems must be certifi ed by professional certifi cation agencies. As
stated by Kopetz, such a certifi cation process is greatly simplifi ed if the certi-
fi cation agency can be convinced that the following three concerns are fulfi lled
(Kopetz, 1995):

 1. “ The subsystems that are critical for the safe operation of the system are
protected by stable interfaces that eliminate the possibility of error prop-
agation from the rest of the system into these safety - relevant subsystems. ”

 2. “ It can be shown that all scenarios that are covered by the given load
and fault hypotheses can be handled according to the specifi cation
without reference to probabilistic arguments. ”

 3. “ The architecture supports constructive certifi cation, that is, the certifi ca-
tion of subsystems can proceed independently of each other, for example,
the proof that a communications subsystem meets all deadlines can
proceed independently of the proof of the performance of a node. ”

 It is understandable that constructive collaboration between system, software,
and hardware teams is required throughout the development project to fulfi ll

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 73

the concerns discussed above, because every critical subsystem is an integral
hardware – software component.

 An alternative to the synchronous TTA is naturally some event - triggered
architecture (ETA), where computing and communications operations are
activated asynchronously by specifi c events occurring within the real - time
system or its environment. Although ETA approaches are used widely in
various applications, they are more demanding to design, implement, and
maintain when the goal is an ultra - dependable real - time system with minimal
randomness in its timing behavior.

 2.7 SUMMARY

 A rigid foundation for real - time systems is laid out when decisions concerning
the system architecture and specifi c hardware devices are made in the early
stages of a development project. Such decisions establish the baseline for
achievable response times and their uncertainty, too. Later on, the system and
application software further contribute to these critical quantities. Hence,
every response time consists of multiple components, and it is highly benefi cial
to know the average and possible variation of each latency component when
making selections concerning the real - time operating system or key applica-
tion algorithms. In general, cost - effective systems tend to have well - balanced
latency components throughout the entire response - time chain; it is not needed
to have a CPU with minimal interrupt latency if the main latency, caused by
the fi eldbus network, is orders of magnitude longer.

 The selection of processor type (Fig. 2.19) is connected to the required
strength of “ real - time. ” For hard real - time systems, the recommended comput-
ing environment is obviously some microcontroller — without extensive pipe-
lining and complicated memory hierarchy. In this way, the interrupt latency is
kept minimal, which is crucial in many embedded applications. Soft real - time
systems, on the other hand, are either embedded or nonembedded. In embed-
ded cases, microcontrollers are also the primary choices, while microprocessor -
 based workstations are dominating the nonembedded and typically networked
applications. The latency uncertainties, caused by extensive pipelining and
sophisticated memory hierarchies, are tolerable in networked nonembedded
applications, such as airline reservation and booking systems, because the
unavoidable latencies in long - distance (even intercontinental) communica-
tions networks are highly nondeterministic and only weakly bound. Firm real -
 time systems are mostly embedded ones, and, thus, practical to implement on
microcontroller platforms. Nonetheless, multi - core microprocessors have
potential for applications where high instruction throughput is needed. In such
cases, an application - optimized hardware (memory and I/O subsystems) should
be designed around some multi - core CPU. This approach would reduce the
latency uncertainties from those of general - purpose workstations, but still
offer the opportunity of truly parallel multitasking in fi rm real - time systems.

www.it-ebooks.info

http://www.it-ebooks.info/

74 HARDWARE FOR REAL-TIME SYSTEMS

 I/O subsystems are possible sources of measurement inaccuracy, as well as
considerable latency. Of those, analog inputs and outputs are common sources
of subconscious inaccuracy, because a designer might consider the accuracy of
A/D and D/A converters to be equal to their resolution. That is not, however,
the case, and the accuracy issue must be addressed when designing signal
processing and control algorithms, for instance. Other important I/O issues are
the use of interrupts and their prioritization; only the most critical I/O events
deserve the right to interrupt. In this way, the critical response times will have
less variation. Fieldbus and other communications networks can be seen as
potential threats in hard and fi rm real - time systems, because their latency
characteristics may be varying substantially under different network loading
conditions. Therefore, it is sometimes necessary to implement parallel net-
works for regular and priority messages, or even use some synchronous com-
munications architecture, like the time - triggered architecture, to ensure that
the tight response - time specifi cations are fulfi lled in all practical conditions.

 The material presented in this chapter has been loosely confi ned to the
real - time effects of various hardware architectures, their practical implementa-
tions, as well as some specifi c devices. Hence, it forms a solid basis for the
following chapter on real - time operating systems, which are immediate users
of the hardware resources through device drivers, interrupt handlers, and
scheduling procedures.

 2.8 EXERCISES

2.1. Compose a table providing the available memory spaces for the follow-
ing address - bus widths: 16, 20, 24, and 32 bits.

2.2. It is common practice for programmers to create continuous test - and -
 loop code in order to poll I/O devices or wait for interrupts to occur.
Some processors provide an instruction (WAIT or HALT) that allows the
processor to hibernate until an interrupt occurs. Why is the latter form
more effi cient and desirable?

2.3. In general terms, suggest a possible scheme that would allow a machine -
 language instruction to be interruptible. What would be the overall effect
on instruction ’ s execution time and CPU ’ s throughput and response
times?

2.4. Figure 2.5 illustrates the interface lines of a generic memory component.
Assume m = 15 and n = 7. The address bus of your microprocessor is 24
bits wide. How, in principle, could you locate this particular memory
block to begin from the address 040000 (hexadecimal)? What is the cor-
responding end address?

2.5. Compare and contrast the different memory technologies discussed in
this chapter as they pertain to embedded real - time systems.

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 75

2.6. How would you test the validity and integrity of factory parameters
stored in EEPROM? Sketch a suitable procedure for that purpose.

2.7. Assume a hierarchical memory system having a joint instruction/data
cache with a memory - access cost of 10 ns on a hit and 90 ns on a miss.
An alternative design without hierarchical memory architecture has a
memory - access cost of 70 ns. What is the minimum cache - hit percentage
that would make the hierarchical memory system useful?

2.8. The Harvard architecture (Fig. 2.9) offers separate address and data
buses for instruction codes and data. Why is not it feasible to have sepa-
rate buses for programmed I/O as well?

2.9. Show with an illustrative example how the fi ve - stage pipeline discussed
in this chapter (Fig. 2.10) could benefi t from the Harvard architecture.

2.10. What special problems do superpipelined and superscalar architectures
pose for real - time system designers? Are they any different for nonreal -
 time systems?

2.11. In CISC - type processors, most instructions are having memory operands,
while RISC - type processors access memory by LOAD and STORE instruc-
tions only. What are the advantages and disadvantages of both schemes?

2.12. You are designing the architecture of a high - performance CPU for hard
real - time applications. List and justify the principal architectural selec-
tions that you would make.

2.13. Discuss the relative advantages and disadvantages of memory - mapped
I/O, programmed I/O, and DMA as they pertain to real - time systems.

2.14. Why is DMA controller access to main memory in most systems given
higher priority than CPU access to main memory?

2.15. An embedded system has a 12 - bit A/D converter for measuring voltages
between − 10 V and + 10 V. What is the digital value corresponding to
+ 5.6 V?

2.16. Find a microcontroller with unique, special instructions and, considering
the application area for that processor, discuss the need for those special
instructions.

2.17. What are the advantages of systems on chip over computers on chip (Fig.
 2.19)? Find a few examples of commercial systems on chip from the Web.

2.18. A watchdog timer (Fig. 2.20) is used for supervising the operation of an
embedded system in a high - EMI environment. Why is it practical to
connect the watchdog - circuit ’ s output to the CPU ’ s nonmaskable
(instead of maskable) interrupt input?

2.19. List the different data - transmission media mentioned in this chapter and
give typical applications for each.

www.it-ebooks.info

http://www.it-ebooks.info/

76 HARDWARE FOR REAL-TIME SYSTEMS

2.20. The time - triggered protocol (TTP/C or TTP/A) is used in safety - and
time - critical applications. Make a Web search to fi nd specifi c commercial
applications where it is used.

 REFERENCES

 S. R. Ball , Embedded Microprocessor Systems: Real World Design , 3rd Edition .
 Burlington, MA : Elsevier Science , 2002 .

 M. - Y. Chow and Y. Tipsuwan , “ Network - based control systems: A tutorial , ” Proceedings
of the 27th Annual Conference of the IEEE Industrial Electronics Society , Denver,
CO, 2001 , pp. 1593 – 1602 .

 D. B. Fogel , Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence , 3rd Edition . Hoboken, NJ : Wiley - Interscience , 2006 .

 P. H. Garrett , Advanced Instrumentation and Computer I/O Design: Real - Time Computer
Interactive Engineering . Hoboken, NJ : Wiley - Interscience , 2000 .

 H. Hadimioglu , D. Kaeli , J. Kuskin , A. Nanda , and J. Torrellas , High Performance
Memory Systems . New York : Springer - Verlag , 2004 .

 S. Hauck and A. Dehon , Reconfi gurable Computing: The Theory and Practice of FPGA -
 based Computation . Burlington, MA : Morgan Kaufmann Publishers , 2007 .

 J. L. Hennessy and D. A. Patterson , Computer Architecture: A Quantitative Approach ,
 4th Edition . Boston : Morgan Kaufmann Publishers , 2007 .

 H. Kopetz , “ Why time - triggered architectures will succeed in large hard real - time
systems , ” Proceedings of the 5th IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems , Cheju Island, Korea, 1995 , pp. 2 – 9 .

 H. Kopetz , Real - Time Systems: Design Principles for Distributed Embedded Applications .
 Norwell, MA : Kluwer Academic Publishers , 1997 .

 H. Kopetz , W. Elmenreich , and C. Mack , “ A comparison of LIN and TTP/A , ” Proceedings
of the 3rd IEEE International Workshop on Factory Communication Systems , Porto,
Portugal, 2000 , pp. 99 – 107 .

 P. A. Laplante , “ Fault - tolerant control of real - time systems in the presence of single
event upsets , ” Control Engineering Practice , 1 (5), pp. 9 – 16 , 1993 .

 D. Loy , D. Dietrich , and H. - J. Schweinzer , Open Control Networks: LonWorks/EIA 709
Technology . Norwell, MA : Kluwer Academic Publishers , 2001 .

 N. P. Mahalik , Fieldbus Technology: Industrial Network Standards for Real - Time
Distributed Control . New York : Springer , 2003 .

 U. Mayer - Baese , Digital Signal Processing with Field Programmable Gate Arrays , 3rd
Edition. New York : Springer , 2007 .

 D. Morgan , A Handbook for EMC Testing and Measurement . London, UK : Peter
Peregrinus , 1994 .

 D. R. Patrick and S. W. Fardo , Industrial Electronics: Devices and Systems , 2nd Edition .
 Lilburn, GA : The Fairmont Press , 2000 .

 D. A. Patterson and J. L. Hennessy , Computer Organization and Design: The Hardware/
Software Interface , 4th Edition . Boston : Morgan Kaufmann Publishers , 2009 .

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 77

 J. K. Peckol , Embedded Systems: A Contemporary Design Tool . Hoboken, NJ : John
Wiley & Sons , 2008 .

 S. Poslad , Ubiquitous Computing: Smart Devices, Environments and Interactions .
 Hoboken, NJ : John Wiley & Sons , 2009 .

 R. Saleh et al., “ System - on - chip: Reuse and integration , ” Proceedings of the IEEE ,
 94 (6), pp. 1050 – 1069 , 2006 .

 D. Tabak , Advanced Microprocessors . New York : McGraw - Hill , 1991 .
 L. Thiele and R. Wilhelm , “ Designing for timing predictability , ” Real- Time Systems ,

 28 (2/3), pp. 157 – 177 , 2004 .
 F. Vahid and T. Givargis , Embedded System Design: A Unifi ed Hardware/Software

Introduction . Hoboken, NJ : John Wiley & Sons , 2002 .
 O. Vainio and S. J. Ovaska , “ A class of predictive analog fi lters for sensor signal process-

ing and control instrumentation , ” IEEE Transactions on Industrial Electronics ,
 44 (4), pp. 565 – 570 , 1997 .

 D. Wetteroth , OSI Reference Model for Telecommunications . New York : McGraw - Hill ,
 2002 .

 J. Yan and W. Zhang , “ A time - predictable VLIW processor and its compiler support , ”
Real- Time Systems , 38 (1), pp. 67 – 84 , 2008 .

www.it-ebooks.info

http://www.it-ebooks.info/

 3
REAL- TIME OPERATING SYSTEMS

79

 Every real - time system contains some operating system - like functionality to
provide an interface to the input/output hardware and coordination of virtual
concurrency in a uniprocessor environment — or even true concurrency with
multi - core processors and distributed system architectures. Such a central
piece of system software has the following principal aims: to offer a reliable,
predictable, and low - overhead platform for multitasking and resource sharing;
to make the application software design easier and less hardware bound;
and to make it possible for engineers in various industries to concentrate
on their core product knowledge and leave the computer - specifi c issues
increasingly to specialized consultants and software vendors. While the variety
of real - time applications is enormous, the variety of “ real - time operating
systems ” is also considerable: from application - tailored pseudokernels to com-
mercial operating systems. A pragmatic overview on architectures, principles,
and paradigms of real - time operating systems is available in Stankovic and
Rajkumar (2004) .

 Most application developers would be happy to have the functionality of a
full - blown operating system available, but obvious design constraints like
system cost and complexity, as well as response times and their punctuality,
often direct the practitioner toward understandable compromises. This
situation is particularly true with low - end embedded systems having high

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

80 REAL-TIME OPERATING SYSTEMS

production volumes. Although complete operating systems would provide
highly valuable services for application programmers, the extra online effort
of executing system software (or “ running the bureaucracy ”) is taken from the
same processor that is also executing the possibly time - critical application
code. Hence, even from the real - time point of view, these services are not free.

 It could be stated that this chapter is the most important one of our text,
because it establishes the fundamental framework for real - time multitasking.
And everything else is connected to this essential framework. We have care-
fully composed the following seven sections to present main aspects of real -
 time operating systems that are of immediate interest to practicing engineers.
Section 3.1 introduces a variety of kernels and operating systems for different
types of real - time applications. The section further defi nes the multi - level
taxonomy from microkernels to operating systems, and discusses related
implementation approaches with practical examples. Theoretical foundations
of scheduling are outlined in Section 3.2 , where selected fi xed and dynamic
priority scheduling principles are briefl y analyzed and compared. Next, a thor-
ough presentation of typical services for application programs is provided in
Section 3.3 . The emphasis is on intertask communication and synchronization,
as well as in deadlock and starvation avoidance. Section 3.4 is devoted to
memory management issues in real - time operating systems, and it considers
the principles and implementation of the common task control block model,
for instance. After establishing a solid understanding of real - time operating
systems, we are ready to discuss the complicated process of selecting a suitable
operating system, in Section 3.5 . The critical consideration of “ buying versus
building ” is studied from different viewpoints, and a practical selection metric
is introduced. Section 3.6 summarizes the preceding sections on real - time
operating systems. A substantial collection of exercises on various subtopics
of this chapter is available in Section 3.7 .

 3.1 FROM PSEUDOKERNELS TO OPERATING SYSTEMS

 A process (synonymously called “ task ” throughout this text) is an abstraction
of a running program and is the logical unit of work schedulable by the real -
 time operating system. A process is usually represented by a private data
structure that contains at least an identity, priority level, state of execution
(e.g., running, ready, or suspended), and resources associated with the process.
A thread is a lightweight process that must reside within some regular process
and make use of the resources of that particular process only. Multiple threads
that reside logically within the same process may share resources with each
other. While processes are active participants of system - level multitasking,
threads can be seen as members of process - level multitasking; this hierarchy
is illustrated in Figure 3.1 . It should be noted, however, that both processes
and threads are available solely in full - featured operating systems executing
typically in workstation environments. Such high - end environments are typi-

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 81

cally running soft real - time applications. On the other hand, most embedded
real - time systems have just a single category of tasks.

 Real - time operating systems provide three essential functions with respect
to software tasks: scheduling, dispatching, as well as intertask communication
and synchronization. The kernel of the operating system is the smallest entity
that provides for all these functions. A scheduler determines which task will
run next in a multitasking system, while a dispatcher performs the necessary
bookkeeping to start that particular task. Moreover, intertask communication
and synchronization assures that parallel tasks may cooperate effectively. Four
layers of operating system functionality and an associated taxonomy are
shown in Figure 3.2 .

 The bottom layer of Figure 3.2 , a microkernel , provides for plain task sched-
uling and dispatching. A kernel also provides for intertask communication and

 Figure 3.1. Hierarchical relationships between the system, multiple processes, and
multiple threads.

System

Process 1 Process 2 Process 3

Thread 1.1

Thread 1.2

Thread 1.3

Thread 2.1

Thread 2.2

Thread 2.3

Thread 2.4

Thread 3.1

Thread 3.2

 Figure 3.2. The role of the kernel in operating systems; moving up the taxonomy stack
shows the additional functionality provided and indicates the relative closeness to
hardware versus users.

Users

Hardware

Task Scheduling and
Dispatching

Intertask Communication and
Synchronization

Privatized Memory Blocks,
Input/Output Services, and

Supporting Features

User Interface,
Security Features, and

File Management
Operating System

Executive

Kernel

Microkernel

www.it-ebooks.info

http://www.it-ebooks.info/

82 REAL-TIME OPERATING SYSTEMS

synchronization via mailboxes, queues, pipes, and semaphores, for example. A
real - time executive is an extended kernel that includes privatized memory
blocks, input/output services, and other supporting features. Most commercial
real - time kernels are actually executives by this defi nition. Finally, an operating
system is an advanced executive that provides for a generalized user interface,
security features, and a sophisticated fi le management system.

 Regardless of the operating system architecture used, the ultimate objective
is to satisfy real - time behavioral and temporal requirements, and make avail-
able a seamless multitasking environment that is fl exible and robust.

 3.1.1 Miscellaneous Pseudokernels

 Real - time multitasking, in its rudimentary form, can be achieved without inter-
rupts and even without an operating system per se. When feasible, these pseu-
dokernel approaches are preferred because resultant systems are often highly
predictable and easier to analyze. Nonetheless, they might be more laborious
to extend and maintain than real - time systems using true kernels. Today, pseu-
dokernels are generally only found in low - end embedded systems.

 Straightforward polled loops are used for providing fast response to single
devices. In a polled loop system, a repetitive instruction is testing a fl ag that
indicates whether or not some event has occurred. If the event has not occurred,
then the polling continues.

 Example: Polled Loop

 Suppose a piece of software is needed to handle packets of data that
arrive at a rate of no more than one packet per second. A fl ag named
packet_here is set by a fi eldbus controller, which writes the data into the
main memory via direct memory access. The data are available when
packet_here=1 .

 Using a C code fragment, write a polled loop to handle such a system.

for(;;) { /* do forever */
if (packet_here) /* check flag */

{
process_data(); /* process data */
packet_here=0; /* reset flag */
}

}

 Polled loop schemes work well when a single CPU is dedicated to handling the
I/O for some fast device and when overlapping of events is not possible.
Moreover, polled loops are commonly implemented as a background task in
an interrupt - driven system, or as an individual task in a cyclic code structure.

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 83

In the latter case, the polled loop polls each cycle for a fi nite number of times
to allow other tasks to run. Those other tasks handle the nonevent - driven pro-
cessing. Interrupt - driven systems and cyclic code structures are discussed shortly.

 A variation on the polled loop uses a fi xed clock interrupt to pause between
the time when the signaling event is triggered and then reset. Such a scheme
is used, for example, to treat problematic events that exhibit contact bounce
in various control applications. Contact bounce is a physical phenomenon that
occurs because it is practically impossible to build an electromechanical switch
that could change its state instantaneously without any contact oscillation.
Events triggered by various buttons, contactors, relays, and switches all exhibit
this undesired phenomenon. If, however, a suffi cient delay occurs between the
initial triggering of the event and the reset, the system will avoid interpreting
the settling oscillations as separate events. These false events would likely
overwhelm any polled loop service.

 Example: Polled Loop with Delay

 Suppose a polled loop system is used to handle an event that occurs aperi-
odically, but no more than once per second. The event is known to exhibit
a strong contact bounce behavior that disappears after no more than 20 ms.
A system timer pause with 1 ms resolution (or tick length) is available for
creating a suitable delay. The event is signaled by an external device that
sets a memory location flag=1 via DMA.

 Write a C code fragment for implementing a polled loop structure that
is not sensitive to the contact bounce described.

for(;;) { /* do forever */
if (flag) /* check flag */

{
process_event(); /* process event */
pause(21); /* wait 21 ms */
flag=0; /* reset flag */
}

}

 To make sure that all spurious events have disappeared before resetting the
fl ag, the delay length was set 1 ms longer than the known burst of contact oscil-
lation. Assuming the pause system call is available, polled loop systems are
simple to program and debug, and the response time is easy to determine.

 Polled loops are excellent for handling high - speed data channels, especially
when the events occur at widely dispersed intervals and the CPU is dedicated
to handling the data channel. Polled loop systems may sometimes fail, however,
because event bursts are not taken into account. Furthermore, polled loops by

www.it-ebooks.info

http://www.it-ebooks.info/

84 REAL-TIME OPERATING SYSTEMS

themselves are not suffi cient to handle complex systems. In addition, polled
loops inherently waste CPU time, especially if the event being polled occurs
infrequently.

 Cyclic code structures are noninterrupt - driven systems that can provide the
illusion of simultaneity by taking advantage of relatively short tasks on a fast
processor in a continuous loop.

 Example: Cyclic Code Structure

 Consider a set of n self - contained tasks, task_1 through task_n , in a
continuous loop. Provide C code fragments for implementing cyclic code
structures with different cycle rates.

for(;;) { /* do forever */
task_1();
task_2();
...
task_n();
}

 In this case, the cycle rate is the same for each task, as they execute in
round - robin fashion. Different cycle rates can be achieved by repeating a
task appropriately in the list as shown below.

for(;;) { /* do forever */
task_l();
task_2();
...
task_n();
task_2();
}

 Here, task_2 runs twice in a single cycle, while other tasks are executed
only once.

 When using the cyclic code approach, the task list can be made dynamically
adjustable by keeping a list of pointers to tasks that are managed by the
 “ pseudo operating system ” as tasks are created and completed. Intertask
communication could be achieved through global variables, for instance.
Global variables , however, should always be used with utmost care to avoid
data integrity problems . If each task is relatively short and uniform in size,
then adequate reactivity and simultaneity can often be achieved without inter-
rupts. Moreover, if all tasks are carefully constructed including proper syn-

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 85

chronization through global variables, complete determinism and defi nite
schedulability can be achieved. Cyclic code structures are, however, inade-
quate for all but the simplest of real - time systems, because of the diffi culties
in uniformly dividing the tasks and in the lengthy response times that are
potentially created.

 State - driven code uses nested if-then statements, case statements, or
 fi nite state machine s (FSM s) to break up the processing of individual functions
into multiple code segments. The separation of tasks allows each to be tempo-
rarily suspended before completion, without loss of critical data. This capabil-
ity to be suspended and then resumed, in turn, facilitates multitasking via a
scheme, such as coroutines, which we will discuss shortly. State - driven code
works well in conjunction with cyclic code structures when the tasks are too
long or largely nonuniform in size. Finally, because rigorous techniques for
reducing the number of states exist, programs based on FSMs can be automati-
cally optimized. A rich theory surrounds FSMs, and relevant theoretical results
will be outlined in Chapter 5 .

 Not all tasks lend themselves naturally to division into multiple states; some
tasks are therefore unsuitable for this technique. In addition, the schedule
tables needed to implement the code can become quite large. Besides, the
manual translation process from the fi nite state machine notation to tabular
form is error - prone.

 Coroutines or cooperative multitasking systems require highly disciplined
programming and an appropriate application. These types of pseudokernels
are employed in conjunction with code driven by FSMs. In this scheme, two
or more tasks are coded in the state - driven fashion just discussed, and after
each phase is completed, a call is made to a central dispatcher. The dispatcher
holds the program counter for a list of tasks that are executed in round - robin
fashion; that is, it selects the next task to execute. This task then executes until
its next phase is completed, and the central dispatcher is called again. Note
that if there is only one coroutine, then it will be repeated cyclically. Such a
system is called a cyclic code structure. Communication between the tasks is
achieved via global variables. Any data that need to be preserved between
dispatches must be deposited to the global variable space.

 Example: Coroutines

 Consider a system in which two tasks are executing “ in parallel ” and in
isolation. After executing phase_a1 , task_a returns control to the central
dispatcher by executing break . The dispatcher initiates task_b , which
executes phase_b1 to completion before returning control to the dis-
patcher. The dispatcher then starts task_a , which begins phase_a2 , and
so on. An illustrative C code is given below for task_a and task_b , in
the case of three phases.

www.it-ebooks.info

http://www.it-ebooks.info/

86 REAL-TIME OPERATING SYSTEMS

void task_a(void)
{
for(;;)

{
switch(state_a)
 {
 case 1: phase_a1();
 break; /* to dispatcher */

 case 2: phase_a2();
 break; /* to dispatcher */

 case 3: phase_a3();
 break; /* to dispatcher */

 }
}

}
void task_b(void)
{
for(;;)

{
switch(state_b)
 {
 case 1: phase_b1();
 break; /* to dispatcher */

 case 2: phase_b2();
 break; /* to dispatcher */

 case 3: phase_b3();
 break; /* to dispatcher */

 }
}

}

 Note that the variables state_a and state_b in the above example are state
counters that are global variables managed by the dispatcher. Indeed, for
simplicity, intertask communication and synchronization are maintained
entirely via global variables and coordinated by the dispatcher. The coroutine
approach can be extended to any number of tasks, each divided into an arbi-
trary number of phases. If each programmer provides calls to the dispatcher
at known intervals, the response time is easy to determine because this system
is written without hardware interrupts.

 A variation of this scheme occurs when a polled loop must wait for a par-
ticular event while other processing can continue. Such a scheme reduces the
amount of time wasted polling the event fl ag, and allows for processing time
for other tasks. In short, coroutines are the easiest type of “ fairness scheduling ”

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 87

that can be implemented. It should be noted, however, that in most embedded
applications, the fairness of scheduling does not have much value, because
different tasks are typically of different importance and urgency. In addition,
the coroutine tasks can be written by independent parties, and the fi nal number
of tasks need not be known beforehand. Certain programming languages, such
as Ada, have effi cient built - in constructs for implementing coroutines.

 In the past, even large and complex real - time applications were successfully
implemented using coroutines; for example, IBM ’ s transaction processing
system, Customer Information Control System (CICS), was originally con-
structed entirely via coroutines. Unfortunately, any use of coroutines assumes
that each task can relinquish the CPU at regular intervals. It also requires a
communication scheme involving global variables, which is usually an unde-
sired approach. Finally, tasks cannot always be decomposed uniformly, which
can adversely affect response times, since the minimum response time is
asymptotically constrained by the longest phase.

 3.1.2 Interrupt - Only Systems

 In interrupt - only systems, the “ main program ” is just a single jump-to-self
instruction. The various tasks in the system are scheduled via either hardware
or software interrupts, whereas task dispatching is performed by interrupt -
 handling routines.

 When pure hardware interrupt scheduling is used, a real - time clock or other
external device issues interrupt signals that are directed to an interrupt con-
troller. The interrupt controller issues interrupt signals for the CPU, depending
on the order of arrival and priority of the interrupts involved. If the processor
architecture supports multiple interrupts, then the hardware handles explicit
dispatching as well. If only a single interrupt level is available, then the
interrupt - handling routine will have to read the interrupt status register on
the interrupt controller, determine which interrupt(s) occurred, and dispatch
the appropriate task. Some processors implement this in microcode, and
so the operating system designer is relieved of this duty.

 In embedded applications, the real - time software usually needs to service
interrupts from one or more special purpose devices. In some cases, the soft-
ware engineer will need to write a device driver from scratch or adapt a generic
driver code in which interrupts are needed for synchronization. Whatever the
case, it is important for the software engineer to understand interrupt mecha-
nisms and their proper handling.

 There are two kinds of interrupts: hardware interrupt and software inter-
rupt (see Sections 2.1.3 and 2.4.1). The fundamental difference between hard-
ware and software interrupts is in the trigger mechanism. While the trigger of
a hardware interrupt is an electrical signal from some external device, the
trigger of a software interrupt is the execution of a specifi c machine - language
instruction. An additional feature found in most processors is that of an excep-
tion, which is an internal interrupt that is triggered by a program ’ s attempt to

www.it-ebooks.info

http://www.it-ebooks.info/

88 REAL-TIME OPERATING SYSTEMS

perform a special, illegal, or unexpected operation. These three situations
cause the CPU to transfer execution to a predetermined location and then
execute the interrupt handler (IH) associated with that specifi c situation.

 Hardware interrupts are asynchronous or sporadic in nature, that is, an
interrupt may take place at any time. When interrupted, the program is sus-
pended while the CPU invokes the IH. Frequently, an application developer
is required to write an IH for a specifi c type of hardware interrupt. In such
case, it is important to understand what constitutes the CPU state, and whether
IHs must preserve anything in addition to work registers.

 Access to resources shared with an IH is usually controlled by disabling
interrupts in the application around any code that reads or writes to the shared
resource. Standard synchronization mechanisms cannot be used in an IH,
because it is not practical for an IH to wait for a resource to be available. When
interrupts are disabled, the system ’ s ability to receive stimuli from the outside
world is minimal (only via the nonmaskable interrupt). Therefore, it is impor-
tant to keep the critical sections of code in which the interrupts are disabled
as short as possible. If the interrupt handler takes a signifi cant time to process
an interrupt, the external device may be kept waiting too long before its next
interrupt is serviced.

 Reentrant code can execute simultaneously in two or more contexts. An IH
is said to be reentrant if, while the IH is servicing an interrupt, the same inter-
rupt can occur again and the IH can safely process the second occurrence of
the interrupt before it has fi nished processing the fi rst. To create strictly reen-
trant code, the following general rules must be fulfi lled (Simon, 1999):

 • Reentrant code is not allowed to use any data in a nonatomic way except
when they are saved on the stack.

 • Reentrant code is not allowed to call any other code that is not itself
reentrant.

 • Reentrant code is not allowed to use any hardware resources in a non-
atomic way.

 • Reentrant code is not allowed to change its own code.

 An atomic operation refers to a group of suboperations that can be combined
to appear as a single (noninterruptible) operation. Regardless of the type of
IH to be written, a snapshot of the current system state — called the context —
 must be preserved upon switching tasks so that it can be restored upon resum-
ing the interrupted task. Context switching is thus the process of saving and
restoring suffi cient information for a software task so that it can be resumed
after being interrupted. The context is ordinarily saved to a stack data struc-
ture managed by the CPU. Context - switching time is a major contributor to
the composite response time, and, therefore, must be minimized. The prag-
matic rule for saving context is simple: save the minimum amount of informa-
tion necessary to safely restore any task after it has been interrupted . This
information typically includes: contents of work registers, content of the

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 89

program counter register, content of the memory page register, and images of
possible memory - mapped I/O locations.

 Normally, within the interrupt handlers, interrupts are disabled during the
critical context - switching period. Sometimes, however, after suffi cient context
has been saved, interrupts can be enabled after just a partial context switch in
order to handle a burst of interrupts, to detect spurious interrupts, or to
manage a time - overload condition.

 The fl exible stack model for context switching (see Section 3.4) is used
mostly in embedded systems where the number of interrupt - driven tasks is
fi xed. In the stack model, each interrupt handler is associated with a hardware
interrupt and is invoked by the CPU, which vectors to the stream of instruc-
tions stored at the appropriate interrupt - handler location. The context is then
saved to a stack data structure.

 Example: Interrupt - Only System

 Consider the following pseudocode for a partial real - time system, written
in C, and consisting of a trivial jump-to-self main program and three
interrupt handlers. Each of the interrupt handlers saves the context using
the stack model. The interrupt handlers ’ starting addresses should be loaded
into appropriate interrupt vector locations upon system initialization.

void main(void)
{
init(); /* system initialization */
while(TRUE); /* jump -to-self */

}
void int_l(void) /* interrupt handler 1 */
{
save(context); /* save context to stack */
task_1(); /* execute task 1 */
restore(context); /* restore context */

}
void int_2(void) /* interrupt handler 2 */
{
save(context); /* save context to stack */
task_2(); /* execute task 2 */
restore(context); /* restore context */

}
void int_3(void) /* interrupt handler 3 */
{
save(context); /* save context to stack */
task_3(); /* execute task 3 */
restore(context); /* restore context */

}

www.it-ebooks.info

http://www.it-ebooks.info/

90 REAL-TIME OPERATING SYSTEMS

 In this simplifi ed example, the procedure save pushes critical registers
and possibly other context information to a stack data structure, whereas
restore pops that information back from the stack. Both save and restore
may have one argument: a pointer to data structure representing the context
information. The stack pointer is automatically adjusted by the CPU, as will
be discussed in Section 3.1.4 .

 3.1.3 Preemptive Priority Systems

 A higher - priority task is said to preempt a lower - priority one if it interrupts the
executing lower - priority task. Systems that use preemption schemes instead of
round - robin or fi rst - come - fi rst - served scheduling are called preemptive prior-
ity systems. The priorities assigned to each interrupt are based on the impor-
tance and urgency of the task associated with the interrupt. For example, the
nuclear power plant supervision system is best designed as a preemptive prior-
ity system. While appropriate handling of intruder events, for example, is criti-
cal, nothing is more important than processing the core overtemperature alert.

 Prioritized interrupts can be either of fi xed priority or dynamic priority
type. Fixed priority systems are less fl exible, since the task priorities cannot be
changed after system initialization. Dynamic priority systems, on the other
hand, allow the priority of tasks to be adjusted at runtime to meet changing
real - time demands. Nonetheless, most embedded systems are implemented
with fi xed priorities, because there are limited situations in which the system
needs to adjust priorities at runtime. A common exception to this practice is,
however, the problematic priority inversion condition that is discussed in
Section 3.3.6 .

 Preemptive priority schemes can suffer from resource hogging by higher -
 priority tasks. This may lead to a lack of available resources for lower - priority
tasks. In such case, the lower - priority tasks are said to be facing a serious
problem called starvation. The potential hogging/starvation problem must be
carefully addressed when designing preemptive priority systems.

 A special class of fi xed - rate, preemptive priority, interrupt - driven systems,
called rate - monotonic systems, comprises those real - time systems where the
priorities are assigned so that the higher the execution rate, the higher the
priority. This scheme is common in embedded applications like avionics systems,
and has been studied extensively. For example, in the aircraft navigation system,
the task that gathers accelerometer data every 10 ms has the highest priority.
The task that collects gyro data, and compensates these data and the acceler-
ometer data every 40 ms, has the second highest priority. Finally, the task that
updates the pilot ’ s display every second has the lowest priority. The valuable
theoretical aspects of rate - monotonic systems will be studied in Section 3.2.4 .

 3.1.4 Hybrid Scheduling Systems

 Some hybrid scheduling systems include interrupts that occur at both fi xed
rates and sporadically. The sporadic interrupts can be used, for example, to

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 91

handle a critical error condition that requires immediate attention, and thus
have the highest priority. This type of hybrid - interrupt system is common in
embedded applications.

 Another type of hybrid scheduling system found in commercial operating
systems is a combination of round - robin and preemptive priority systems. In
these systems, tasks of higher priority can always preempt those of lower prior-
ity. However, if two or more tasks of the same priority are ready to run simul-
taneously, then they run in round - robin fashion, which will be described shortly.

 To summarize, interrupt - only systems are straightforward to code and typi-
cally have fast response times because task scheduling can be done via hard-
ware. Interrupt - only systems are a special case of foreground/background
systems, which are widely used in embedded systems. Typical weaknesses of
interrupt - only systems are the time wasted in the jump - to - self loop and
the diffi culty in providing advanced services. Such services include device
drivers and interfaces to layered communications networks. Besides, interrupt -
 only systems are vulnerable to several types of malfunctions due to timing
variations, unanticipated race conditions, electromagnetic interferences, and
other problems.

 Foreground/background systems are a small but meaningful improvement
over the interrupt - only systems in that the jump - to - self loop is replaced
by low - priority code that performs useful processing. Foreground/background
systems are, in fact, the most common architecture for embedded applications.
They involve a set of interrupt - driven tasks called the foreground and a single
noninterrupt - driven task called the background (Fig. 3.3). The foreground
tasks run in round - robin, preemptive priority, or hybrid fashion. The back-
ground task is fully preemptable by any foreground task, and, therefore, rep-
resents the lowest priority task in the real - time system.

 All the real - time solutions discussed above can be seen as special cases of
the foreground/background system. For example, the simple polled loop is a
foreground/background system with no foreground, and a polled loop as a
background. Adding a delay (based on the real - time clock interrupt) for avoid-
ing problems related to contact bouncing yields a full foreground/background

 Figure 3.3. An interrupt - driven foreground/background system.

Background

Task
Task 2

Task 1

Task n

Foreground Tasks

“Main Program”

Interrupts

www.it-ebooks.info

http://www.it-ebooks.info/

92 REAL-TIME OPERATING SYSTEMS

system. State - driven code is a foreground/background system with no fore-
ground and phase - driven code for a background. A coroutine system is just a
complicated background task. Finally, interrupt - only systems are foreground/
background systems without any useful background processing.

 As a noninterrupt - driven task, the background processing should solely
include anything that is not time critical. While the background task is the task
with the lowest priority, it should always execute to completion provided the
system utilization is below 100% and no deadlock occurs. It is common, for
instance, to increment a counter in the background task in order to provide a
measure of time loading or to detect if any foreground task has hung up. It
might also be desirable to provide individual counters for each of the fore-
ground tasks, which are reset in the corresponding tasks. If the background
task detects that one of the counters is not being reset often enough, it can be
assumed that the corresponding task is not being executed properly and, that
some kind of failure is indicated. This is a form of software watchdog timer.
Certain low - priority self - testing can also be performed in the background.
Moreover, low - priority display updates, parameter entry through keypads,
logging to printers, or other interfaces to slow devices can be conveniently
performed in the background.

 Initialization of the foreground/background system usually consists of the
following six steps:

 1. Disable interrupts.
 2. Set up interrupt vectors and stacks.
 3. Initialize peripheral interface units and other confi gurable hardware.
 4. Perform self - tests.
 5. Perform necessary software initializations.
 6. Enable interrupts.

 Initialization is always the fi rst part of the background task. It is important to
disable interrupts because some systems start up with interrupts enabled, while
certain time is defi nitely needed to set up the entire real - time system. This
setup consists of initializing the interrupt vector addresses, setting up the stack
or stacks (if it is a multiple - level interrupt system), confi guring hardware
appropriately, and initializing any buffers, counters, data, and so on. In addi-
tion, it is often useful to perform some self - diagnostic tests before enabling
interrupts. Finally, real - time processing can begin.

 Example: Initialization and Context Saving/Restoring

 Suppose it is desired to implement an interrupt handler for a CPU with a
single interrupt. That is, we have just one interrupt - driven task in addition
to the background task. The EPI and DPI instructions can be used to enable
and disable the maskable interrupt, and it is assumed that upon receiving

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 93

an interrupt request, the CPU will hold off other interrupts until explicitly
reenabled with an EPI instruction.

 For simplicity, assume it is adequate to save the four work registers,
RO – R3 , on the stack for context - switching purposes. Here, the context
switching involves saving the status of the CPU when it is used by the
background task. The foreground task will run to completion so its context
is never saved. Further, assume that the interrupt - handler exists in memory
location int , and the stack should begin from memory location stack .

 The following assembly code could be used to minimally initialize this
foreground/background system:

DPI ; Disable interrupts .

MOVE handler, &int ; Set interrupt handler ’ s address .

LDSP &stack ; Set stack pointer .

EPI ; Enable interrupts .

 Now, the interrupt handler could look as follows:

DPI ; Disable interrupts .

PUSH R0 ; Save R0 .

PUSH R1 ; Save R1 .

PUSH R2 ; Save R2 .

PUSH R3 ; Save R3 .

... ; Code of TASK_1 .

POP R3 ; Restore R3 .

POP R2 ; Restore R2 .

POP R1 ; Restore R1 .

POP R0 ; Restore R0 .

EPI ; Enable interrupts .

RETI ; Return from interrupt .

 It should be noted that the order of pushing registers to the stack must be
reverse from the order of popping them from the stack. Figure 3.4 shows the
behavior of the stack during context saving and restoring. In many processors,
specifi c machine language instructions are available for saving and restoring
all relevant registers with just a single instruction.

 Example: Background Task

 The background task would include a one - time initialization procedure and
any continuous processing that is not time critical. If the program were to
be written in C, it might appear as:

www.it-ebooks.info

http://www.it-ebooks.info/

94 REAL-TIME OPERATING SYSTEMS

 Foreground/background systems (as well as interrupt - only systems) typically
have good response times, since they rely completely on hardware to perform
task scheduling. Hence, they are the preferred solution for many embedded
real - time systems. Nevertheless, “ homegrown ” foreground/background
systems have at least one noticeable drawback: interfaces to complicated
devices and possible communications networks usually need to be written
from scratch (occasionally, open - source software can be used or adapted, but
then there are software licensing issues to be considered). The process of
writing device drivers and interfaces can be tedious and error - prone. In addi-
tion, foreground/background systems are best implemented when the number
of foreground tasks is fi xed and known a priori . Although programming lan-
guages that support dynamic allocation of memory could handle a variable
number of tasks, this can be tricky. In general, the straightforward foreground/
background system shares nearly all the weaknesses of interrupt - only systems
discussed above.

 The foreground/background scheme can be extended into a full - blown
operating system by adding typical complementary functions, such as com-
munications network interfaces, device drivers, and real - time debugging
tools. Such complete systems are widely available as commercial products.
These commercial products rely on relatively complex software structures
using round - robin, preemptive priority, or a hybrid of those schemes to
provide scheduling, and the operating system itself represents the highest
priority task.

 void main(void)
 {
 init(); / * initialize system * /
 while(TRUE) / * repetitious loop * /
 background(); / * not time critical * /
 }

 Figure 3.4. The behavior of stack during context saving and restoring; here, the context
is solely four registers.

SP=stack

?

?

?

?

?

?

SP=stack+4

?

R3

R2

R1

R0

?

After Initialization
(Undefined Contents)

Context Saved
(After 4 Pushes)

SP=stack

?

?

Context Restored
(After 4 Pops)

R3

R2

R1

R0

www.it-ebooks.info

http://www.it-ebooks.info/

FROM PSEUDOKERNELS TO OPERATING SYSTEMS 95

 3.1.5 The Task Control Block Model

 The task control block (TCB) model is the most popular approach for imple-
menting commercial, full - featured, real - time operating systems, because the
number of software tasks can vary. This architecture is used particularly in
interactive online systems of soft real - time type where tasks, typically associated
with users, come and go. The TCB model can be used in round - robin, preemp-
tive priority, or hybrid scheduling systems, although it is often associated with
round - robin systems with a fi xed time - slicing clock. In preemptive systems,
however, it can be used to facilitate dynamic task prioritization. The main
drawback of the fl exible TCB model is that when a large number of tasks are
created, the bookkeeping overhead of the dispatcher may become signifi cant.

 In the task control block model, each task is associated with a private
data structure, called a task control block depicted in Figure 3.5 . The oper-
ating system stores these TCBs in one or more data structures, typically in a
linked list.

 The operating system manages the TCBs by keeping track of the state or
status of each task. Typically, a task can be in any one of the four following
states:

 1. Executing
 2. Ready
 3. Suspended
 4. Dormant

 The executing task is the one that is currently executing, and in a uniprocessor
environment, there can be only one such task at any time. A task can enter
the executing state when it is created (if no other tasks are ready), or from the
ready state (if it is eligible to run based on its priority or position in the round -
 robin queue). When a task is completed, it returns to the suspended state.

 Figure 3.5. A typical task - control block.

Task Identifier

Priority

Status

Work Registers

Program Counter

Status Register(s)

Pointer to Next TCB

TCB

Stack Pointer

www.it-ebooks.info

http://www.it-ebooks.info/

96 REAL-TIME OPERATING SYSTEMS

 Tasks in the ready state are those that are ready to execute but are not
executing. A task enters the ready state if it was executing and its time slice
ran out, or it was preempted by a higher priority task. If it was in the suspended
state, then it can enter the ready state if an event that initiates it occurs. Tasks
that are waiting for a particular resource, and thus are not ready to execute,
are said to be suspended or blocked.

 The dormant state is used only in systems where the number of TCBs is
fi xed. This state allows for determining specifi c memory requirements before-
hand, but limits available system memory. A task in this state is best described
as a task that exists but is currently unavailable for scheduling. Once a task
has been created, it can become dormant by deleting it.

 The operating system is in essence the highest priority task. Every hardware
interrupt and every system call (such as a request on a resource) invokes the
real - time operating system. The operating system is responsible for maintain-
ing a linked list containing the TCBs of all the ready tasks, and another linked
list of those in the suspended state. It also keeps a table of resources and a
table of resource requests. Each TCB contains the essential information nor-
mally tracked by the interrupt handler. Hence, the difference between the
TCB model and the interrupt - handler model is that the resources are managed
by the operating system in the TCB model, while in the IH model, tasks track
their own resources. The TCB model is advantageous when the number of
tasks is indeterminate at design time or can change when the real - time system
is in operation. That is, the TCB model is very fl exible.

 When it is invoked, the operating system checks the ready list to see if
another task is eligible for execution. If that is the case, then the TCB of the
currently executing task is moved to the end of the ready list (round - robin
approach), and the newly eligible task is removed from the beginning of the
ready list and its execution begins.

 Task state management can be achieved by manipulating the status word
appropriately. For example, if all of the TCBs are set up in the list with their
status words initialized to “ dormant, ” then each task can be added to active
scheduling by simply changing the status to “ ready. ” During runtime, the status
words of tasks are updated accordingly, either to “ executing ” in the case of
the next eligible task or back to “ ready ” in the case of the preempted task.
Blocked tasks have their status word changed to “ suspended. ” Completed
tasks can be removed from the active task list by resetting the status word to
 “ dormant. ” This approach reduces runtime overhead, because it eliminates the
need for dynamic memory management of the TCBs. It also provides more
deterministic performance because the TCB list is of constant size.

 In addition to scheduling, the operating system tracks the status of resources
waited in the suspended list. If a task is suspended due to some wait for
a resource, then that task can enter the ready state only upon availability of
the resource. The list structure is used to arbitrate multiple tasks that are
suspended on the same resource. If a resource becomes available to a sus-
pended task, then the resource and resource request tables are updated

www.it-ebooks.info

http://www.it-ebooks.info/

THEORETICAL FOUNDATIONS OF SCHEDULING 97

correspondingly, and the eligible task is moved from the suspended list to the
ready list.

 3.2 THEORETICAL FOUNDATIONS OF SCHEDULING

 In order to take advantage of certain theoretical results in real - time operating
systems, a somewhat rigorous formulation is necessary. Most real - time systems
are inherently concurrent, that is, their natural interaction with external events
typically requires multiple virtually (in uniprocessor environments) or truly
(in multiprocessor environments) simultaneous tasks to cope with various
features of control systems, for example. A task is the active object of a real -
 time system and is the basic unit of processing managed by the scheduler. As
a task is running, it dynamically changes its state, and at any time, it may be
in one, but only one, of the four states defi ned above in Section 3.1.5 (i.e.,
 executing , ready , suspended , or dormant). In addition, a fi fth possible state,
 terminated , is sometimes included. In the “ terminated ” state, the task has fi n-
ished its running, has aborted or self - terminated, or is no longer needed.

 A partial state diagram corresponding to task (process or thread) states is
depicted in Figure 3.6 . It should be noted that different operating systems have
different naming conventions, but the fundamental states represented in this
nomenclature exist in one form or another in all real - time operating systems.

 Figure 3.6. A representative task state diagram as a partially defi ned fi nite state
machine.

Terminated

SuspendedReady

Executing

Dormant

Schedule

Task

Aborted

Resource

Missing

Resource

Released

Preempted

Task with

Highest Priority

No Longer

Needed

Delete

Task

www.it-ebooks.info

http://www.it-ebooks.info/

98 REAL-TIME OPERATING SYSTEMS

Many full - featured operating systems allow processes created within the same
program to have unrestricted access to the shared memory through a thread
facility. The hierarchical relationship between regular processes and threads is
discussed in Section 3.1 .

 3.2.1 Scheduling Framework

 Scheduling is a primary operating system function. In order to meet a pro-
gram ’ s temporal requirements in some real - time environment, a solid strategy
is required for ordering the use of system resources, and a practical scheme is
needed for predicting the worst - case performance (or response time) when a
particular scheduling policy is applied. There are two principal classes of
scheduling policies: pre - runtime and runtime scheduling. The obvious goal of
both types of scheduling is to strictly satisfy response time specifi cations.

 In pre - runtime scheduling, the objective is to manually (or semiautomati-
cally) create a feasible schedule offl ine, which guarantees the execution order
of tasks and prevents confl icting access to shared resources. Pre - runtime
scheduling also takes into account and reduces the cost of context switching
overhead, hence increasing the chance that a feasible schedule can be found.

 In runtime scheduling, on the other hand, fi xed or dynamic priorities are
assigned and resources are allocated on a priority basis. Runtime scheduling
relies on relatively complex runtime mechanisms for task synchronization and
intertask communication. This adaptive approach allows events to interrupt
tasks and demand resources periodically, aperiodically, or even sporadically.
In terms of performance analysis, engineers must usually rely on stochastic
system simulations to verify these types of designs.

 The workload on processors consists of individual tasks each of which is a
unit of processing to be allocated CPU time and other resources when needed.
Every single CPU is assigned to at most one task at any time. Moreover, every
task is assigned to at most one CPU at a time. No task (or job) is scheduled
before its release time. Each task, τi , is typically characterized by the following
temporal parameters:

 • Precedence constraints : Specify if any task needs to precede other tasks.
 • Release time r i,j : The release time of the j th instance of task τi .
 • Phase ϕi : The release time of the fi rst instance of task τi .
 • Response time : The time span between the task activation and its

completion.
 • Absolute deadline d i : The instant by which task τi must complete.
 • Relative deadline D i : The maximum allowable response time of task τi .
 • Laxity type : The notion of urgency or leeway in a task ’ s execution.
 • Period p i : The minimum length of interval between two consecutive

release times of task τi .

www.it-ebooks.info

http://www.it-ebooks.info/

THEORETICAL FOUNDATIONS OF SCHEDULING 99

 • Execution time e i : The maximum amount of time required to complete
the execution of task τ i when it executes alone and has all the resources
it needs.

 Mathematically, some of the parameters just listed are related as follows:

 φ φi i i j i ir r j p= = + −(), , .1 1and (3.1)

 d i , j is the absolute deadline of the j th instance of task τ i , and it can be expressed
as follows:

 d j p Di j i i i, .= + −() +φ 1 (3.2)

 If the relative deadline of a periodic task τ i is equal to its period p i , then

 d r p kpi k i k i i i, , ,= + = +φ (3.3)

where k is a positive integer greater than or equal to one, corresponding to
the k th instance of that task.

 Next, a basic task model is presented in order to describe some standard
scheduling policies used in real - time systems. The task model has the following
simplifying assumptions:

 • All tasks in the task set considered are strictly periodic.
 • The relative deadline of a task is equal to its period.
 • All tasks are independent; there are no precedence constraints.
 • No task has any nonpreemptible section, and the cost of preemption is

negligible.
 • Only processing requirements are signifi cant; memory and I/O require-

ments are negligible.

 For real - time systems, it is of utmost importance that the scheduling algorithm
applied produces a predictable schedule, that is, at all times, it is known
which task is going to execute next. Many real - time operating systems
use a round - robin scheduling policy, because it is simple and predictable.
Therefore, it is of interest to describe that popular scheduling algorithm more
rigorously.

 3.2.2 Round - Robin Scheduling

 In a round - robin system, several tasks are executed sequentially to completion,
often in conjunction with a cyclic code structure. In round - robin systems with
time slicing, each executable task is assigned a fi xed time quantum called a
time slice in which to execute. A fi xed - rate clock is used to initiate an interrupt

www.it-ebooks.info

http://www.it-ebooks.info/

100 REAL-TIME OPERATING SYSTEMS

at a rate corresponding to the time slice. The dispatched task executes until it
completes or its time slice expires, as indicated by the clock interrupt. If the
task does not execute to completion, its context must be saved and the task is
placed at the end of the round - robin queue. The context of the next executable
task in the queue is restored, and it resumes execution. Essentially, round -
 robin scheduling achieves fair allocation of the CPU resources to tasks of the
same priority by straightforward time multiplexing.

 Furthermore, round - robin systems can be combined with preemptive prior-
ity systems, yielding a kind of hybrid system. Figure 3.7 illustrates such a hybrid
system with three tasks and two priority levels. Here, Tasks A and C are of the
same priority, whereas Task B is of higher priority. First, Task A is executing
for some time before it is preempted by Task B, which executes until comple-
tion. When Task A resumes, it continues until its time slice expires, at which
time Task C begins executing for its time slice.

 3.2.3 Cyclic Code Scheduling

 The cyclic code (CC) approach is widely used, as it is simple and generates a
complete and highly predictable schedule. The CC refers to a scheduler that
deterministically interleaves and makes sequential the execution of periodic
tasks on a CPU according to a pre - runtime schedule. In general terms, the CC
scheduler is a fi xed table of procedure calls, where each task is a procedure,
within a single do loop.

 In the CC approach, scheduling decisions are made periodically, rather than
at arbitrary times. Time intervals during scheduling decision points are referred
to as frames or minor cycles, and every frame has a length, f , called the frame
size. The major cycle is the minimum time required to execute tasks allocated
to the CPU, ensuring that the deadlines and periods of all tasks are met. The
major cycle or the hyperperiod is equal to the least common multiple (lcm)
of the periods, that is, p p pnhyper = ()lcm ,1 … .

 As scheduling decisions are made only at the beginning of every frame,
there is no preemption within each frame. The phase, ϕ i , of each periodic task

 Figure 3.7. Hybrid (round - robin/preemptive) scheduling of three tasks with two prior-
ity levels.

Time

Task A

Begin

...Task A Task C

Task B

Task B

Takes over
Task B

Completed

Task C Runs

Its Slice

Task A Finishes

Its Slice

Task A

Resumes

Task A

Preempted

www.it-ebooks.info

http://www.it-ebooks.info/

THEORETICAL FOUNDATIONS OF SCHEDULING 101

is a non - negative integer multiple of the frame size. Furthermore, it is assumed
that the scheduler carries out certain monitoring and enforcement actions at
the beginning of each frame.

 Frames must be suffi ciently long so that every task can start and complete
within a single frame. This implies that the frame size, f , is to be longer than
the execution time, e i , of every task, τ i , that is,

 C : max .
,

1
1

f ei
i n

≥ ()
∈[]

 (3.4)

 In order to keep the length of the cyclic schedule as short as possible, the frame
size, f , should be chosen so that the hyperperiod has an integer number of
frames:

 C hyper hyper2 0: .p f p f⎢⎣ ⎥⎦ − = (3.5)

 Moreover, to ensure that every task completes by its deadline, frames
must be short so that between the release time and deadline of every task,
there is at least one frame. The following relation is derived for a worst -
case scenario, which occurs when the period of a task starts just after the
beginning of a frame, and, consequently, the task cannot be released until the
next frame:

 C3 : gcd , .2 f p f Di i− () ≤ (3.6)

where “ gcd ” is the greatest common divisor, and D i is the relative deadline of
task τ i . This condition should be evaluated for all schedulable tasks.

 Example: Calculation of Frame Size

 To demonstrate the calculation of frame size, consider a set of three tasks
specifi ed in Table 3.1 . The hyperperiod, p hyper , is equal to 660, since the least
common multiple of 15, 20, and 22 is 660. The three necessary conditions,
C 1 , C 2 , and C 3 , are evaluated as follows:

 TABLE 3.1. Example Task Set for Frame - Size
Calculation

 τ i p i e i D i

 τ 1 15 1 15
 τ 2 20 2 20
 τ 3 22 3 22

www.it-ebooks.info

http://www.it-ebooks.info/

102 REAL-TIME OPERATING SYSTEMS

 3.2.4 Fixed - Priority Scheduling: Rate - Monotonic Approach

 In the fi xed - priority scheduling policy, the priority of each periodic task is fi xed
relative to other tasks. A seminal fi xed - priority algorithm is the rate - monotonic
(RM) algorithm of Liu and Leyland (Liu and Layland, 1973). It is an optimal
fi xed - priority algorithm for the basic task model previously described, in which
a task with a shorter period is given a higher priority than a task with a longer
period. The theorem, known as the rate - monotonic theorem is, from the practi-
cal point of view, the most important and useful result of real - time systems
theory. It can be stated as follows (Liu and Layland, 1973).

 Theorem: Rate - Monotonic

 Given a set of periodic tasks and preemptive priority scheduling, then
assigning priorities such that the tasks with shorter periods have higher
priorities (rate - monotonic), yields an optimal scheduling algorithm.

 In other words, the optimality of the RM algorithm implies that if a schedule
that meets all the deadlines exists with fi xed priorities, then the RM algorithm
will produce a feasible schedule . The formal proof of the theorem is rather
involved. However, a compact sketch of the proof by Shaw uses an effective
inductive argument (Shaw, 2001).

 Proof: Rate - Monotonic Theorem

 Initial step: consider two fi xed - but non - RM priority tasks τ 1 ≡ { p 1 , e 1 , D 1 } and
 τ 2 ≡ { p 2 , e 2 , D 2 }, where τ 2 has the highest priority and p 1 < p 2 . Suppose both
tasks are released at the same time. It is obvious that this leads to the worst -
 case response time for τ 1 . However, at this point, in order for both tasks to
be schedulable, it is necessary that e 1 + e 2 ≤ p 1 ; otherwise, τ 1 could not meet
its period (or deadline). Because of this explicit relation between the execu-
tion times and the period of τ 2 , we can obtain a feasible schedule by simply
reversing priorities, thereby scheduling τ 1 fi rst — that is, with RM assignment.
Thus, the RM theorem holds true at least with two tasks.

 Induction step: suppose next that n tasks, τ 1 , . . . τ n , are schedulable
according to RM, with priorities in ascending order, but the assignment is

 C : max
,

1
1 3

3f e fi
i

≥ () ⇒ ≥
∈[]

 C 2, 3, 4, 5, 6, 10,hyper hyper2 0: p f p f f⎢⎣ ⎥⎦ − = ⇒ = …

 C 2, 3, 4, 5, 6, 73 : gcd ,2 f p f D fi i− () ≤ ⇒ =

 From these conditions that must be valid simultaneously , it can be inferred
that a possible value for f could be any one of the values of 3, 4, 5, or 6.

www.it-ebooks.info

http://www.it-ebooks.info/

THEORETICAL FOUNDATIONS OF SCHEDULING 103

 A critical instant of a task is defi ned to be an instant at which a request for
that task will have the largest response time. Liu and Layland further proved
that a critical instant for any task occurs whenever the task is requested simul-
taneously with requests for all higher - priority tasks. It is then shown that to
check for rate - monotonic schedulability, it suffi ces to check the case where all
tasks phases are zero (Liu and Layland, 1973). This useful result was used also
in the above proof sketch.

not RM. Let τ i and τ i + 1 , 1 ≤ i < n , be the fi rst two tasks with non - RM priori-
ties. That is, p i < p i + 1 . This sketch of the proof proceeds by interchanging the
priorities of these two tasks and showing the set is still schedulable using
the initial step result with n = 2. The inductive proof continues by inter-
changing non - RM task pairs in this way until the assignment becomes RM.
Therefore, if some fi xed - priority assignment can produce a feasible sched-
ule, so can RM assignment.

 Example: Rate - Monotonic Scheduling

 To illustrate rate - monotonic scheduling, consider the set of three tasks
defi ned in Table 3.2 . All tasks are released at time 0. Since task τ 1 has the
shortest period, it is the highest priority task and is scheduled fi rst. The
successful RM - schedule for the task set is depicted in Figure 3.8 . Note that
at time 4, the second instance of task τ 1 is released, and it preempts the
currently running task τ 3 , which has the lowest priority. The utilization
factor, u i , is equal to the fraction of time a task with execution time e i and
period p i keeps the CPU busy. Recall that the overall CPU utilization factor
for n tasks is given by Equation 1.2 , and is here U e pi i i= ∑ ==1

3 0 9. (cor-
responds to the “ dangerous ” zone of Table 1.3).

 TABLE 3.2. Example Task Set for RM Scheduling

 τ i p i e i u i

 τ 1 4 1 0.25
 τ 2 5 2 0.4
 τ 3 20 5 0.25

 From a practical point of view, it is important to know under what conditions
a feasible schedule exists in the fi xed - priority case. The following theorem (Liu
and Layland, 1973) yields a schedulable utilization of the rate - monotonic
algorithm (RMA). Note that the relative deadline of every task is assumed to
be equal to its period.

www.it-ebooks.info

http://www.it-ebooks.info/

104 REAL-TIME OPERATING SYSTEMS

 This means that whenever U is at or below the given utilization bound, a suc-
cessful schedule can be constructed with RM. In the limit, when the number
of tasks n → ∞, the maximum utilization limit is

 lim ln .
n

nn
→∞

−() = ≈2 1 2 0 691 (3.7)

 Table 3.3 shows the RMA bounds (%) for various values of n . Note that these
RMA bounds are suffi cient , but not necessary. That is, it is not uncommon in
practice to compose a periodic task set with CPU utilization greater than the
corresponding RMA bound but still being RM schedulable. For example, the
task set shown in Table 3.2 has a total utilization of 0.9, which is greater than
the RM utilization bound of 0.78 for three tasks, but it is still schedulable using
the RM policy as illustrated in Figure 3.8 .

 3.2.5 Dynamic Priority Scheduling: Earliest Deadline First Approach

 In contrast to fi xed - priority algorithms, in dynamic - priority schemes, the prior-
ity of a task with respect to that of other tasks changes as tasks are released
and completed. One of the most well - known dynamic algorithms, the earliest
deadline fi rst algorithm (EDFA), deals with deadlines rather than execution
times. At any point of time, the ready task with the earliest deadline has the
highest priority. The following theorem gives the necessary and suffi cient con-

 Theorem: The RMA Bound

 Any set of n periodic tasks is RM schedulable if the CPU utilization factor,
 U , is no greater than n (2 1/ n − 1).

 TABLE 3.3. Upper Bounds of the CPU Utilization Factor, U (%), for n Periodic
Tasks Scheduled Using the RMA

 n 1 2 3 4 5 6 . . . → ∞
 U (%) 100 83 78 76 74 73 . . . 69

 Figure 3.8. Rate - monotonic task schedule for the task set of Table 3.2 .

Time201612840

τ1 τ2 τ3

...

www.it-ebooks.info

http://www.it-ebooks.info/

THEORETICAL FOUNDATIONS OF SCHEDULING 105

dition under which a feasible schedule exists under the earliest deadline fi rst
(EDF) priority scheme (Liu and Layland, 1973).

 Theorem: The EDFA Bound

 A set of n periodic tasks, each of which relative deadline equals its period,
can be feasibly scheduled by the EDFA if and only if U e pi

n
i i= ∑ ≤=1 1.

 EDF is optimal for a uniprocessor with task preemption being allowed. In
other words, if a feasible schedule exists, then the EDF policy will also produce
a feasible schedule. And there is never processor idling prior to a missed
deadline.

 Example: Earliest Deadline First Scheduling

 To illustrate earliest deadline fi rst scheduling, consider the pair of tasks
defi ned in Table 3.4 , with U = 0.97 (“ dangerous ”). The EDF schedule for
this task pair is depicted in Figure 3.9 . Although τ 1 and τ 2 release simultane-
ously, τ 1 executes fi rst because its deadline is earliest. At t = 2, τ 2 can begin
to execute. Even though τ 1 releases again at t = 5, its deadline is not earlier
than that of τ 2 . This regular sequence continues until time t = 15, when τ 2 is
preempted, because its deadline is later (t = 21) than the deadline of τ 1
(t = 20); τ 2 resumes when τ 1 completes.

 TABLE 3.4. Task Pair for the Example
of EDF Scheduling

 τ i p i e i u i

 τ 1 5 2 0.4
 τ 2 7 4 0.57

 Figure 3.9. Earliest deadline - fi rst task schedule for the task pair of Table 3.4 .

Time201712860

τ1 τ2

...

2 14
15

22 26 28 32 34

τ Preempted2 τ Resumes2

www.it-ebooks.info

http://www.it-ebooks.info/

106 REAL-TIME OPERATING SYSTEMS

 What are the principal differences between RM and EDF scheduling?
Schedulable CPU utilization is an objective measure of performance of algo-
rithms used to schedule periodic tasks. It is desired that a scheduling algorithm
yields a maximally schedulable utilization. By this criterion, dynamic - priority
algorithms are evidently better than fi xed - priority scheduling algorithms. Thus,
EDF is more fl exible and achieves better utilization. However, the temporal
behavior of a real - time system scheduled by a fi xed - priority algorithm is more
predictable than that of a system scheduled according to a dynamic - priority
algorithm. In case of overloads, RM is stable in the presence of missed dead-
lines; the same lower - priority tasks miss their deadlines every time. There is
no effect on higher - priority tasks. In contrast, when tasks are scheduled using
EDF, it is diffi cult to predict which tasks will miss their deadlines during pos-
sible overload conditions. Also, note that a late task that has already missed
its deadline has a higher priority than a task whose deadline is still in the
future. If the execution of a late task is allowed to continue, this may cause
numerous other tasks to be late. An effective overrun management scheme is
hence needed for dynamic - priority algorithms employed in such systems
where occasional overload conditions cannot be avoided. Finally, as a general
comment, RM tends to need more preemption; EDF only preempts when an
earlier deadline task arrives.

 3.3 SYSTEM SERVICES FOR APPLICATION PROGRAMS

 The basic task model being considered in Section 3.2 assumes that all tasks
are independent, and they can be preempted at any point of their execution.
However, from a practical viewpoint, this assumption is unrealistic, and
coordinated task interaction is needed in most real - time applications. In
this section, the use of synchronization mechanisms to maintain the consis-
tency and integrity of shared data or resources is discussed together with
various approaches for intertask communication. The main concern is how
to minimize time - consuming blocking that may arise in a real - time system
when concurrent tasks use shared resources. Related to this concern is the
issue of sharing critical resources that can only be used by one task at a
time. Moreover, the potential problems of deadlock and starvation should
always be kept in mind when designing and implementing resource - sharing
schemes.

 In Section 3.2 , fundamental techniques for multitasking were discussed
in a way that each task operated in isolation from the others. In practice,
strictly controlled mechanisms are needed that allow tasks to communicate,
share resources, and synchronize their activities. Most of the mechanisms
and phenomena discussed in this section are easy to understand casually,
but a deep understanding may be harder to attain. Misuse of these tech-
niques, semaphores in particular, can lead to disastrous effects — such as a
deadlock.

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 107

 3.3.1 Linear Buffers

 A variety of mechanisms can be employed to transfer data between individual
tasks in a multitasking system. The simplest and fastest among these is the use
of global variables. Global variables, though considered contrary to good soft-
ware engineering practices, are still used successfully in high - speed operations
with semaphore protection. One of the potential problems related to using
global variables alone is that tasks of higher priority can preempt lower -
 priority tasks at inopportune times, hence corrupting the global data.

 In another typical case, one task may produce data at a constant rate of
1000 units per second, whereas another task may consume these data at a rate
less than 1000 units per second. Assuming that the data production burst is
relatively short, the slower consumption rate can be accommodated if the
producer task fi lls an intermediate storage buffer with the data. This linear
buffer holds the excess data until the consumer task can process it; such a
buffer can be a queue or some other data structure. Naturally, if the consumer
task cannot keep up with the speed of producer task, overfl ow problems occur.
Selection of an appropriate buffer size is critical in avoiding such problems.

 A common use of global variables is in double buffering. This fl exible tech-
nique is used when time - correlated data need to be transferred between tasks of
different rates, or when a full set of data is needed by one task, but can only be
supplied gradually by another task. This situation is clearly a variant of the classic
bounded buffer problem in which a block of memory is used as a repository for
data produced by “ writers ” and consumed by “ readers. ” A further generalization
is the readers - and - writers problem in which there are multiple readers and mul-
tiple writers of a shared resource, as shown in Figure 3.10 . The bounded buffer
can only be written to or read from by one writer or reader at a time.

 Many telemetry systems, which transmit blocks of data from one unit to
another, use double - buffering schemes with a software or hardware switch to
alternate the buffers. This effective strategy is also used routinely in graphics

 Figure 3.10. Readers and writers problem, with n readers and m writers; the shared
resource is a bounded buffer.

Reader 1 Reader 2 Reader n

Writer 1 Writer 2 Writer m

Bounded Buffer

...

...

www.it-ebooks.info

http://www.it-ebooks.info/

108 REAL-TIME OPERATING SYSTEMS

interfaces, navigation equipment, elevator control systems, and many other
places. For example, in the operator display for the pasta sauce factory, suppose
lines and other graphics objects are drawn on the screen one by one until the
entire image is completed. In this animated system, it is undesirable to see the
object - by - object drawing process. If, however, the software draws the full
image fi rst on a hidden screen while displaying the other, and then fl ips the
hidden/shown screens, the individual drawing actions will not disturb the
process supervisor (Fig. 3.11).

 Figure 3.11. Double - buffering; two identical buffers are fi lled and emptied by alternat-
ing tasks; switching is accomplished by either software or hardware.

Buffer 1 Buffer 2
Swap Buffers

with
Interrupts off

Fill Here Empty Here

 Example: Time - Correlated Buffering

 Consider again the inertial measurement unit implemented as a preemptive
priority system. It reads x , y , and z accelerometer pulses in a 10 - ms task.
These raw data are to be processed in a 40 - ms task, which has lower priority
than the 10 - ms task (RM scheduling). Therefore, the accelerometer data
processed in the 40 - ms task must be time - correlated; that is, it is not allowed
to process x and y accelerometer pulses from time instant k along with z
accelerometer pulses from instant k + 1. This undesired scenario could
occur if the 40 - ms task has completed processing the x and y data, but gets
interrupted by the 10 - ms task before processing the z data. To avoid this
problem, use buffered variables xb , yb , and zb in the 40 - ms task, and buffer
them with interrupts disabled . The 40 - ms task might contain the following
C code to handle the buffering:

 introff(); / * disable interrupts * /
 xb = x; / * buffer x data * /
 yb = y; / * buffer y data * /
 zb = z; / * buffer z data * /
 intron(); / * enable interrupts * /
 process(xb,yb,zb); / * use buffered data * /
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 109

 3.3.2 Ring Buffers

 A special data structure, called a ring buffer (or circular queue), is used in the
same way as a regular queue and can be used to solve the problem of synchro-
nizing multiple reader and writer tasks. Ring buffers are easier to manage than
double buffers or regular queues when there are more than two readers or
writers. In the ring buffer, simultaneous input and output operations are pos-
sible by maintaining separate head and tail indices. Data are loaded at the tail
and read from the head. This is illustrated in Figure 3.12 .

 Example: Ring Buffering

 Suppose the ring buffer is a data structure of type ring_buffer that
includes an integer array of size n called contents , as well as the head
and tail indices called head and tail , respectively. Both of these indices
are initialized to 0 , that is, the start of the buffer, as shown below:

 typedef struct ring_buffer
 {
 int contents[n]; / * buffer area * /
 int head = 0; / * head index * /
 int tail = 0; / * tail index * /
 }

 An implementation of the read(data, & s) and write(data, & s) oper-
ations, which reads from and writes to the ring buffer s , respectively, are
given below in C code:

 void read(int data,ring_buffer * s)
 {
 if (s - >head = =s - >tail)

 Figure 3.12. A ring buffer; tasks write data to the buffer at the tail index and read from
the head index.

Ring Buffer

Head:

Empty Here

Tail:

 Fill Here

www.it-ebooks.info

http://www.it-ebooks.info/

110 REAL-TIME OPERATING SYSTEMS

 An additional piece of code, error() , is needed to handle the possible over-
fl ow condition in the ring buffer. In addition, the task using the ring buffer
needs to test the read data for the underfl ow (NULL) value. An overfl ow occurs
when an attempt is made to write data to a full buffer. Underfl ow, on the other
hand, is the condition when a task attempts to retrieve data from an empty
buffer.

 3.3.3 Mailboxes

 Mailboxes provide an intertask communication mechanism, and are available
in many commercial operating systems. A mailbox is actually a special memory
location that one or more tasks can use to transfer data, or more generally for
synchronization. The tasks rely on the kernel to allow them to write to the
mailbox via a post operation or to read from it via a pend operation — direct
access to any mailbox is not allowed . Two system calls, pend(d,&s) and
post(d,&s) , are used to receive and send mail, respectively. Here, the fi rst
parameter, d , is the mailed data and the second parameter, &s , is the mailbox
location. Recall that C language passes parameters by value unless forced to
pass by reference with a pointer; therefore, when calling functions like pend
and post , the dereferencing operator “ & ” must be used.

 The important difference between the pend operation and simply polling
the mailbox location is that the pending task is suspended while waiting for
data to appear. Thus, no CPU time is wasted for polling the mailbox.

 The mail that is passed via a mailbox can be a fl ag used to protect a critical
resource (called a key), a single piece of data, or a pointer to a data structure.
For example, when the key is taken from the mailbox, the mailbox is emptied.
Thus, although several tasks can pend on the same mailbox, only one task can

 data =NULL; /* buffer underflow */
else
{
 data =s->contents+head; /* read data */
 s ->head=(s->head+1) % n; /* update head */
}
}
void write(int data,ring_buffer *s)
{
if ((s ->tail+1) % n ==head)
 error(); /* buffer overflow */
else
{
 s ->contents+tail=data; /* write data */
 tail =(tail+1) % n; /* update tail */
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 111

receive the key. Since the key represents access to a critical resource, simulta-
neous access is precluded.

 Mailboxes are typically implemented in operating systems based on the
TCB model with a supervisor task of highest priority. A status table containing
a list of tasks and needed resources (e.g., mailboxes, A/D converters, printers,
etc.) is kept along with a second table containing a list of resources and their
current states. For example, in Tables 3.5 and 3.6 , three resources exist: an A/D
converter and two mailboxes. Here, the A/D converter is being used by task
10, while Mailbox 1 is being used (read from or written to) by task 11. Task
12 is pending on Mailbox 1, and is suspended because the resource needed is
not available. Mailbox 2 is currently not being used or pended on by any task.

 When the supervisor task is invoked by some system call or hardware inter-
rupt, it checks those tables to see if some task is pending on a mailbox. If the
corresponding mail is available (mailbox status is “ full ”), then the state of that
task is changed to ready. Similarly, if a task posts to a mailbox, then the super-
visor task must ensure that the mail is placed in the mailbox and its status
updated to “ full. ”

 Sometimes, there are additional operations available on the mailbox. For
example, in certain implementations, an accept operation is provided;
accept allows tasks to read the mail if it is available, or immediately return
an error code if the mail is not available. In other implementations, the pend
operation is equipped with a timeout to prevent deadlocks. This feature is
particularly useful in autonomous systems operating in harsh environments
with high levels of electromagnetic interferences (to recover from sporadically
vanishing interrupts).

 Some operating systems support a special type of mailbox that can queue
multiple pend requests. These systems provide qpost , qpend , and qaccept
operations to post, pend, and accept data to/from the queue. In this case, the

 TABLE 3.5. Task Resource Request Table

 Task No. Resource Status

 10 A/D converter Has it
 11 Mailbox 1 Has it
 12 Mailbox 1 Pending

 TABLE 3.6. Resource Table Used Together with Task
Resource - Request Table

 Resource Status Owner

 A/D converter Busy 10
 Mailbox 1 Busy 11
 Mailbox 2 Empty None

www.it-ebooks.info

http://www.it-ebooks.info/

112 REAL-TIME OPERATING SYSTEMS

queue can be regarded as any array of mailboxes, and its implementation is
facilitated through the same resource tables already discussed.

 Mailbox queues should not be used ineffectively to pass arrays of data;
pointers should be preferred in such purposes. A variety of device servers,
where a pool of devices is involved, can be conveniently implemented using
mailbox queues. Here, a ring buffer holds requests for a device, and mailbox
queues are used at both the head and tail to control access to the ring buffer.
Such a secure scheme is useful in the construction of device - controlling
software.

 3.3.4 Semaphores

 Multitasking systems are usually concerned with resource sharing. In most
cases, these resources can only be used by a single task at a time, and use of
the resource cannot be interrupted. Such resources are said to be serially reus-
able, and they include certain peripherals, shared memory, and also the CPU.
While the CPU protects itself against simultaneous use, the code that interacts
with the other serially reusable resources cannot do the same. Such a segment
of code is called a critical region. If two tasks enter the same critical region
simultaneously, even a catastrophic error may occur.

 To illustrate, consider two tasks, Task_A (high priority) and Task_B (low
priority), which are running in a preemptive priority system and sharing a
single printer. Task_B prints the message “ Louisville is in Kentucky ”
and Task_A prints the message “ Finland, Europe ” . In the midst of print-
ing, Task_B is interrupted by Task_A , which begins and completes its print-
ing. The result is the incorrect printout: “ Louisville is in Finland,
Europe Kentucky ” . The emphasis is placed on the text of Task_A to high-
light that it interrupted the text of Task_B .

 Truly serious complications could arise in practice if both tasks were per-
forming measurements by a single A/D converter for selectable (an analog
multiplexer in front of the A/D converter; see Section 2.4.3) quantities in an
embedded control system. Overlapping use of a serially reusable resource
results in a collision. Hence, the imperative concern is to provide a reliable
mechanism for preventing collisions.

 The most common mechanism for protecting critical resources involves a
binary variable called a semaphore, which is functionally similar to the tradi-
tional railway semaphore device. A semaphore, s , is a specifi c memory location
that acts as a lock to protect critical regions. Two system calls, wait(&s) and
signal(&s) , are used either to take or to release the semaphore. Analogous
to the mailboxes discussed above, tasks rely on the kernel to allow them to
take the semaphore via a wait operation or to release it via a signal
operation —direct access to any semaphore is not allowed . The wait(&s)
operation suspends the calling task until the semaphore s is available, whereas
the signal(&s) operation makes the semaphore s available. Thus, each
wait / signal call also activates the scheduler.

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 113

 Any code that enters a critical region is surrounded by appropriate calls to
wait and signal . This prevents more than one task from entering the critical
region simultaneously.

 Example: Serially Reusable Resource

 Consider a preemptive priority embedded system with separate measure-
ment channels for acceleration and temperature, and a single A/D converter
to be used by Task_1 and Task_2 for periodically measuring those two
quantities. Before starting an A/D conversion, the desired measurement
channel must be selected. How would you share the serially reusable
resource with Task_1 (high priority) and Task_2 (low priority)?

 A binary semaphore, s , can be used to protect the critical resource, and
it should be initialized to 1 (“ one resource available ”) before either task is
started. Proper use of the semaphore s is shown by the following pseudo-
code fragments:

/* Task_1 */
...
wait(&s); / * wait until A/D available */
select_channel(acceleration);
a_data=ad_conversion(); /* measure */
signal(&s) /* release A/D */
...

/* Task_2 */
...
wait(&s); / * wait until A/D available */
select_channel(temperature);
t_data=ad_conversion(); /* measure */
signal(&s) /* release A/D */
...

 If the semaphore primitives are not provided by the operating system, mail-
boxes can be used to implement binary semaphores. Using a dummy mail, key ,
the wait operation can be implemented as shown below:

void wait(int s)
{
int key =O;
pend(key,&s);
}

 The accompanying signal operation utilizes the mailbox post operation in
the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

114 REAL-TIME OPERATING SYSTEMS

void signal(int s)
{
int key =O;
post(key,&s);
}

 Until now, the semaphores have been called binary semaphores, because they
can only take one of two values: 0 or 1. Alternatively, a counting semaphore
(or general semaphore) can be used to protect pools of resources. This particu-
lar semaphore must be initialized to the total number of free resources before
real - time processing can commence. For instance, when using ring buffers, the
data access is often synchronized with a counting semaphore initialized to the
size of ring buffer. Corresponding wait and signal semaphore primitives,
multi_wait and multi_signal , are needed with counting semaphores.
Some real - time kernels provide only binary semaphores, while others have
just counting semaphores. The binary semaphore is a special case of the count-
ing semaphore, where the count never exceeds 1. In some operating systems,
the wait / multi_wait operation is equipped with a timeout to recover from
possible deadlocks.

 Semaphores provide an effective solution to a variety of resource - sharing
problems. However, their trouble - free usage requires strict rules for applying
them, a high level of programming discipline, and careful coordination between
different programmers within the software project. Typical problems associ-
ated with the use of semaphores are listed below (Simon, 1999):

 • The use of a specifi c semaphore is forgotten : Leads to confl icts between
simultaneous users of a single resource or shared data.

 • A wrong semaphore is used in error : Equally serious as forgetting to use
a specifi c semaphore.

 • The semaphore is held for an overly long time : Other tasks — even higher -
 priority ones — may miss their deadlines.

 • The semaphore used is not released at all : Eventually leads to a deadlock.

 All these problems are clearly programmer originated, and should be
managed, therefore, as an integral part of the product development and quality
control processes applied in the organization — through the entire software
lifecycle.

 3.3.5 Deadlock and Starvation Problems

 When several tasks are competing for the same set of serially reusable
resources, then a deadlock situation (or deadly embrace) may ensue. The
notion of deadlock is best illustrated by an example.

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 115

 Pictorially, if semaphore s1 guards resource 1 and semaphore s2 guards
resource 2, then the realization of resource sharing might appear as the
resource diagram in Figure 3.13 .

 Example: Deadlock Problem

 Suppose TASK_A requires resources 1 and 2, as does Task_B . Task_A is
in possession of resource 1, but is waiting on resource 2. Task_B is in pos-
session of resource 2, but is waiting on resource 1. Neither Task_A nor
 Task_B will relinquish the resource until its other request is satisfi ed. The
cumbersome situation is illustrated as follows, where two semaphores, s1
and s2 , are used to protect resource 1 and resource 2, respectively:

 / * Task_A * /
 ...
 wait(& s1); / * wait for resource 1 * /
 ... / * use resource 1 * /
 wait(& s2); / * wait for resource 2 * /
 deadlock here
 ... / * use resource 2 * /
 signal(& s2); / * release resource 2 * /
 signal(& s1); / * release resource 1 * /
 ...

 / * Task_B * /
 ...
 wait(& s2); / * wait for resource 2 * /
 ... / * use resource 2 * /
 wait(& s1); / * wait for resource 1 * /
 deadlock here
 ... / * use resource 1 * /
 signal(& s1); / * release resource 1 * /
 signal(& s2); / * release resource 2 * /
 ...

 Figure 3.13. Deadlock realization as a loop in a resource diagram.

Task_A Read

Task_B

Device 1 Device 2

Read

Read Read

Write

Write

Write

Write

www.it-ebooks.info

http://www.it-ebooks.info/

116 REAL-TIME OPERATING SYSTEMS

 Deadlock is a burdensome problem, because it cannot always be detected
even through relatively comprehensive testing. Besides, it may occur very
infrequently, making the pursuit of a known deadlock problem diffi cult. The
general solution to the deadlock problem is by no means straightforward and
may have unintended consequences, such as increasing response times.

 Although it is unlikely that such an obvious deadlock scenario as the one
just described is going to be created in practice, bad designs and their careless
implementations might be masked by complex structures. If the system
resource diagram contains subgraphs that resemble Figure 3.13 , that is, it
contains loops , then a deadlock can occur. Petri - net simulation and analysis
can be helpful in identifying such situations (see Chapter 5).

 In a deadlock condition, two or more tasks cannot advance due to simulta-
neously waiting for some resource from each other, and this condition lasts
infi nitely. A related problem, starvation, differs from deadlock in that at least
one task is satisfying its requirements, while one or more others are not able
to fulfi ll their needs within a reasonable period (Tai, 1994). The following four
conditions are necessary for a deadlock (Havender, 1968):

 1. Mutual exclusion
 2. Circular wait
 3. Hold and wait
 4. No preemption

Mutual exclusion applies to those resources that cannot be shared, for instance,
communications channels, disk drives, and printers. It can be relieved or even
eliminated using special buffering services, such as daemons and spoolers, that
allow these resources to be virtually shareable by multiple tasks.

 The circular wait condition occurs when a sequential chain of tasks exists
that holds resources needed by other tasks further down the chain (such as in
typical cyclic code structures). One way to eliminate circular wait is to impose
an explicit ordering on the resources and to force all tasks to request all
resources above the number of the lowest one needed. For example, suppose
that a collection of devices is ranked as shown in Table 3.7 . Now, if some
task needs to use just the printer, it will be assigned the printer, scanner,
and monitor. Then, if another task requests the monitor only, it will have to

 TABLE 3.7. Device Ordering Scheme to Eliminate the
Circular Wait Condition

 Device Number

 Disk drive 1
 Printer 2
 Scanner 3
 Monitor 4

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 117

wait until the fi rst task releases the reserved three resources — although the
fi rst task does not actually use the monitor. It is easy to see that such a straight-
forward approach eliminates the circular wait at the potential cost of
starvation.

 The hold - and - wait condition occurs when tasks request a resource and then
lock that resource until other subsequent resource requests are also fi lled. One
solution to this problem is to allocate to a task all potentially required resources
at the same time, as in the previous case. However, this approach can lead to
starvation in other tasks. Another solution is to never allow a task to lock more
than one resource at a time. For example, when copying one semaphore -
 protected fi le record to another fi le, lock the source fi le and read the record,
unlock that fi le, lock the destination fi le and write the record, and fi nally
unlock that fi le. This, of course, can lead to ineffi cient resource utilization, as
well as apparent windows of opportunity for other tasks to interrupt and
interfere with disk - drive utilization.

 Finally, eliminating the no - preemption condition will preclude a deadlock.
This can be accomplished, for example, by using a timeout with the problem -
 causing wait (or pend) system call. However, such a violent action leads to
starvation in the low - priority task that was using the preempted resource, as
well as to other potential problems. For instance, what if the low - priority task
had locked the printer for output, and now the high - priority task starts print-
ing? Nevertheless, this is the ultimate solution to any deadlock condition.

 In complex real - time systems, the detection and identifi cation of deadlock
may not always be easy, although watchdog timers or real - time debuggers can
be used for this purpose. Therefore, the best way to deal with deadlock is to
avoid it altogether! Several techniques for avoiding deadlock are available.
For example, if the semaphores (or “ key ” mailboxes) protecting critical
resources are implemented with timeouts, then true deadlocking cannot occur,
but starvation of one or more tasks is highly probable.

 Suppose a lock refers to any semaphore used to protect a critical region.
Then the following six - step resource - management approach is recommended
to help avoid deadlock:

 1. Minimize the number of critical regions and their length.
 2. All tasks must release any lock as soon as possible.
 3. Do not suspend any task while it controls a critical region.
 4. All critical regions must be 100% error free.
 5. Do not lock any devices in interrupt handlers.
 6. Always perform validity checks on pointers used within critical regions.

 Nevertheless, rules 1 – 6 may be diffi cult to fulfi ll, and, hence, additional means
are often necessary to avoid deadlocks.

 Assuming that a deadlock situation can be detected by using a semaphore
timeout, what could be done about it? If the deadlock appears to occur very

www.it-ebooks.info

http://www.it-ebooks.info/

118 REAL-TIME OPERATING SYSTEMS

infrequently, for instance, once per month, and the real - time system is not a
critical one, simply ignoring the problem may be acceptable. For example, if
in a console game this problem is known to occur rarely, the effort needed to
identify and correct the problem may not be justifi ed, given the cost and
purpose of the system. Nonetheless, for any hard or fi rm real - time system
discussed in Chapter 1 , ignoring this problem is naturally unacceptable. How
about handling the deadlock by resetting the system (possibly by a watchdog
timer; see Section 2.5.2)? Again, this may be unacceptable for critical systems.
Finally, if a deadlock is detected, some form of rollback to a predeadlock state
could in certain cases be performed, although this may lead to a recurrent
deadlock; and particular operations, such as writing to some fi les or peripherals,
cannot always be rolled back without special hardware/software arrangements.

 3.3.6 Priority Inversion Problem

 When a lower - priority task blocks a higher - priority one, a priority inversion is
said to occur. Consider the following example, where priority inversion takes
place.

 Example: Priority Inversion Problem

 Let three tasks, τ 1 , τ 2 , and τ 3 , have decreasing priorities (i.e., τ 1 � τ 2 � τ 3 ,
where “ � ” is the precedence symbol), and τ 1 and τ 3 share some data or
resource that requires exclusive access, while τ 2 does not interact with either
of the other two tasks. Access to the critical section is carried out through
the wait and signal operations on semaphore s .

 Now, consider the following execution scenario, illustrated in Figure 3.14 .
Task τ 3 starts at time t 0 , and locks semaphore s at time t 1 . At time t 2 , τ 1 arrives
and preempts τ 3 inside its critical section. After a while, τ 1 requests to use
the shared resource by attempting to lock s , but it gets blocked, as τ 3 is
currently using it. Hence, at time t 3 , τ 3 continues to execute inside its critical
section. Next, when τ 2 arrives at time t 4 , it preempts τ 3 , as it has a higher

 Figure 3.14. A typical priority - inversion scenario.

Time

Blocked

Normal Execution

Critical

Section

τ1

τ2

τ 3

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 119

 The problem of priority inversion in real - time systems has been studied inten-
sively for both fi xed - priority and dynamic - priority scheduling. One useful
result, the priority inheritance protocol (Sha et al., 1990), offers a simple solu-
tion to the problem of unbounded priority inversion.

 In the priority inheritance protocol, the priorities of tasks are dynamically
adjusted so that the priority of any task in a critical region gets the priority of
the highest - priority task pending on that same critical region. In particular,
when a task, τi , blocks one or more higher - priority tasks, it temporarily inherits
the highest priority of the blocked tasks. The fundamental principles of the
protocol are:

 • The highest - priority task relinquishes the CPU whenever it seeks to lock
the semaphore guarding a critical section that is already locked by some
other task.

 • If task τ1 is blocked by τ2 , and τ1 � τ2 , task τ2 inherits the priority of τ1 as
long as it blocks τ1 . When τ2 exits the critical section that caused the block,
it reverts to the priority it had when it entered that section.

 • Moreover, priority inheritance is transitive: if τ3 blocks τ2 that blocks τ1

(with τ1 � τ2 � τ3), then τ3 inherits the priority of τ1 via τ2 .

 Thus, in the three - task example just discussed, the priority of τ3 would be
temporarily raised to that of τ1 at time t3 , thereby preventing τ2 from preempt-
ing it at time t4 . The resulting schedule incorporating the priority inheritance
protocol is shown in Figure 3.15 . Here, the priority of τ3 reverts to its original
at time t5 , and τ2 gets to execute only after τ1 completes its execution, as desired.

 It is important to point out that the priority inheritance protocol does not
prevent a deadlock occurring. In fact, priority inheritance can sometimes lead
to deadlock or multiple blocking. Nor can it prevent any other problems
induced by semaphores. For example, consider the following lock – unlock
sequences (with τ1 � τ2):

τ1 : Lock S 1 ; Lock S 2 ; Unlock S 2 ; Unlock S 1
τ2 : Lock S 2 ; Lock S 1 ; Unlock S 1 ; Unlock S 2

priority and does not interact with either τ1 or τ3 . The execution time of τ2

increases the blocking time of τ1 , as it is no longer dependent solely on the
length of the critical section executed by τ3 . Similar unfair conditions could
also arise between other intermediate priority tasks — if available — and
thereby could lead to an excessive blocking delay. Task τ1 resumes its execu-
tion at time t6 , when τ3 fi nally completes its critical section. A priority inver-
sion is said to occur within the time interval [t4 , t5], during which the highest
priority task, τ1 , has been unduly prevented from execution by a medium -
 priority task τ2 . On the other hand, the acceptable blocking of τ1 during the
periods [t3 , t4] and [t5 , t6] by τ3 , which holds the lock, is necessary to maintain
the integrity of the shared resources.

www.it-ebooks.info

http://www.it-ebooks.info/

120 REAL-TIME OPERATING SYSTEMS

 Here two tasks, τ 1 and τ 2 , use two semaphores for locking critical sections, S 1
and S 2 , in a nested fashion, but in reverse order. This problem is similar to the
one depicted in Figure 3.13 . Although this deadlock does not depend in any
sense on the priority inheritance protocol (it is caused by careless use of sema-
phores), the priority inheritance protocol cannot either prevent this kind of
problem. To get around such a problem, it is necessary to use the priority
ceiling protocol (Chen and Lin, 1990), which imposes a total ordering on the
semaphore access. This protocol will be introduced shortly.

 A notorious incident of the priority inversion problem occurred in 1997
in NASA ’ s Mars Pathfi nder space mission ’ s Sojourner rover vehicle, which
was used to explore the surface of Mars. In that case, the MIL - STD - 1553B
information bus manager was synchronized with mutexes. A mutex is an
enhanced binary semaphore that contains priority inheritance and other
optional features. Accordingly, a meteorological data - gathering task that was
of low priority and low execution rate blocked a communications task that
was of higher priority and higher rate. This infrequent scenario caused the
entire system to reset. The problem would have been avoided if the optional
priority inheritance mechanism provided by the (commercial) real - time oper-
ating system had been enabled. But, unfortunately, it had been disabled.
Nevertheless, the problem was successfully diagnosed in ground - based testing
and remotely corrected by simply enabling the priority inheritance mechanism
(Cottet et al., 2002).

 The priority ceiling protocol extends to the priority inheritance protocol
through chained blocking in such a way that no task can enter a critical section
in a way that leads to blocking it. To achieve this, each resource is assigned a
priority (the priority ceiling) equal to the priority of the highest priority task
that can use it.

 The priority ceiling protocol is largely the same as the priority inheritance
protocol, except that a task, τ i , can also be blocked from entering a critical
section if there exists any semaphore currently held by some other task whose
priority ceiling is greater than or equal to the priority of τ i . For example, con-
sider the scenario illustrated in Table 3.8 . Suppose that τ 2 currently holds a
lock on section S 2 , and τ 1 is initiated. Task τ 1 will be blocked from entering

 Figure 3.15. Illustration of the priority - inheritance protocol.

Time

Blocked

Normal Execution

Critical

Section

τ 1

τ 2

τ 3

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

Priority

Inherited

Priority

Reverted

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 121

 TABLE 3.8. Data for the Priority Ceiling
Protocol Illustration

 Critical Section Accessed by Priority Ceiling

 S 1 τ 1 , τ 2 P (τ 1)
 S 2 τ 1 , τ 2 , τ 3 P (τ 1)

section S 1 , because its priority is not greater than the priority ceiling of section
S 2 . A more demanding example will be discussed next to clearly show the
advantages of the priority ceiling protocol.

 Example: Priority Ceiling Protocol

 Consider the three tasks with the following sequence of lock – unlock opera-
tions, and having decreasing priorities (τ 1 � τ 2 � τ 3):

 τ 1 : Lock S 1 ; Unlock S 1

 τ 2 : Lock S 1 ; Lock S 2 ; Unlock S 2 ; Unlock S 1

 τ 3 : Lock S 2 ; Unlock S 2

 Following the basic rules of assigning a priority ceiling to semaphores, the
priority ceilings of S 1 and S 2 are P (τ 1) and P (τ 2), respectively. The following
description and Figure 3.16 illustrate the operation of the priority ceiling
protocol. Suppose that τ 3 starts executing fi rst, locks the section S 2 at time
 t 1 , and enters the critical section. At time t 2 , τ 2 preempts τ 3 , starts executing,
and attempts to lock section S 1 at time t 3 . At this time, τ 2 is suspended,
because its priority is not higher than the priority ceiling of section S 2 ,

 Figure 3.16. Illustration of the priority - ceiling protocol.

Time

τ1

τ2

τ3

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

Acquire S
2

Attempt to
Acquire S

1

Acquire S
1

Acquire S
2

Acquire S
1

t
9

www.it-ebooks.info

http://www.it-ebooks.info/

122 REAL-TIME OPERATING SYSTEMS

 When applying the priority ceiling protocol, a task can be blocked by a
lower - priority task only once, and at most the duration of one critical section
only.

 3.3.7 Timer and Clock Services

 In developing real - time software, it is desirable to have easy - to - use timing
services available. For example, suppose a diagnostic task checks the “ health ”
of an elevator system periodically. Essentially, the task would execute one
round of diagnostics and then wait for a notifi cation to run again, with the task
repeating forever. This is usually accomplished by having a programmable
timer that is set to create the required time interval.

 A system call, delay , is commonly available to suspend the executing task
until the desired time has elapsed, after which the suspended task is moved to
the ready list. The delay function has one integer parameter, ticks , to
specify the length of the delay. In order to generate an appropriate time refer-
ence, a timer circuit is confi gured to interrupt the CPU at a fi xed rate, and the
internal system time is incremented at each timer interrupt. The interval of
time with which the timer is programmed to interrupt defi nes the unit of time
in the system — also called a “ tick ” or time resolution.

 Example: Delay Uncertainty

 Suppose we have a delay service available and the tick is initialized to 25 ms.
Now, if we want to suspend the diagnostics task for 250 ms (corresponding
to 10 ticks), we could simply call delay(10) .

 But how accurate is this delay? As the clock signal ’ s phase and the calling
instant of the delay function are asynchronous to each other, delay(10)
will actually generate a varying delay from 225 to 250 ms. Hence, this kind
of delay function always has an uncertainty of one tick at maximum. The
random variation could naturally be reduced by reducing the tick length.
However, a very short tick length may cause signifi cant interrupt overhead
to the CPU. An appropriate tick value is a compromise between the delay
uncertainty allowed and the interrupt overhead tolerated.

currently locked by τ3 . Now task τ3 temporarily inherits the priority of τ2

and resumes execution. At time t4 , τ1 arrives, preempts τ3 , and executes until
time t5 , when it needs to lock the section S 1 . Note that τ1 is allowed to lock
the section S 1 at time t5 , as its priority is greater than the priority ceiling of
all the sections currently being locked (in this case, it is compared with S 2).
Task τ1 completes its execution at t6 , and makes τ3 execute to completion at
t7 . Task τ2 is then allowed to lock S 1 , and subsequently S 2 at t8 , and it fi nally
completes at t9 .

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 123

 Timers provide a convenient mechanism to control the rate of task execution.
In some operating system environments, it is possible to select what kind of
timer functionality is used — a one - shot timer or a repeating (periodic) timer.
The one - shot timer is armed with an initial expiration time, expires only once,
and then is disarmed. A timer becomes a repeating timer with the addition of
a repetition period. The timer expires, and then loads the repetition period
again, rearming the timer to expire after the repetition period has elapsed, and
so on. The delay function discussed above represents a basic one - shot timer.

 If very precise timing is needed for some task and it is not practical to
shorten the tick to an adequate length, it is best to use a dedicated hardware
timer for that particular purpose. Nonetheless, the obvious advantage of the
delay function over the use of dedicated timers is that a single hardware
timer can support multiple timing needs simultaneously.

 In addition to these timer functions, it is also desirable to have facilities to
set and get the real time and possibly the date. For those purposes, specifi c
set_time and get_time functions are available in many real - time operat-
ing systems.

 3.3.8 Application Study: A Real - Time Structure

 After presenting a variety of operating system services for application pro-
grams, it is instructive to take a look at a real - world example of their usage.
In this section, we study an elevator control system from its real - time struc-
ture ’ s viewpoint. Hence, our interests are in such issues as tasks and their
priorities, the use of hardware interrupts and semaphores, buffering and safe
usage of global variables, as well as the use of real - time clock.

 The elevator control system considered represents a controller of a single
elevator, which operates as a part of a multi - car elevator bank. Therefore, the
elevator controller communicates with the so - called group dispatcher that
periodically performs optimal hall call allocation for the entire bank of eleva-
tors. The number of elevators in a typical bank is up to eight, and the number
of fl oors served is usually no more than 30 — true high - rise buildings with more
fl oors are handled with separate low - rise, mid - rise, and high - rise banks of
elevators. Such multi - bank elevator installations are used, for instance, in
major offi ce buildings and large hotels.

 Figure 3.17 illustrates the serial communications connection between the
group dispatcher and fi ve individual elevator controllers with 15 fl oors to
service. This bus - type connection is of master – servant type: the group dis-
patcher is the “ master ” and fully coordinates the communications sessions,
while the elevator controllers are “ servants ” that are allowed to send data
solely when requested to do so. The group dispatcher has a serial interface for
registering and canceling hall calls (a “ hall call ” is the event when a person
presses the “ up ” or “ down ” button to summon an elevator), and it allocates
registered calls dynamically to the most suitable elevators depending on their
current status (e.g., occupancy, car position, running direction, and registered

www.it-ebooks.info

http://www.it-ebooks.info/

124 REAL-TIME OPERATING SYSTEMS

car calls). Thus, the group dispatcher needs to periodically collect status infor-
mation from each individual elevator. Hall calls are allocated using computa-
tionally intelligent optimization methods with multiple objectives to minimize
the average waiting times of passengers and to avoid excessive waiting periods.

 All elevator controllers within a bank are identical, and hence we concen-
trate on a single (somewhat simplifi ed) controller and its specifi c real - time
structure. A high - level diagram of the real - time framework is depicted in
Figure 3.18 ; it contains fi ve software tasks, Task 1 – Task 5, which are next intro-

 Figure 3.17. Architecture of an elevator bank control system.

Group

Dispatcher

Elevator

Controller 1

Elevator

Controller 2

Elevator

Controller 5
...

Allocated Calls

.

..

.

Hall-Call
Buttons

Floor 15

Floor 14

Floor 1 Status

 Figure 3.18. Real - time structure of an elevator controller.

Task 1

Task 2

Task 3

Task 4

Task 5

Buffers

Global 2

Global 1

Communications Int.

Door-Zone Int.

Door Int.

Service-Tool Int.

Semaphore Semaphore

Semaphore
Locked

Semaphore
Locked

Semaphore
Locked

Real-Time

Clock

Real-Time
Clock Int. (25 ms)

500 ms

75 ms

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTEM SERVICES FOR APPLICATION PROGRAMS 125

duced in priority order. The real - time operating system is a foreground/
background kernel with preemptive priority scheduling, counting semaphores
for synchronization, and a delay system call for creating desired execution
periods.

 1. This highest - priority task communicates with the group dispatcher
through a 19.2 K bit/s serial link, and takes care of the proprietary com-
munications protocol. Its execution period is approximately 500 ms;
each communications session lasts no more than 15 ms and is always
initiated by the group dispatcher. In addition, Task 1 unpacks the received
data and writes them to a global variable area, Global 1 (to be read by
Task 2).

 2. This task has an execution period of 75 ms, and it performs multiple
functions that are related to each other: updates the car position informa-
tion; registers and cancels car calls; determines the destination fl oor of
next/current run; and packs status data — to be sent to the group dis-
patcher by Task 1 — to a double buffer (Buffers). In addition, Task 2
writes some status variables to another global variable area, Global 2 (to
be read by Tasks 3 and 4).

 3. The actual fl oor - to - fl oor runs are performed by this task (a “ fl oor - to - fl oor
run ” is the sequence of operations between a start and a stop). Moreover,
this task controls the door opening and closing operations, as well as the
car position indicator and direction arrows. There is no regular execution
period for Task 3, but it runs when specifi cally requested to do so — in
fact, it is a fi nite state machine.

 4. The lowest - priority foreground task performs various supervision and
self - diagnostics operations at the rate of 500 ms. This task also runs a
shuttle traffi c - type backup system (the “ shuttle traffi c - type backup
system ” circulates the elevator according to a predetermined fl oor sched-
ule) when there is no communications connection to the group dis-
patcher, or the critical hall call interface in the group dispatcher is broken.
This uncomplicated backup solution is needed for providing at least
some service to waiting passengers in a failure situation. When the
backup system is in use, Task 4 writes commands to the same global
variable area, Global 1, where Task 1 unpacks the received data during
normal operation.

 5. Finally, the background task is executed when the CPU does not have
anything more urgent to process. Task 5 runs a versatile real - time debug-
ger that is commanded from a service tool through a 2.4 K bit/s serial
link.

 The priority order of Tasks 1 – 5 is based on the following rationale. While the
elevator controller is a servant for the group dispatcher, it must be ready to
communicate whenever the master wants to begin a communications session.

www.it-ebooks.info

http://www.it-ebooks.info/

126 REAL-TIME OPERATING SYSTEMS

Therefore, Task 1 has the top priority. Task 2 performs fundamental and time -
 critical operations related to updating the destination fl oor, and hence its
priority is the highest one of the elevator - specifi c tasks. The complete run to
the destination fl oor and associated door operations are handled by Task 3 per
need basis. Thus, its priority is just below that of Task 2. The next task, Task 4,
is performing supervision - type operations that are not directly related to the
normal operation of the elevator. Its priority is hence below the priorities of
the primary tasks. Finally, the remaining CPU capacity is allocated to the
background task, Task 5.

 A few hardware interrupts are used with the most time - critical inputs/
outputs. Only minimal processing is performed in interrupt handlers (with
interrupts disabled), which signal the corresponding tasks by specifi c sema-
phores. The more time - consuming interrupt - triggered service is thus per-
formed at tasks (with interrupts enabled). Below is a list of hardware interrupts
in priority order:

 • Communications interrupts: receiver ready, transmitter ready, and trans-
mitter empty (asynchronous).

 • Real - time clock interrupt: tick length 25 ms.
 • Door zone interrupt for initiating door opening (asynchronous).
 • Door interrupts: closed, some need to reopen, and closing timeout

(asynchronous).
 • Service tool interrupts: receiver ready and transmitter ready (asynchronous).

 In addition to semaphores that are explicitly connected to the hardware inter-
rupts, other semaphores are used for locking global variable areas and buffers,
as well as for signaling from one task to another. Those noninterrupt - related
semaphores are listed below:

 • Semaphore for protecting the swapping of double buffers (Buffers), which
Task 2 fi lls periodically for Task 1.

 • Semaphore that Task 2 sets for Task 3 when there is a need to start a run.
 • Semaphore that Task 2 sets for Task 3 when there is a need to start decel-

eration to the next possible fl oor.
 • Two semaphores for protecting the global variable areas Global 1 and

Global 2.

 Double buffering (see Section 3.3.1) is used between Tasks 1 and 2, because
they have very different execution periods (500 ms/75 ms), and Task 1 should
always obtain the most recent status from Task 2. Furthermore, this status data
is strictly time - correlated. It should be emphasized that although global vari-
ables are generally considered as a source of potential problems in real - time
programming, they can be used safely if appropriate locking mechanisms are
used with them . Nonetheless, it is a good practice to minimize the number of

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY MANAGEMENT ISSUES 127

global variables, and allow every variable to be written by a single task only
(while the others are just reading).

 The delay function discussed in Section 3.3.7 is used in Tasks 2 and 4 for
generating the 75 and 500 ms execution periods, respectively. However, it
should be remembered that this kind of timing is never precise, but always has
a maximum uncertainty of one tick (here 25 ms). Hence, the two execution
periods are, in practice, 50 – 75 ms and 475 – 500 ms. Such wide tolerances are
acceptable for this application.

 The real - time structure discussed represents a kind of minimum solution;
everything is kept simple and hence the predictability of this fi rm real - time
system is high. Because semaphores are used for protecting critical regions,
their consistent use is of utmost signifi cance and requires high discipline
among the programming team.

 3.4 MEMORY MANAGEMENT ISSUES

 An often - neglected topic in real - time operating systems, dynamic memory
allocation, is important in terms of both the use of on - demand memory by
applications tasks and the memory requirements of the operating system itself.
Application tasks use memory explicitly, for example, through requests for
heap memory, and implicitly through the maintenance of the runtime memory
needed to support sophisticated high - level languages. The operating system
has to perform effective memory management in order to keep the tasks iso-
lated, for instance.

 Risky allocation of memory is any allocation that can preclude system
determinism. Such an allocation can destroy event determinism by overfl ow-
ing the stack, or it can destroy temporal determinism by causing a deadlock
situation. Therefore, it is truly important to avoid risky allocation of memory,
while at the same time reducing the overhead incurred by memory manage-
ment. This overhead is a signifi cant component of the context - switch time and
must be minimized.

 3.4.1 Stack and Task Control Block Management

 In a multitasking system, the context of each task needs to be saved and
restored in order to switch tasks successfully. This can be accomplished by
using one or more runtime stacks or the task control block model. Runtime
stacks are adequate for interrupt - only and foreground/background systems,
whereas the TCB model is more appropriate for full - featured operating
systems.

 If a stack is to be used to handle the runtime saving and restoring of context,
two simple routines — save and restore — are needed. The save routine is
called by an interrupt handler to save the current context of the system into
a stack area; this call should be made immediately after interrupts have been

www.it-ebooks.info

http://www.it-ebooks.info/

128 REAL-TIME OPERATING SYSTEMS

disabled. Moreover, the restore routine should be called just before inter-
rupts are reenabled, and before returning from the interrupt handler (see
Section 3.1.4 for an example of context saving and restoring).

 On the other hand, if the alternative task control block model (see Section
 3.1.5) is used, then a list of TCBs needs to be maintained. This list can be either
fi xed or dynamic. In the fi xed case, n task control blocks are allocated during
system initialization, with all tasks in the dormant state. As a task is created,
its status in the TCB is changed to “ ready. ” Prioritization or time slicing will
then move the ready task to the execute state. If some task is to be deleted,
its status in the task control block is simply changed to “ dormant. ” In the case
of a fi xed number of TCBs, no real - time memory management is needed.

 In the more fl exible dynamic case, task control blocks are inserted to a
linked list or some other dynamic data structure as tasks are created. The tasks
are in the suspended state upon creation and enter the ready state via an
operating system call or some event. The tasks enter the execute state owing
to priority or time slicing. When a task is deleted, its TCB is removed from the
linked list, and its heap memory allocation is returned to the available or
unoccupied status. In this scheme, real - time memory management consists of
managing the heap needed to supply the task control blocks.

 A runtime stack cannot be used in a round - robin system because of the
 fi rst - in, fi rst - out (FIFO) nature of the scheduling principle. In this case, a ring
buffer can be used conveniently to save context. The context is saved to the tail
of the ring buffer and restored from the head. To accomplish these operations,
the basic save and restore functions should be modifi ed accordingly.

 The maximum amount of memory space needed for the runtime stack
needs to be known a priori . In general, the stack size can be determined rather
easily if recursion is not used and heap data structures are avoided. If no
(conservative) stack memory estimate is available, then a risky memory alloca-
tion may occur, and the real - time system may fail to satisfy its behavioral and
temporal specifi cations. In practice, a provision for at least one additional task
than anticipated should be allocated to the stack to allow margin for spurious
interrupts and time overloading, for example.

 3.4.2 Multiple - Stack Arrangement

 Often, a single runtime stack is inadequate or cumbersome to manage with
several tasks in, say, a foreground/background system. A more fl exible multiple -
 stack scheme uses a single runtime stack for the context and one additional
task stack for every task. A typical multiple - stack arrangement is illustrated
in Figure 3.19 . Using multiple stacks in real - time systems offers clear advantages:

 • It permits tasks to interrupt themselves, thus allowing for handling tran-
sient overload conditions or for detecting spurious interrupt bursts.

 • The real - time software can be written in a programming language that
supports reentrancy and recursion. Individual task stacks, which contain

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY MANAGEMENT ISSUES 129

the appropriate activation records with dynamic links needed to support
recursion, can be maintained for each task. A pointer to these stacks needs
to be saved in the context or task control block associated with the par-
ticular task.

 • Only elementary nonreentrant languages, such as assembly language, are
recommended with a single - stack model.

 3.4.3 Memory Management in the Task Control Block Model

 When implementing the TCB model for real - time multitasking, the principal
memory management issue is the maintenance of two linked lists for the ready
and suspended tasks. This bookkeeping activity is illustrated with an example
in Figure 3.20 . In step 1, the currently executing task releases some resource

 Figure 3.19. Multiple - stack arrangement.

Task 1

Stack

Task 2

Stack

Task 3

Stack

Task n

Stack

Context

Stack

...

Stack

Pointer

Executing Task

 Figure 3.20. Linked - lists management in the task - control - block model.

Ready List

Suspended List

Executing Task 1

2

3

www.it-ebooks.info

http://www.it-ebooks.info/

130 REAL-TIME OPERATING SYSTEMS

needed by a suspended high - priority task. Therefore, the executing task is
inserted to the ready list in step 2, and the suspended high - priority task begins
executing in step 3. Hence, by properly managing the linked lists, updating the
status word in the TCBs (see Fig. 3.5), and adhering to the appropriate sched-
uling policy by checking the priority word in the TCBs, round - robin, preemp-
tive priority, or some hybrid scheduling scheme can be induced. Other memory
management responsibilities may include the maintenance of certain blocks
of memory that are allocated to individual tasks as requested.

 An alternative to multiple linked lists involves just a single linked list, in
which only the status variable in the TCB is modifi ed rather than moving the
entire block to another list. Thus, for instance, when a task is switched from
the suspended to ready state or from the ready to executing state, only the
single status word needs to be changed. This straightforward approach has the
obvious advantage of lighter list management. Nonetheless, it leads to slower
traversal times, since the entire list must be traversed during each context
switch to search for the next highest priority task that is ready to run.

 3.4.4 Swapping, Overlaying, and Paging

 Probably the simplest scheme that allows an operating system to allocate
memory to two tasks “ simultaneously ” is swapping. In this case, the operating
system itself is always memory resident, and only one task can co - reside in
the available memory space not used by the operating system, called the
user space. When a second task needs to run, the fi rst task is suspended and
then swapped, along with its context, to a secondary storage device, usually
a hard disk. The second task, along with its context, is then loaded into the
user space and initiated by the task dispatcher. This type of memory manage-
ment scheme can be used along with round robin or preemptive priority
systems, and it is highly desirable to have the execution time of each task be
long relative to the lengthy memory - disk - memory swap delay. The varying
access time to the secondary storage — typically milliseconds with a hard
disk — is the principal contributor to the context - switch overhead and real - time
response delays. Hence, it ruins the real - time punctuality of such a real - time
system.

 Overlaying is a general technique that allows a single program to be larger
than the allowable memory. In this case, the program is broken up into depen-
dent code and data sections called overlays, which can fi t into the available
memory space. Special program code must be included that permits new over-
lays to be swapped into memory as needed (over the existing overlays), and
care must be exercised in the design of such systems. Also, this technique has
negative real - time implications, because the overlays must be swapped from
slow and nondeterministic secondary storage devices. Nevertheless, fl exible
overlaying can be used to extend the available address space. Some commer-
cial real - time operating systems support overlaying in conjunction with com-
monly used programming languages and popular CPUs.

www.it-ebooks.info

http://www.it-ebooks.info/

MEMORY MANAGEMENT ISSUES 131

 Note that in both swapping and overlaying, one portion of memory is never
swapped or overlaid. This critical memory segment contains the swap or
overlay manager; in the case of overlaying, any code that is common to all
overlays is called the root .

 A more effi cient scheme than simple swapping allows more than one task
to be memory resident at any one time by dividing the user space into a
number of fi xed - size partitions. This scheme is particularly useful in systems
where the fi xed number of tasks to be executed is known a priori . Partition
swapping to disk can occur when a task is preempted. Tasks, however, must
reside in continuous partitions, and the dynamic allocation and deallocation
of memory may be challenging.

 In some cases, the main memory can become fragmented with unused but
existing partitions, as illustrated in Figure 3.21 . In this case, the “ checkered ”
memory space is said to be externally fragmented. This type of fragmentation
causes problems when memory requests cannot be satisfi ed because a contigu-
ous block of the size requested does not exist, even though a lot of memory
is still available.

 Another related problem, internal fragmentation, occurs in fi xed - partition
schemes when, for example, a task in a real - time Unix environment requires
1 M bytes of memory when only 2 M - byte partitions are available. The amount
of wasted memory (or internal fragmentation) can be reduced by creating
fi xed partitions of several sizes and then allocating the smallest partition
greater than the required memory space. Both internal and external fragmen-
tation hamper effi cient memory usage and ultimately degrade real - time per-
formance because of the considerable overhead associated with their regular
repairing.

 This type of dynamic memory allocation uses memory ineffi ciently, because
of the overhead associated with fi tting a task to available memory and

 Figure 3.21. Fragmented memory (a) before and (b) after compaction; the unmovable
blocks represent the root program of the real - time operating system.

Unused
Space

Used
Block

Unmovable
Block

(a) (b)

Memory Memory

www.it-ebooks.info

http://www.it-ebooks.info/

132 REAL-TIME OPERATING SYSTEMS

performing disk swapping. However, in some implementations, particularly in
commercial real - time operating systems, memory can be divided into regions
in which each region contains a collection of different - sized, fi xed - sized parti-
tions. For example, one region of memory might consist of 10 blocks of size
16 M bytes, while another region might contain 5 blocks of 32 M bytes, and so
on. The operating system then tries to satisfy a memory request so that the
smallest available partitions are used. This approach tends to reduce internal
fragmentation effectively.

 In an alternative scheme, memory is allocated in chunks that are not fi xed,
but rather are determined by the requirements of the task to be loaded into
memory. This technique is more appropriate when the number of real - time
tasks is unknown or varies. In addition, memory utilization is better for this
technique than for fi xed - block schemes, because little or no internal fragmen-
tation occurs, as the memory is allocated in the exact amount needed for each
task. External fragmentation can still occur because of the dynamic nature of
memory allocation and deallocation, and because memory must still be allo-
cated to every single task contiguously.

 Compressing fragmented memory or compaction has to be used to mitigate
internal fragmentation (see Fig. 3.21). Compaction is a CPU - intensive process
and, therefore, is not practical in hard or fi rm real - time systems during normal
operation. If compaction must be performed, it should be done in the back-
ground, and it is imperative that interrupts be disabled while memory is being
shuffl ed.

 In demand page systems, program segments are permitted to be loaded in
noncontiguous memory as they are requested in fi xed - size chunks called pages.
This scheme helps to eliminate external fragmentation. Program code that is
not held in main memory is swapped to some secondary storage, usually a disk.
When a memory reference is made to a location within a page not loaded in
main memory, a page - fault exception is raised. The interrupt handler for this
exception checks for a free page slot in memory. If none is found, a page block
must be selected and swapped to disk (if it has been altered), a process called
page stealing. Paging, which is provided by most commercial operating systems,
is advantageous because it allows nonconsecutive references to pages via a
page table. In addition, paging can be used in conjunction with bank - switching
hardware to extend the virtual address space. In either case, pointers are used
to access the desired page. These pointers may represent memory - mapped
locations to map into the desired hardwired memory bank, may be imple-
mented through associative memory, or may be simple offsets into memory,
in which case the actual address in main memory needs to be calculated for
each memory reference.

 Nevertheless, paging can lead to problems, including very high paging activ-
ity called thrashing, internal fragmentation, and even a deadlock. It is unlikely
that an operating system would use so complex a scheme as paging in an
embedded real - time application, where the overhead would be overly high
and the associated hardware support is not usually available. On the other

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING REAL-TIME OPERATING SYSTEMS 133

hand, in nonembedded real - time applications, such as the airline booking and
reservation system, paging is used routinely.

 Several standard methods are used to determine which page should be
swapped out of memory to disk, and the same techniques are applicable
to cache block replacement as well (Torng, 1998). The most straightforward
algorithm is FIFO. Its management overhead is only the recording of the
exact loading sequence of the pages. However, the best nonclairvoyant
scheme is the least recently used (LRU) algorithm, which states that the
least recently used page will be swapped out if a page fault occurs. The
management overhead for the LRU scheme rests in recording the access
sequence to all pages, which can be quite substantial. Therefore, the benefi ts
of using LRU need to be weighed against the effort in implementing it vis - à -
 vis FIFO.

 In addition to thrashing, the main disadvantage of page swapping in real -
 time systems is the lack of predictable execution times. Therefore, it is often
desirable to lock certain parts of a task into main memory in order to reduce
the overhead involved in paging and to make the execution times more pre-
dictable. Some commercial real - time operating systems provide this feature,
called memory locking. These operating systems typically allow code or data
segments (or both) for a particular task, as well as the task - stack segment, to
be locked into main memory. Any task with one or more locked pages is then
prevented from being swapped out to disk. Memory locking decreases execu-
tion times for the locked modules and, more importantly, can be used to
improve real - time punctuality. At the same time, it makes fewer pages avail-
able for the application, encouraging contention.

 Garbage is memory that has been allocated but is no longer being used by
a task, that is, the task has abandoned it. Garbage can accumulate when pro-
cesses terminate abnormally without releasing memory resources. In C, for
example, if memory is allocated using the malloc procedure and the pointer
for that memory block is lost, then that block can neither be used nor properly
freed. Garbage can also develop in object - oriented systems and as a normal
byproduct of nonprocedural languages such as C + +. Real - time garbage col-
lection is an important function that must be performed either by the program-
ming language ’ s runtime support (e.g., in Java) or by the operating system if
garbage collection is not part of the language. Garbage collection techniques
are discussed further in Chapter 4 .

 3.5 SELECTING REAL - TIME OPERATING SYSTEMS

 Selecting a specifi c real - time operating system (RTOS) for a particular appli-
cation is a problem for which there is no obvious solution strategy. A related
question that is typically asked at the time of systems requirements specifi ca-
tion is “ Should a commercial RTOS be used or should one be built from
scratch? ”

www.it-ebooks.info

http://www.it-ebooks.info/

134 REAL-TIME OPERATING SYSTEMS

 3.5.1 Buying versus Building

 While the answer to that vital question depends naturally on the entire situa-
tion, commercial kernels are frequently chosen because they generally provide
robust services, are easy to use, and may even be portable. Commercially avail-
able real - time operating systems are wide - ranging in features and perfor-
mance, and can support many standard devices and communications network
protocols. Often, these systems come equipped with helpful development and
debugging tools, and they can run on a variety of hardware platforms. In short,
commercial RTOSs are best used when they can satisfy the response - time
requirements at a competitive cost, and if the real - time system must run on a
variety of platforms.

 While full - blown RTOSs provide fl exibility in scheduling discipline and the
number of tasks supported, there are clear drawbacks in their use. For example,
they are usually slower than using the plain interrupt - driven framework,
because signifi cant overhead is incurred in implementing the task control
block model, discussed in Section 3.4.3 , which is the typical architecture for
commercial real - time operating systems. Furthermore, commercial solutions
can include many unneeded features, which are incorporated in order for the
RTOS product to have the widest appeal on the market. The execution time
and memory costs of these features may be excessive. Finally, manufacturers
may be tempted to make somewhat misleading claims, or give best - case per-
formance fi gures only. The worst - case response times, on the other hand, which
would be truly valuable, are generally not available from the RTOS vendors.
If they are known, they are often not published because they could place the
product in an unfavorable light among its rivals.

 For embedded systems, when the per - unit license charge for commercial
RTOS products is too high, or when some desired features are unavailable, or
when the system overhead is too high, the only alternative is to develop/
subcontract the real - time kernel oneself. But this is not a trivial task, and
requires substantial development and maintenance effort during the whole
lifecycle. Therefore, commercial real - time operating systems should be seri-
ously considered wherever possible.

 There are many commercial RTOSs available for real - time systems, but
deciding which one is most suitable for a given application is diffi cult (Anh
and Tan, 2009). Many features of embedded real - time operating systems must
be considered, including cost, reliability, and speed. However, there are many
other characteristics that may be as important or even more important,
depending on the application. For example, the RTOS usually resides in some
form of ROM and often controls hardware that will not tolerate any faults;
hence, the RTOS should also be fault tolerant. Besides, the hardware typically
needs to be able to react to different events in the system very rapidly; there-
fore, the real - time operating system should be able to handle multiple tasks
in an effi cient manner. Finally, because the hardware platform on which the
operating system will reside may have a strictly limited memory space, the

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING REAL-TIME OPERATING SYSTEMS 135

RTOS must use a reasonable amount of memory for its code and data
structures.

 In fact, there are so many functional and nonfunctional attributes of any
commercial RTOS that evaluation and comparison become unavoidably a
subjective endeavor. Nonetheless, some rational criteria and metrics should be
utilized to support the heuristic decision - making process. Using a standard set
of carefully formulated criteria provides a guiding “ road sign ” toward a suc-
cessful decision (Laplante, 2005).

 3.5.2 Selection Criteria and a Metric for Commercial
Real - Time Operating Systems

 From business and technical perspectives, the selection of a commercial real -
 time operating system represents a potential make - or - break decision. It is
therefore imperative that a broad and rigorous set of selection criteria be used.
The following are desirable characteristics for real - time systems (this discus-
sion is adapted from Laplante [2005]):

 • Fault tolerance
 • Maintainability
 • Predictability
 • Survival under peak load
 • Timeliness

 Hence, the selection criteria should explicitly refl ect these desiderata (Buttazzo,
 2000). Unfortunately, unless a comprehensive experience base exists using
several commercial RTOSs in multiple, identical application domains, there
are basically two ways to determine the fi tness of an RTOS product for a given
application. The fi rst is to rely on third - party reports of success or failure. These
abound and are published widely on the Web, and, particularly, in real - time
systems conferences. The second is to compare alternatives based on the
manufacturer ’ s published information from brochures, technical reports, and
websites.

 The following discussion presents a semi - objective “ apples - to - apples ” tech-
nique for comparing commercial real - time operating systems based on market-
ing information. This straightforward technique should be used in conjunction
with supplemental information from actual experience and third - party reports.

 Consider 13 selection criteria, m1 , . . . m13 , each having a range mi ∈ [0, 1],
where unity represents the highest possible satisfaction of the criterion and
zero represents complete nonsatisfaction.

 1. The minimum interrupt latency , m1 , measures the time between the
occurrences of hardware interrupt and when the corresponding inter-
rupt service routine begins executing. A low value represents relatively

www.it-ebooks.info

http://www.it-ebooks.info/

136 REAL-TIME OPERATING SYSTEMS

high interrupt latency, while a high value represents a lower latency.
This criterion is important because, if the minimum latency is greater
than that required by the particular embedded system, a different oper-
ating system must be selected.

 2. This criterion, m2 , defi nes the maximum number of tasks the RTOS can
simultaneously support. Even though the operating system could
support a large number of tasks, this metric is usually constrained by
the available memory. This criterion is important for high - end systems
that need numerous simultaneous tasks. A relatively high number of
tasks supported would result in m2 = 1, while fewer tasks supported
would suggest a lower value for m2 .

 3. Criterion m3 specifi es the total memory required to support the RTOS.
It does not include the amount of additional memory required to run
the system ’ s application software. Rating m3 = 1 suggests a minimal
memory requirement, while m3 = 0 would represent a large memory
requirement.

 4. The scheduling mechanism criterion, m4 , enumerates whether preemp-
tive, round - robin, or some other task - scheduling mechanism is used by
the operating system. If several alternative or hybrid mechanisms were
supported, then a high value would be assigned to m4 .

 5. Criterion m5 refers to the available methods the operating system has
to allow tasks to communicate/synchronize with each other. Among
possible choices are binary, counting and mutual - exclusion (mutex)
semaphores, mailboxes, message queues, ring buffers, shared memory,
and so on. Let m5 = 1 if the RTOS provides all desired communication
and synchronization mechanisms. A lower value for m5 implies that
fewer mechanisms are available.

 6. Criterion m6 refers to the after - sale support an RTOS company puts
behind its product. Most vendors offer some sort of free technical
support for a short period of time after the sale, with the option of
purchasing additional support if required. Some companies even offer
on - site consultation. A high value might be assigned to a strong and
relevant support program, while m6 = 0 if no support is provided.

 7. Application availability , m7 , refers to the amount of application software
available (either that ships with the RTOS or is available elsewhere) to
develop applications to run on the real - time operating system. For
example, RTLinux is supported by the GNU ’ s suite of software, which
includes the gcc C compiler and many freely available software debug-
gers, as well as other supporting software. This may be an important
consideration, especially when starting to use an unfamiliar RTOS. Let
m7 = 1 if a large amount of software were available, while m7 = 0 would
mean that little or nothing was available.

 8. Criterion m8 refers to the different CPUs supported , and is important
in terms of portability and compatibility with off - the - shelf hardware

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING REAL-TIME OPERATING SYSTEMS 137

and software. This criterion also encompasses the range of peripherals
that the operating system can support. A high value for the criterion
represents a highly portable and compatible RTOS.

 9. Criterion m 9 refers to whether the source code of the real - time operat-
ing system will be available to the developer, for tweaking or changes.
The source code also gives insight to the RTOS architecture, which
may be useful for debugging purposes and systems integration.
Setting m 9 = 1 would suggest open source code or free source code,
while a lower value might be assigned in proportion to the purchase
price of the source code. Let m 9 = 0 if the source code were
unavailable.

 10. Criterion m 10 refers to the time it takes for the RTOS kernel to save the
context when it needs to switch from one task to another. A relatively
fast context switch time would result in a higher value for m 10 .

 11. The criterion m 11 is directly related to the cost of the RTOS alone (one -
 time license fee and possible per - unit royalties). This is critical because
for some low - end systems, the RTOS cost may be disproportionately
high. In any case, a relatively high cost would be assigned a very low
value, while a low cost would merit a higher value for m 11 .

 12. This criterion, m 12 , rates which development platforms are available. In
other words, it is a record of the other real - time operating systems that
are compatible with the given RTOS. A high value for m 12 would rep-
resent wide compatibility, while a low m 12 would indicate a single
platform.

 13. Finally, the criterion m 13 is based on a record of what communications
networks and network protocols are supported by the given RTOS. This
would be useful to know because it rates what communications methods
the software running on this RTOS would be able to use to communi-
cate with other computers. A high value for the criterion represents a
relatively large variety of networks supported.

 Recognizing that the importance of individual criteria will differ greatly
depending on the application, a weighting factor, w i ∈ [0, 1], will be used for
each criterion m i , i ∈ {1, 2, . . . 13}, where unity is assigned if the criterion has
highest importance, and zero if the criterion is unimportant in the particular
application. Then an average fi tness metric, M ∈[]0 1, , for supporting the
decision - making process, is formed as:

 M w mi i

i

=
=
∑1

13 1

13

 (3.8)

 Obviously, a high value of M means that the RTOS is well suited to the appli-
cation, and a low value means that the RTOS is poorly suited for the applica-
tion. While selection of the values for w i and m i will be somewhat

www.it-ebooks.info

http://www.it-ebooks.info/

138 REAL-TIME OPERATING SYSTEMS

subjective for any given RTOS and any given application, the availability of
this clear - cut metric provides a handle for semi- objective comparison.

 3.5.3 Case Study: Selecting a Commercial Real - Time Operating System

 A representative commercial RTOS is fi rst examined based on the 13 criteria
just introduced. Although the data are mostly real, the manufacturer name is
omitted, as our intention is not to imply a recommendation of any product —
 this case study is for illustration purposes only. For all the compared RTOSs,
equal and fair operating conditions are assumed.

 In the cases where a quantitative criterion value can be assigned, this is
done right away. Where the criteria are “ CPU dependent ” or indeterminate,
absent a real application, assignment of a numerical rating is postponed, and
a value of “ * ” is given. This “ unknown ” value is approximated later at the time
of application analysis. Note too that the values between columns of the com-
parison table need to be consistent. For example, if a 6 - μs interrupt latency
yields m1 = 1 for RTOS X, the same 6 - μs latency should yield m1 = 1 for RTOS
Y as well.

 Consider a commercial RTOS A. Table 3.9 summarizes the criteria and
ratings, which were based on the following rationale. The product literature
indicated that the minimum interrupt latency is CPU dependent, therefore
m1 = * is assigned here. Context switch time and compatibility with other
RTOSs are not given, and so m10 = m12 = * are indicated. In all these cases, the
 “ * ” will be later resolved as 0.5 for the purposes of evaluating the metric of
Equation 3.8 . RTOS A supports 32 task - priority levels, but it is not known if
there is a limit on the total number of tasks, so a value of m2 = 0.5 is assigned.
RTOS A itself requires 60 K bytes of memory, which is somewhat more than
some of the alternatives, so a value of m3 = 0.7 is assigned. The operating

 TABLE 3.9. Summary Data for RTOS A

 Criterion Description Rating Comment

m1 Minimum interrupt latency * CPU dependent
m2 Maximum number of tasks 0.5 32 task - priority levels
m3 Total memory required 0.7 ROM: 60 K bytes
m4 Scheduling mechanism 0.25 Preemptive only
m5 Communicate/synchronize 0.5 Direct message passing
m6 After - sale support 0.5 Paid phone support
m7 Application availability 1 Various
m8 CPUs supported 0.8 Various
m9 Source code 1 Available
m10 Save the context * Unknown
m11 Cost 0.5 $2500 + royalty fee
m12 Development platforms * Unknown
m13 Networks and protocols 1 Various

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING REAL-TIME OPERATING SYSTEMS 139

system provides only one form of scheduling, preemptive priority, so a low
value, m 4 = 0.25, is assigned here. Intertask communication and synchroniza-
tion is available only through direct message passing, so a relatively low
 m 5 = 0.5 is assigned. RTOS A is available for various hardware platforms, but
fewer than its competitors, hence m 8 = 0.8.

 The company behind RTOS A provides paid phone support, which is not
as generous as other companies, so a value of m 6 = 0.5 is assigned. The initial
license fee is moderate, and there is some royalty per each produced unit, so
 m 11 = 0.5 was assigned. Finally, there is a wide range of software support for
the product, including the available source code and communications network
protocols, so values of unity are given for these three criteria (m 7 = m 9 = m 13 = 1).

 Consider the following application and a set of fi ve real - time operating
systems, including RTOS A just described and RTOS B - E, whose criteria were
determined in a similar manner; see Laplante (2005) for more details.

 The hard real - time software controlling an inertial measurement system of
a fi ghter aircraft requires substantial input/output processing, which inherently
causes a high rate of hardware interrupts. This is an extremely reactive and
mission - critical system that requires fast context switching (w 10 = 1), minimal
interrupt latency (w 1 = 1), compact hardware implementation (w 3 = 1), versa-
tile synchronization (w 5 = 1), and a well - supported system (w 6 = w 7 = 1).
Hardware compatibility is not critical, because there is little need to port the
system, and the number of tasks supported is relatively low, therefore,
 w 2 = w 8 = 0.1. Cost of the RTOS is not so important in this application, hence
 w 11 = 0.4. The other criteria are set to 0.5, because they are only moderately
important, w 4 = w 9 = w 12 = w 13 = 0.5.

 The weights and corresponding ratings assigned are summarized in Table
 3.10 , and the metric M suggests that RTOS D is the best match for our inertial
measurement system with M = 0 527. , while the maximum possible rating is
here Mmax .= 0 662. Nevertheless, the metric of RTOS E (M = 0 489.) is only
7.2% lower than that of RTOS D, and hence it represents the second - best
match. The other candidates have their metrics 20.4 – 23.0% below the best one.
Furthermore, it should be noted that all the real - time operating systems con-
sidered have relatively high standard deviation (0.269 – 0.384) of the weighted
selection metrics. This is partly explained by the comparable standard devia-
tion of the weights w i (0.352).

 In practice, both RTOS D and RTOS E would next be taken a closer look
at before approaching the fi nal decision. Figure 3.22 illustrates the weighted
ratings for RTOS D and RTOS E. We can observe that RTOS D has a
higher weighted rating than RTOS E in four of the six imperative criteria
weighted with unity. Moreover, the rating of fi rst criterion (minimum interrupt
latency) is 0.5 for RTOS D, because it is defi ned vaguely as “ CPU dependent. ”
On the other hand, the minimum interrupt latency of RTOS E is provided
explicitly as 6 μs (⇒ m 1 = 1). These and other specifi c details are available
from Laplante (2005) . Before making the actual decision, an exact value cor-
responding to this critical criterion should defi nitely be found out. The same

www.it-ebooks.info

http://www.it-ebooks.info/

140 REAL-TIME OPERATING SYSTEMS

 TABLE 3.10. Decision Table for the Inertial Measurement System

 Criterion Description Weight
 w i

 A B C D E

 m 1 Minimum interrupt latency 1 0.5 0.8 1 0.5 1
 m 2 Maximum number of tasks 0.1 0.5 0.5 0.5 1 1
 m 3 Total memory required 1 0.7 0.2 0.5 1 0.9
 m 4 Scheduling mechanism 0.5 0.25 0.5 0.25 1 0.25
 m 5 Communicate/synchronize 1 0.5 1 0.5 1 1
 m 6 After - sale support 1 0.5 0.5 1 0.8 1
 m 7 Application availability 1 1 0.75 1 1 0.5
 m 8 CPUs supported 0.1 0.8 0.5 0.2 1 0.2
 m 9 Source code 0.5 1 1 0 0.4 1
 m 10 Save the context 1 0.5 0.5 0.5 1 0.5
 m 11 Cost 0.4 0.5 0.5 0.1 0.1 0.7
 m 12 Development platforms 0.5 0.5 0.5 0.5 0.5 0.5
 m 13 Networks and protocols 0.5 1 1 1 1 0.6

 M 0.405 0.417 0.419 0.527 0.489

 STD weighted 0.269 0.295 0.384 0.382 0.364

 Figure 3.22. Individual criterion weights (white) and weighted criterion ratings for
RTOS D (black) and RTOS E (gray).

0

1

 1 2 3 4 5 6 7 8 9 10 11 12 13

Criterion Number

W
ei

gh
te

d
R

at
in

g

applies to the “ save the context ” criterion for RTOS E. After obtaining those
additional data, and considering supplemental information from concrete
experience and possible third - party reports, we are ready to begin close nego-
tiations with the company behind RTOS D or RTOS E. Finally, all the factors
that guided us to the semi - objective decision should be thoroughly docu-
mented for future needs.

 3.5.4 Supplementary Criteria for Multi - Core and Energy - Aware Support

 For many years, the fundamental selection criteria, m i , i ∈ {1, 2, . . . 13}, just
discussed have remained fairly static; no major advancement has occurred in

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING REAL-TIME OPERATING SYSTEMS 141

evaluating the suitability of an RTOS for a specifi c application by utilizing the
standard metric of Equation 3.8 . Only quantitative expansion has taken place,
particularly, within the application availability (criterion m7), as well as the
availability of communications networks and network protocols (criterion
m13). Recently, however, two new criteria have become pertinent when select-
ing a real - time operating system for multi - core environments (Sindhwani and
Srikanthan, 2005) or energy - aware embedded systems (Saran et al., 2005).

 Multi - core processors (see Section 2.3.3) are used increasingly in both
nonembedded and embedded real - time applications, because they can offer
high instruction throughput and true concurrency for real - time multitasking.
To take full advantage of the available parallel - processing capability, a special
RTOS is needed that is designed and confi gured for multi - core architectures.
Just a few commercial RTOSs exist with explicit multi - core support, such as a
hybrid multitasking scheme that provides both intra - core and inter - core mul-
titasking with a double - level operating system hierarchy. This intra - core mul-
titasking resembles the behavior of a conventional multitasking system in a
uniprocessor environment, while the higher - level inter - core multitasking pro-
vides true concurrency that is only possible with two or more cores. In some
cases, even a single task could be split across more than one core by an online
scheduler (Lakshmanan et al., 2009). Therefore, to support the latest needs,
we introduce another criterion, multi - core support (m14), which is used when
the desired processing environment is not a traditional uniprocessor. Here,
m14 = 0 corresponds to an RTOS with no multi - core support, and m14 = 1 if
extensive multi - core features and associated load - balancing utility software
are available.

 Energy - aware operating systems are used increasingly in wireless sensor
network applications, including environmental monitoring, high - tech bridges,
military surveillance, smart buildings, and traffi c monitoring (Eswaran et al.,
 2005). Those tiny, spatially distributed, and highly cooperative real - time
systems are usually battery operated, and there is a primary requirement to
maximize the battery lifetime. In its simplest form, “ energy - aware ” means just
a capability of the RTOS to put the idling CPU (no task is scheduled to execute
within a specifi ed time window) to a sleep mode, where the power consump-
tion can be reduced to �� 1% of the active mode consumption. A hardware
interrupt from a real - time clock or communications controller awakes the
CPU back to the active mode in a few microseconds. More sophisticated
energy - aware operating systems may provide adaptable quality - of - service
(QoS) for communications performance; higher data loss and transmission
error probabilities are traded off against lower energy consumption, and vice
versa (Raghunathan et al., 2001). The QoS is regulated by adjusting the supply
voltage and clock frequency of the CPU appropriately. In that way, signifi cant
energy savings can be obtained with acceptable QoS levels in ad hoc networks.
For supporting these emerging needs, we introduce another criterion, energy -
 aware support (m15). It is used when the application has specifi c energy aware-
ness requirements. If the RTOS offers no energy - aware support, m15 is set to

www.it-ebooks.info

http://www.it-ebooks.info/

142 REAL-TIME OPERATING SYSTEMS

zero. A high value for m15 implies that several energy - saving options are pro-
vided. Some of the light - overhead energy - aware operating systems are based
on an event - driven programming model that differs from the traditional
scheduling approaches (Rossetto and Rodriguez, 2006).

 Finally, after introducing two supplementary selection criteria, m14 and m15 ,
we have to modify the metric of Equation 3.8 accordingly. In the future, when
the processor and applications technologies evolve, it is likely that additional
criteria will be introduced every now and then. Moreover, certain real - time
applications have already unique application - specifi c criteria to consider in
addition to the standard ones discussed above.

 3.6 SUMMARY

 In this chapter, we gave a thorough presentation on central issues related to
real - time operating systems. The practical discussion has both extensive
breadth and considerable depth, and hence it forms a solid basis for under-
standing, designing, and analyzing multitasking systems having shared
resources. Our presentation — contrary to most other textbooks on real - time
systems — also covers a heterogeneous collection of pseudokernels, because
the primary goal of a software designer is to create a competitive real - time
system , not merely to use an operating system (that should be seen as a tool).

 But what are the general conclusions and suggestions that follow from that
discussion? Real - time software engineering requires understanding the
purpose to be achieved, the available resources, and the manner in which they
may be allocated collectively to achieve the ultimate objective — a predictable
and maintainable real - time system, which fulfi lls all response - time require-
ments with adequate punctuality. To contribute to the burdensome process of
achieving the ultimate objective, we next compose a set of pragmatic rules that
are derived from the contents of Sections 3.1 – 3.5 :

 • From Pseudokernels to Operating Systems . There is a variety of “ operating -
 system ” architectures available but consider fi rst the simple ones, since
they are usually more predictable and their computational overhead is
lower; if you decide to use other than pseudokernels in embedded systems,
minimize the number of tasks, because task switching and synchronization
are time - consuming operations.

 • Theoretical Foundations of Scheduling . Internalize the general principles
of fi xed - and dynamic - priority scheduling, as they are helpful when you
prioritize tasks or interrupts in a practical real - time system.

 • System Services for Application Programs . Never use global buffers
without a safe locking mechanism; always pay special attention to dead-
lock avoidance when you share critical resources between multiple tasks;
beware of priority inversion; although system services make the program-

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 143

ming work easier, remember that most system calls are time - consuming
because they end up to scheduling.

 • Memory Management Issues . If your operating system uses multiple
stacks, reserve an adequate (worst - case) space for them — sporadic stack
overfl ows are disastrous and diffi cult to debug; computing platforms with
virtual memory are for soft and fi rm real - time systems only, since page
swapping between the main memory and secondary storage is overly
time - consuming; moreover, the main memory and secondary storage need
regular garbage collection and compaction, which may disturb time -
 critical tasks.

 • Selecting Real - Time Operating Systems . If you choose above “ kernel ” in
the operating system taxonomy (see Fig. 3.2), a commercial solution is
usually the best choice; devote substantial expertise and effort to the
selection process, because you usually have to live with the selected RTOS
for several years; collect fi rst the relevant technical information to obtain
some objectiveness to your decision - making strategy; admit that the fi nal
decision can only be semi - objective (at its best), because you have a multi -
 objective optimization problem with obvious uncertainties in the compos-
ite cost function; do not be afraid of subjective criteria or “ feelings, ” as
many complicated problems, such as selecting one ’ s career or employer,
are often successfully solved with largely subjective arguments; anyhow,
the RTOS selected should only be “ good enough. ”

 During recent years, the requirements set for real - time operating systems have
somewhat evolved due to developments in processor and applications tech-
nologies. Multi - core processors and energy - aware sensor networks have set
totally new challenges for RTOS developers. Besides, there is still a lot of space
for innovations and associated research in those and other emerging segments.
Thus, the fi eld of real - time operating systems is vital from both engineering
and research viewpoints.

 3.7 EXERCISES

3.1. Explain what is meant by task concurrency in a uniprocessor
environment.

3.2. What are the desirable features that an operating system should have to
provide for predictability in time - critical applications?

3.3. For some sample real - time systems described in Chapter 1 , discuss which
operating system architecture is most appropriate.

(a) Inertial measurement system.
(b) Nuclear monitoring system.
(c) Airline reservations system.

www.it-ebooks.info

http://www.it-ebooks.info/

144 REAL-TIME OPERATING SYSTEMS

 (d) Pasta sauce bottling system.
 (e) Traffi c light controller.

 Make whatever assumptions you like, but document them and justify
your answers.

 3.4. What determines the priority of a task in an embedded application with
fi xed priorities?

 3.5. Construct a cyclic code structure with four procedures, A, B, C, and D.
Procedure A runs twice as frequently as B and C, and procedure A runs
four times as frequently as D.

 3.6. What is the principal difference between a background task and a fore-
ground task?

 3.7. Exceptions can be used conveniently as a framework for error recovery.
Defi ne the following terms:

 (a) A synchronous exception.
 (b) An asynchronous exception.
 (c) An application - detected error.
 (d) An environment - detected error.

 3.8. Should an interrupt service routine be allowed to be interruptible? If it
is, what are the consequences?

 3.9. Write some simple assembly language routine that is not reentrant. How
could you make it reentrant?

 3.10. Write save and restore routines (see Section 3.1.4) in assembly code,
assuming push all (PUSHALL) and pop all (POPALL) instructions are
available for saving and restoring all work registers.

 3.11. Discuss the difference between fi xed and dynamic, online and offl ine,
optimal and heuristic scheduling algorithms.

 3.12. Show mathematically that the upper limit for CPU utilization with the
rate - monotonic approach, lim

n

nn
→∞

−()2 11 , is exactly ln 2 as stated in
Equation 3.7 .

 3.13. Discuss the advantages of earliest deadline fi rst scheduling over rate -
 monotonic scheduling and vice versa.

 3.14. Explain what is meant by context - switching overhead, and how to
account for it in the rate - monotonic and earliest deadline fi rst schedu-
lability analysis.

 3.15. Show with an example that the earliest deadline fi rst algorithm is no
longer an optimal scheduling algorithm if preemption is not allowed.

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 145

3.16. Give two different explanations why the following three periodic tasks
are schedulable by the rate - monotonic algorithm: τ1 ≡ {0.8, 2}, τ2 ≡ {1.4,
4}, and τ3 ≡ {2, 8}. Here, the notation τi ≡ { ei , pi } gives the execution time,
ei , and period, pi , of task τi .

3.17. Verify the schedulability under rate - monotonic algorithm and construct
the schedule of the following task set: τ1 ≡ {3, 7}, τ2 ≡ {5, 16}, and τ3 ≡ {3,
15}. Here, the notation τi ≡ { ei , pi } gives the execution time, ei , and period,
pi , of task τi .

3.18. Verify the schedulability under earliest deadline fi rst algorithm and con-
struct the schedule of the following task set: τ1 ≡ {1, 5, 4}, τ2 ≡ {2, 8, 6},
and τ3 ≡ {1, 4, 3}. Here, the notation τi ≡ { ei , pi , Di } gives the execution
time, ei , period, pi , and relative deadline, Di , of task τi .

3.19. What effect does the length of a ring buffer have on its performance?
How would you determine the suitable length for a specifi c case?

3.20. Write save and restore routines (see Section 3.1.4) in assembly code
so that they save and restore the context to/from the head and tail of a
ring buffer, respectively — instead of using a stack.

3.21. Assume a preemptive priority system with two tasks, τ1 and τ2 (with
τ1 � τ2), which share a single critical resource. Show with an appropriate
execution scenario that a simple software fl ag (a global variable) at the
level of application tasks is not adequate for providing safe sharing of
the critical resource.

3.22. An operating system provides 256 fi xed priorities to tasks in the system,
but only 32 priority levels for their messages exchanged through message
queues. Suppose that each posting task chooses the priority of its mes-
sages by mapping the 256 priorities to 32 message - priority levels. Discuss
some potential problems associated with this uniform mapping scheme.
What kind of approach would you take?

3.23. Write two pseudocode routines to access (read from and write to) a 20 -
 item ring buffer. The routines should use binary semaphores to allow
more than one user to access the buffer safely.

3.24. Give an example from the real world in which a deadlock sometimes
occurs in practice. How is that situation usually solved?

3.25. Show how priority inheritance can cause a deadlock. Consider three
tasks (with τ1 � τ2 � τ3) and appropriate lock – unlock sequences.

3.26. What knowledge is needed to determine the size of runtime stack in a
multiple - interrupt system? What safety precautions are necessary?

3.27. Write a pseudocode procedure compacting 64 M bytes of memory that
is divided into 1 M - byte pages. Use a pointer scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

146 REAL-TIME OPERATING SYSTEMS

3.28. Write a pseudocode procedure that allocates pages of memory on
request. Assume that 100 pages of size 1 M byte, 2 M bytes, and 4 M
bytes are available. The procedure should take the size of the page
requested as an argument, and return a pointer to the allocated page.
The smallest available page should be used, but if the smallest size is
unavailable, the next smallest should be used.

3.29. By performing a Web search, obtain as much relevant data as you can
for at least two commercial real - time operating systems. Summarize your
fi ndings and compare those operating systems to each other. What are
their main differences?

3.30. Identify some of the limitations of existing commercial real - time kernels
for the development of mission - and safety - critical applications. Perform
a Web search to collect the necessary information.

 REFERENCES

 T. N. B. Anh and S. - L. Tan , “ Real - time operating systems for small microcontrollers , ”
IEEE Micro , 29 (5), pp. 30 – 45 , 2009 .

 G. Buttazzo , Hard Real - Time Computing Systems: Predictable Scheduling Algorithms
and Applications . Norwell, MA : Kluwer Academic Publishers , 2000 .

 M. - I. Chen and K. - J. Lin , “ Dynamic priority ceilings: A concurrency control protocol
for real - time systems , ” Real - Time Systems , 2 (4), pp. 325 – 346 , 1990 .

 F. Cottet , J. Delacroix , C. Kaiser , and Z. Mammeri , Scheduling in Real - Time Systems .
 Chichester, UK : John Wiley & Sons , 2002 .

 A. Eswaran , A. Rowe , and R. Rajkumar , “ Nano - RK: An energy - aware resource - centric
RTOS for sensor networks , ” Proceedings of the 26th IEEE International Real - Time
Systems Symposium , Miami, FL, 2005 , 10 pp.

 J. Havender , “ Avoiding deadlock in multitasking systems , ” IBM Systems Journal , 7 (2),
pp. 74 – 84 , 1968 .

 K. Lakshmanan , R. Rajkumar , and J. Lohoczky , “ Partitioned fi xed - priority preemptive
scheduling for multi - core processors , ” Proceedings of the 21st Euromicro Conference
on Real - Time Systems , Dublin, Ireland, 2009 , pp. 239 – 248 .

 P. A. Laplante , “ Criteria and a metric for selecting commercial real - time operating
systems , ” Journal of Computers and Applications , 27 (2), pp. 82 – 96 , 2005 .

 C. L. Liu and J. W. Layland , “ Scheduling algorithms for multi - programming in a hard
real - time environment , ” Journal of the ACM , 20 (1), pp. 46 – 61 , 1973 .

 V. Raghunathan , P. Spanos , and M. B. Srivastava , “ Adaptive power - fi delity in energy -
 aware wireless embedded systems , ” Proceedings of the 22nd IEEE Real - Time
Systems Symposium , London, UK, 2001 , pp. 106 – 115 .

 S. Rossetto and N. Rodriguez , “ A cooperative multitasking model for networked
sensors , ” Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems Workshops , Lisbon, Portugal, 2006 , 6 pp.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 147

 L. Sha , R. Rajkumar , and J. P. Lehoczky , “ Priority inheritance protocols: An approach
to real - time synchronization , ” IEEE Transactions on Computers , 39 (9), pp. 1175 –
 1185 , 1990 .

 A. C. Shaw , Real - Time Systems and Software . New York : John Wiley & Sons , 2001 .
 D. E. Simon , An Embedded Software Primer . Boston : Addison - Wesley , 1999 .
 M. Sindhwani and T. Srikanthan , “ Framework for automated application - specifi c opti-

mization of embedded real - time operating systems , ” Proceedings of the 5th
International Conference on Information, Communications and Signal Processing ,
Bangkok, Thailand, 2005 , pp. 1416 – 1420 .

 J. A. Stankovic and R. Rajkumar , “ Real - time operating systems , ” Real - Time Systems ,
 28 (2/3), pp. 237 – 253 , 2004 .

 K. - C. Tai , “ Defi nitions and detection of deadlock, livelock, and starvation in concurrent
programs , ” Proceedings of the International Conference on Parallel Processing ,
Raleigh, NC, 1994 , pp. 69 – 72 .

 E. Torng , “ A unifi ed analysis of paging and caching , ” Algorithmica , 20 (1), pp. 175 – 200 ,
 1998 .

www.it-ebooks.info

http://www.it-ebooks.info/

 4
PROGRAMMING LANGUAGES
FOR REAL - TIME SYSTEMS

149

 Programming languages inspired vigorous debates among programmers in the
early years of embedded real - time systems: should one continue to use the
assembly language, go ahead with one of the PL/I derivatives (Intel ’ s PL/M,
Motorola ’ s MPL, or Zilog ’ s PL/Z), or even consider the emerging C language
for a software project? Today , there is very little such debate between practi-
tioners developing embedded software. If we consider the global community
of professional real - time programmers, we could even condense the
programming - language selection dilemma to two principal alternatives: C ++
or C — increasingly in this order of consideration. Of course, there are excep-
tions to our somewhat naive simplifi cation: Ada has a place in new and legacy
projects for the U.S. Department of Defense (DoD), and Java is used widely
in applications to be run on multiple platforms. Nevertheless, we choose to
simplify the decision around C ++ and C: if you have a large software project
where the productivity of programmers and the long - term maintainability of
code produced are of primary importance, then C ++ is a good choice, while in
smaller projects with tight response - time specifi cations and/or considerable
material - cost pressure to make the hardware platform overly reduced, C is
the appropriate language. And specifi cally, we are talking about new product
generations only, that is, software to be developed largely from scratch. The

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

150 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

situation is obviously different if we want to reuse some software from earlier
projects or merely extend an existing product.

 Writing software is considered, increasingly, to be commoditized work that
could be subcontracted to a software consulting company if rigorous
requirements - engineering processes have been followed. This situation is espe-
cially true with large - scale projects, like building automation systems or cell -
 phone exchanges. On the other hand, in highly time - critical applications and
in the core sections of innovative products, the software development effort
may take place very close to the corresponding algorithms development to
ensure that the required sampling rates are achieved in embedded systems
within the “ dangerous ” CPU utilization zone (see Table 1.3), or critical intel-
lectual property needs to be protected within the organization.

 In this chapter, we provide an evaluative discussion on programming lan-
guages for real - time systems. Recognizing that each organization and applica-
tion is unique, and the need to consider multiple language choices is often
necessary, the discussion goes beyond the simplifi ed C ++ /C viewpoint that was
expressed in the beginning of the chapter. Section 4.1 introduces the general
topic of writing real - time software with a brief overview on coding standards.
The limited but continuing use of assembly language is contemplated in
Section 4.2 , while Sections 4.3 and 4.4 provide pragmatic discussions on the
advantages and disadvantages of procedural and object - oriented languages,
respectively. Section 4.5 contains a focused overview of mainstream program-
ming languages: Ada, C, C ++ , C#, and Java. Automatic code generation has
been a dream of software engineers for a long time, but there are no general -
 purpose techniques for creating real - time software “ automatically. ” An intro-
duction to automatic code generation and its challenges is given in Section 4.6 .
Section 4.7 presents some standard code - optimization strategies used in com-
pilers. These optimization strategies are particularly valuable to note when
writing time - critical code with a procedural language, or when debugging an
embedded system at the level of assembly - language instructions. An insightful
summary of the preceding sections is provided next in Section 4.8 . Finally, a
carefully composed set of exercises is available in Section 4.9.

 4.1 CODING OF REAL - TIME SOFTWARE

 Misuse of the underlying programming language can be the single greatest
source of performance deterioration and missed deadlines in real - time systems.
Moreover, when using object - oriented languages in real - time systems, such
performance problems can be more diffi cult to analyze and control. Nonetheless,
object - oriented languages are steadily displacing procedural languages as the
language of choice in real - time embedded systems development. Figure 4.1
depicts the mainstream use of programming languages in embedded real - time
applications from the 1970s to the present decade.

 Some parts of this section have been adapted from Laplante (2003) .

www.it-ebooks.info

http://www.it-ebooks.info/

CODING OF REAL-TIME SOFTWARE 151

 4.1.1 Fitness of a Programming Language for Real - Time Applications

 A programming language represents the nexus of design and structure. Hence,
because the actual “ build ” of software depends on tools to compile, generate
binary code, link, and create binary objects, “ coding ” should take proportion-
ally less time than the requirements engineering and design efforts. Nevertheless,
 “ coding ” (synonymous to “ programming ” and “ writing software ”) tradition-
ally has been more craft - like than production based, and as with any craft, the
best practitioners are known for the quality of their tools and the associated
skills to use them effectively.

 The main tool in the code generation process is the language compiler.
Real - time systems are currently being built with a variety of programming
languages (Burns and Wellings, 2009), including various dialects of C, C + + , C#,
Java, Ada, assembly language, and even Fortran or Visual Basic. From this
heterogeneous list, C + + , C#, and Java are all object - oriented, while the others
are procedural. It should be pointed out, however, that C + + can be abused in
such a way that all object - oriented advantages are lost (e.g., by embedding an
old C program into one “ God ” class). Furthermore, Ada 95 has elements of
 both object - oriented and procedural languages, and can hence be used either
way, depending on the skills and preferences of the programmer as well as
local project policies.

 A relevant question that is often asked is: “ What is the fi tness of a program-
ming language for real - time applications and what metrics could be used to
measure or at least estimate such fi tness? ” To address this multidimensional
question consider, for instance, the fi ve criteria of Cardelli (Cardelli, 1996):

 C1. Economy of Execution . How fast does a program run?
 C2. Economy of Compilation . How long does it take to go from multiple

source fi les to an executable fi le?

 Figure 4.1. Mainstream usage of real - time programming languages over the years (the
year limits are approximate).

1970 1980 1990 2000 2010 Year

Programming
Language

Assembly

PL/I Deriv.

C

Ada

C++ Growing

Shrinking

Shrinking

Occasionally

Java Growing

C# Growing

www.it-ebooks.info

http://www.it-ebooks.info/

152 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 C3. Economy of Small - Scale Development . How hard must an individual
programmer work?

 C4. Economy of Large - Scale Development . How hard must a team of pro-
grammers work?

 C5. Economy of Language Features . How hard is it to learn or use a pro-
gramming language?

 Every programming language offers undoubtedly its own strengths and weak-
nesses with respect to real - time systems, and these qualitative criteria, C1 – C5,
can be used to calibrate the features of a particular language for oranges - to -
 oranges comparison within a given application. The Cardelli criteria can be
illustrated with a pentacle diagram (Sick and Ovaska, 2007) shown in Figure
 4.2 . Such diagrams provide simple means for visual comparison of candidate
programming languages.

 In this chapter, we do not intend an exhaustive programming - language
survey; instead, our focus is on those language features that could be used to
minimize the fi nal code execution time and that lend themselves to perfor-
mance prediction. The compile - time prediction of execution performance
directly supports a schedulability analysis. In the design of special real - time
programming languages, the emphasis is on eliminating those constructs that
render the language nonanalyzable, for example, unbounded recursion and
unbounded while loops. Most so - called “ real - time languages ” strive to elimi-
nate all of these. On the other hand, when mainstream languages are used for
real - time programming, certain problematic code structures may simply be
prohibited through coding standards.

 4.1.2 Coding Standards for Real - Time Software

 Coding standards (Li and Prasad, 2005) are different from language standards.
A language standard, for example, C + + ANSI/ISO/IEC 14882:2003, embodies

 Figure 4.2. Pentacle diagram for illustrating the Cardelli criteria of various economies
(the gray pentacle corresponds to assembly language).

C1: Execution

C2: Compilation
C5:Language

Features

C4: Large-Scale
Development

C3: Small-Scale
Development

Excellent

Poor

www.it-ebooks.info

http://www.it-ebooks.info/

CODING OF REAL-TIME SOFTWARE 153

the syntactic rules of the C ++ programming language. A source program vio-
lating any of those rules will be rejected by the compiler. A coding standard,
on the other hand, is a set of stylistic conventions or “ best practices. ” Violating
these conventions will not lead to compiler rejection. In another sense, compli-
ance with language standards is mandatory, while compliance with coding
standards is, at least in principle, voluntary.

 Adhering to language standards fosters portability across different compil-
ers, and, hence, hardware environments. Complying with coding standards, on
the other hand, will not foster portability, but rather in many cases, readability,
maintainability, and reusability. Some practitioners even contend that the use
of strict coding standards can increase software reliability. Coding standards
may also be used to foster improved performance by encouraging or mandat-
ing the use of certain language constructs that are known to generate code
that is more effi cient. Many agile methodologies, for instance, eXtreme
Programming (Hedin et al., 2003), embrace special coding standards.

 Coding standards typically involve standardizing some or all of the follow-
ing elements of programming language use:

 • Header format
 • Frequency, length, and style of comments
 • Naming of classes, data, fi les, methods, procedures, variables, and so forth
 • Formatting of program source code, including use of white space and

indentation
 • Size limitations on code units, including maximum and minimum number

of code lines, and number of methods used
 • Rules about the choice of language construct to be used; for example,

when to use case statements instead of nested if-then-else
statements

 While it is unclear if conforming to these rules fosters signifi cant improvement
in reliability, clearly close adherence can make programs easier to read
and understand, and hence likely more reusable and maintainable (Hatton,
 1995).

 There exist many different standards for coding that are either language
independent or language specifi c. Coding standards can be companywide,
teamwide, user - group specifi c (e.g., the GNU software group has standards for
C and C ++), or customers can require conformance to a certain standard of
their own. Furthermore, other standards have come into the public domain.
One example is the Hungarian notation standard (Petzold, 1999), named in
honor of Charles Simonyi, who is credited with fi rst promulgating its use.
Hungarian notation is a public - domain standard intended to be used with
object - oriented languages, particularly C ++ . The standard uses a purposeful
naming scheme to embed type information about the objects, methods, attri-
butes, and variables in the name. Because the standard essentially provides a
set of rules about naming various identifi ers, it can be and has been used with

www.it-ebooks.info

http://www.it-ebooks.info/

154 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

other languages, such as Ada, Java, and even C, as well. Another example is in
Java, which, by convention, uses all uppercase for constants such as PI and E .
Moreover, some classes use a trailing underscore to distinguish an attribute
like x_ from a method like x() .

 A general problem with style standards, like the Hungarian notation, is that
they can lead to mangled variable names, and that they direct the program-
mer ’ s focus on how to name in “ Hungarian ” rather than choosing a meaningful
name of the variable for its use in code. In other words, the desire to conform
to the standard may not always result in a particularly meaningful variable
name. Another problem is that the very strength of a coding standard can also
be its undoing. For example, in Hungarian notation, what if the type informa-
tion embedded in the object name is, in fact, wrong? There is no way for any
compiler to recognize this mistake. There are commercial rules wizards, remi-
niscent of the C language checking tool, lint, which can be tuned to enforce
coding standards, but they must be programmed to work in conjunction with
the compiler. Moreover, they can miss certain inconsistencies, leading the
developers to a sense of false confi dence.

 Finally, adoption of coding standards is not recommended mid - project. It is
easier and more motivating to start conforming from the beginning than to be
required to change an existing style to comply. The decision to use a specifi c
coding standard is an organizational one that requires signifi cant forethought
and open discussion.

 4.2 ASSEMBLY LANGUAGE

 In the mid - to late 1970s, when the fi rst high - level languages became available
for microprocessors, some college instructors told their students that “ in fi ve
years, nobody will be writing real applications in assembly language. ” However,
after more than 30 years from those days, assembly language still has a con-
tinuing, but limited role in real - time programming.

 What are the reasons behind this? Well, although lacking user - friendliness
and productivity features of high - level languages, assembly language does
have a particular advantage for use in real - time programming; it provides the
most direct control of the computer hardware over high - level languages. This
advantage has extended the use of assembly language in real - time systems,
despite the fact that assembly language is unstructured and has very limited
abstraction properties. Moreover, assembly - language syntax varies greatly
from processor to processor. Coding in assembly language is, in general, time -
 consuming to learn, tedious, and error prone. Finally, the resulting code is not
easily ported across different processors, and hence the use of assembly lan-
guage in embedded real - time systems — or in any professional system — is to
be discouraged.

 A generation ago, the best programmers could generate assembly code that
was often more effi cient than the code generated by a procedural - language

www.it-ebooks.info

http://www.it-ebooks.info/

ASSEMBLY LANGUAGE 155

compiler. But with signifi cant improvements in optimizing compilers over the
past decades, this is rarely the case today — if you can write your program in
a procedural language like C, the compiler should be able to generate very
effi cient machine - language code in terms of execution speed and memory
usage. Thus, the need to write assembly code exists only in special circum-
stances when the compiler does not support certain machine - language instruc-
tions, or when the timing constraints are so tight that manual tuning is the only
way to produce code that fulfi lls the extreme response - time requirements.
Furthermore, you will fi nd assembly - language code in many legacy real - time
applications, and even today you can still occasionally encounter situations
where small portions of a real - time system need to be written using assembly
language. We will discuss some of these situations shortly.

 In terms of Cardelli ’ s criteria of various economies, assembly languages
have excellent economy of execution, and vacuously, of compilation too
because they are not compiled. Assembly languages, however, have poor econ-
omies of small - and large - scale development and of language features (see Fig.
 4.2). Hence, assembly language programming should be limited to use in very
tight timing situations or in controlling hardware features that are not sup-
ported by the compiler. The continuing role of assembly language in this
decade is summarized below:

 • For certain kinds of code, such as interrupt handlers and for device drivers
for unique hardware where the “ intellectual distance ” between the hard-
ware and software needs to be minimized.

 • For situations where predictable performance for the code is extremely
diffi cult or impossible to obtain because of undesirable programming -
 language – compiler interactions.

 • For effectively using all architectural features of a CPU, for instance,
parallel adders and multipliers.

 • For writing code with minimum execution time achievable for time - critical
applications, such as sophisticated signal - processing algorithms with high
sampling rates.

 • For writing the entire software for custom - designed CPUs with a small
instruction set (see Section 2.5.3) — if no high - level language support is
available.

 • For debugging hard problems below the level of high - level language code
and tracing the stream of fetched instructions by a logic analyzer.

 • For teaching and learning computer architectures and internal operation
of processors.

 To deal with these special situations, the software developer will usually write
a shell of the program in a high - level language and compile the code to an
intermediate assembly representation, which is then fi ne - tuned manually to

www.it-ebooks.info

http://www.it-ebooks.info/

156 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

obtain the desired effect. Some languages, such as Ada, provide a way for
assembly code to be placed inline with the high - level - language code. In any
case, the use of assembly language within a real - time system must be done
reluctantly and with extreme caution.

 4.3 PROCEDURAL LANGUAGES

 Procedural languages such as Ada, C, Fortran, and Visual Basic, are those in
which the action of the program is defi ned by a set of operations executed in
sequence. These languages are characterized by facilities that allow for instruc-
tions to be grouped together into procedures or modules. Appropriate struc-
turing of the procedures allows for achievement of desirable properties of the
software, for example, modularity, reliability, and reusability.

 There are several programming - language features standing out in proce-
dural languages that are of interest in real - time systems, particularly:

 • Modularity
 • Strong typing
 • Abstract data typing
 • Versatile parameter passing mechanisms
 • Dynamic memory allocation facilities
 • Exception handling

 These language features, to be discussed shortly, help promote the desirable
properties of software design and best real - time implementation practices.

 4.3.1 Modularity and Typing Issues

 Procedural languages that are amenable to the principle of information hiding
tend to promote the construction of high - integrity real - time systems. While C
and Fortran both have mechanisms that can support information hiding (pro-
cedures and subroutines), other languages, such as Ada, tend to foster more
modular design because of the requirement to have clearly defi ned inputs and
outputs in the module parameter lists.

 In Ada, the notion of a package embodies the concept of Parnas informa-
tion hiding (Parnas, 1972) exquisitely. The Ada package consists of a specifi ca-
tion and declarations that include its public or visible interface and its private
or invisible elements. In addition, the package body, which has more externally
invisible components, contains the working code of the package. Individual
packages are separately compilable entities, which further enhances their
application as black boxes. Furthermore, the C language provides for sepa-
rately compiled modules and other features that promote a rigorous top - down
design approach, which should lead to a solid modular design.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL LANGUAGES 157

 While modular software is desirable for many reasons, there is a price to
pay in the overhead associated with procedure calls and essential parameter
passing. This adverse effect should be considered carefully when sizing
modules.

 Typed languages require that each variable and constant be of a specifi c
type (e.g., Boolean, integer, or real), and that each be declared as such before
use. Strongly typed languages prohibit the mixing of different types in opera-
tions and assignments, and thus force the programmer to be exact about the
way data are to be handled. Precise typing can prevent corruption of data
through unwanted or unnecessary type conversion. Moreover, compiler type -
 checking is an important step to fi nd errors at compile time, rather than at
runtime, when they are more costly to repair. Hence, strongly typed languages
are truly desirable for real - time systems.

 Generally, high - level languages provide integer and real types, along with
Boolean, character, and string types. In some cases, abstract data types are
supported, too. These allow programmers to defi ne their own types along with
the associated operations. Use of abstract data types, however, may incur an
execution - time penalty, as complicated internal representations are often
needed to support the abstraction.

 Some languages are typed, but do not prohibit mixing of types in arithmetic
operations. Since these languages generally perform mixed calculations using
the type that has the highest storage complexity , they must promote all vari-
ables to that highest type. For example, in C, the following code fragment
illustrates automatic promotion and demotion of variable types:

int x,y;
float a,b;
y=x*a+b;

 Here the variable x will be promoted to a float (real) type and then multi-
plication and addition will take place in fl oating point. Afterward, the result
will be truncated and stored in y as an integer. The negative performance
impact is that hidden promotion and more time - consuming arithmetic instruc-
tions are generated, with no additional accuracy achieved. Accuracy can be
lost due to the truncation, or worse, an integer overfl ow can occur if the real
value is larger than the allowable integer value. Programs written in languages
that are weakly typed need to be scrutinized for such effects. Fortunately, most
C compilers can be tuned to catch type mismatches in function parameters,
preventing unwanted type conversions.

 4.3.2 Parameter Passing and Dynamic Memory Allocation

 There are several methods of parameter passing , including the use of param-
eter lists and global variables. While each of these techniques has preferred
uses, each has a different performance impact as well. Note that these

www.it-ebooks.info

http://www.it-ebooks.info/

158 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

parameter - passing mechanisms are also found in object - oriented program-
ming languages.

 The two most widely available parameter - passing methods are call - by - value
and call - by - reference . In call - by - value parameter passing, the value of the
actual parameter in the procedure call is copied into the procedure ’ s formal
parameter. Since the procedure manipulates the formal parameter only, the
actual parameter is not altered. This technique is useful either when a test is
being performed or the output is a function of the input parameters. For
instance, in passing accelerometer readings from the 10 - ms cycle to the 40 - ms
cycle, the raw data need not be returned to the calling routine in changed form.
When parameters are passed using call - by - value, they are copied onto a
runtime stack, at additional execution - time cost.

 In call - by - reference (or call - by - address), the address of the parameter is
passed by the calling routine to the called procedure so that the corresponding
memory content can be altered there. Execution of a procedure using call - by -
 reference can take longer than one using call - by - value, since in call - by - refer-
ence, indirect addressing mode instructions are needed for any operations
involving the variables passed. However, in the case of passing large data
structures, such as buffers between procedures, it is more desirable to use call -
 by - reference, since passing a pointer is more effi cient than passing the data
by byte.

 Parameter lists are likely to promote modular design because the interfaces
between the modules are clearly defi ned. Clearly defi ned interfaces can reduce
the potential of untraceable corruption of data by procedures using global
access. However, both call - by - value and call - by - reference parameter - passing
techniques can impact real - time performance when the lists are long, since
interrupts are often disabled during parameter passing to preserve the integ-
rity of the data passed. Moreover, call - by - reference may introduce subtle
function side effects, depending on the compiler.

 Before deciding on a specifi c set of rules concerning parameter passing for
optimum performance, it is advisable to construct a set of test cases that exer-
cise different alternatives. These test cases need to be rerun every time the
compiler, hardware, or application changes in order to update the rules.

 Global variables are variables that are within the scope of all code. “ Within
scope ” usually means that references to these variables can be made with
minimal memory fetches to resolve the target address, and thus are faster than
references to variables passed via parameter lists, which require additional
memory references. For example, in many image - processing applications,
global arrays are defi ned to represent entire images, hence allowing costly
parameter passing to be avoided.

 However, global variables are dangerous because references to them can
be made by unauthorized code, potentially introducing faults that can be hard
to isolate. Use of global variables also violates the principle of information
hiding, making the code diffi cult to understand and maintain. Therefore,
unnecessary and wanton use of global variables is to be avoided. Global

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL LANGUAGES 159

parameter passing is only recommended when timing constraints so require,
or if the use of parameter lists leads to obfuscated code. In any case, the use
of global variables must be strictly coordinated and clearly documented.

 The decision to use one method of parameter passing or the other may
represent a trade - off between good software engineering practice and perfor-
mance needs. For instance, often timing constraints force the use of global
parameter passing in instances when parameter lists would have been pre-
ferred for clarity and maintainability.

 Most programming languages provide recursion in that a procedure can
either call itself or use itself in its construction. While recursion may be elegant
and is sometimes necessary, its adverse impact on real - time performance must
be considered. Procedure calls require the allocation of storage on the stack
for the passing of parameters and for storage of local variables. The execution
time needed for the allocation and deallocation, as well as for storing and
retrieving those parameters and local variables, can be costly. In addition,
recursion necessitates the use of a large number of expensive memory - and
register - indirect instructions. Moreover, precautions need to be taken to ensure
that the recursive routine will terminate, otherwise the runtime stack will
eventually overfl ow. The use of recursion often makes it impossible to deter-
mine the exact size of runtime memory requirements. Thus, iterative tech-
niques, such as while and for loops, must be used where performance and
determinism are crucial or naturally in those languages that do not support
recursion.

 The ability to dynamically allocate memory is important in the construction
and maintenance of many data structures needed in real - time systems. While
dynamic memory allocation can be time - consuming, it is necessary, especially
in the construction of interrupt handlers, memory managers, and the like.
Linked lists, trees, heaps, and other dynamic data structures can benefi t from
the clarity and economy introduced by dynamic memory allocation.
Furthermore, in cases where just a pointer is used to pass a data structure, the
overhead for dynamic allocation can be reasonable. When coding real - time
systems, however, care should be taken to ensure that the compiler will always
pass pointers to large data structures and not the data structures themselves.

 Languages that do not allow dynamic allocation of memory, for example,
some primitive high - level languages or assembly language require data struc-
tures of fi xed size. While this may be faster, fl exibility is sacrifi ced and memory
requirements must be predetermined. Modern procedural languages, such as
Ada, C, and Fortran 2003, have dynamic allocation facilities.

 4.3.3 Exception Handling

 Some programming languages provide facilities for dealing with errors or other
anomalous conditions that may arise during program execution. These condi-
tions include the obvious, such as fl oating - point overfl ow, square root of a nega-
tive argument, divide - by - zero, as well as possible user - defi ned ones. The ability

www.it-ebooks.info

http://www.it-ebooks.info/

160 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

to defi ne and handle exceptional conditions in the high - level language aids in
the construction of interrupt handlers and other critical code used for real - time
event processing. Moreover, poor handling of exceptions can degrade perfor-
mance. For instance, fl oating - point overfl ow errors can propagate bad data
through an algorithm and instigate time - consuming error - recovery routines.

 In ANSI - C, the raise and signal facilities are provided for creating
exception handlers. A signal is a type of software interrupt handler that is
used to react to an exception indicated by the raise operation. Both are
provided as function calls, which are typically implemented as macros.

 The following prototype can be used as the front end for an exception
handler to react to signal S .

void (*signal (int S, void (*func) (int)))(int);

 When signal S is set, function func is invoked. This function represents the
actual interrupt handler. In addition, we need a complementary prototype:

int raise (int S);

 Here raise is used to invoke the task that reacts to signal S .
 ANSI - C includes a number of predefi ned signals needed to handle anoma-

lous conditions, such as overfl ow, memory access violations, and illegal instruc-
tion, but these signals can be replaced with user - defi ned ones. The following
C code portrays a generic exception handler that reacts to a certain error
condition:

#include <signal.h>
main ()
{
void handler (int sig);
...
signal (SIGINT, handler); /* SIGINT handler */
... /* do some processing */
if (error) raise (SIGINT); /* anomaly detected */
... /* continue processing */
}
void handler (int sig)
{
... /* handle error here */
}

 In the C language, the signal library - function call is used to construct inter-
rupt handlers to react to a signal from external hardware and to handle certain
traps, such as fl oating - point overfl ow, by replacing the standard C library
handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL LANGUAGES 161

 Of the procedural languages discussed in this chapter, Ada has the most
explicit exception handling facility. Consider an Ada exception handler to
determine whether a square matrix is singular (i.e., its determinant is zero).
Assume that a matrix type has been defi ned, and it can be determined that
the matrix is singular. An associated code fragment might be:

begin
-- calculate determinant
-- ...
--
exception
when SINGULAR : NUMERIC/ERROR => PUT ("SINGULAR");
when others => PUT ("FATAL Error");
raise ERROR;
end;

 Here, the exception keyword is used to indicate that this is an exception
handler and the raise keyword plays a role similar to that of raise in the
C exception handler just presented. The defi nition of SINGULAR , which rep-
resents a matrix whose determinant is zero, is defi ned elsewhere, such as in a
header fi le.

 4.3.4 Cardelli ’ s Metrics and Procedural Languages

 Taking the common set of procedural languages as a whole, Cardelli consid-
ered them for use in real - time systems with respect to his criteria. His com-
ments are paraphrased in the foregoing discussion. First, he notes that variable
typing was introduced to improve code generation. Hence, economy of execu-
tion is high for procedural languages provided the compiler is effi cient. Further,
because modules can be compiled independently, compilation of large systems
is effi cient, at least when interfaces are stable. The more challenging aspects
of system integration are thus eliminated.

 Small - scale development is economical since type checking can catch many
coding errors, reducing testing and debugging efforts. The errors that do occur
are easier to debug, simply because large classes of other errors have been
ruled out. Finally, experienced programmers usually adopt a coding style that
causes some logical errors to show up as type checking errors; hence, they can
use the type checker as a development tool. For instance, changing the name
of a type when its invariants change even though the type structure remains
the same yields error reports on all its previous uses.

 Moreover, data abstraction and modularization have methodological
advantages for large - scale code development. Large teams of programmers
can negotiate the interfaces to be implemented, and then proceed separately
to implement the corresponding pieces of code. Dependencies between such
pieces of code are minimized, and code can be locally rearranged without any
fear of global effects.

www.it-ebooks.info

http://www.it-ebooks.info/

162 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 Finally, procedural languages are economical because certain well - designed
constructions can be naturally composed in orthogonal ways. For instance, in
C, an array of arrays models two - dimensional arrays. Orthogonality of lan-
guage features reduces the complexity of a programming language. The learn-
ing curve for programmers is thus reduced, and the relearning effort that is
constantly necessary in using complex languages is minimized (Cardelli, 1996).

 4.4 OBJECT - ORIENTED LANGUAGES

 The benefi ts of object - oriented languages, such as improved programmer pro-
ductivity, increased software reliability, and higher potential for code reuse,
are well known and appreciated. Object - oriented languages include Ada, C ++ ,
C#, and Java. Formally, object - oriented programming languages are those that
support data abstraction , inheritance , polymorphism , and messaging .

 Objects are an effective way to manage the increasing complexity of real -
 time systems, as they provide a natural environment for information hiding,
or protected variation and encapsulation. In encapsulation, a class of objects
and methods associated with them are enclosed or encapsulated in class defi ni-
tions. An object can utilize another object ’ s encapsulated data only by sending
a message to that object with the name of the method to apply. For example,
consider the problem of sorting objects. A method may exist for sorting an
object class of integers in ascending order. A class of people might be sorted
by their height. A class of image objects that has an attribute of color might
be sorted by that attribute. All these objects have a comparison message
method with different implementations. Therefore, if a client sends a message
to compare one of these objects to another, the runtime code must resolve
which method to apply dynamically — with obvious execution - time penalty.
This matter will be discussed shortly.

 Object - oriented languages provide a fruitful environment for information
hiding; for instance, in image - processing systems, it might be useful to defi ne
a class of type pixel, with attributes describing its position, color, and bright-
ness, and operations that can be applied to a pixel, such as add, activate, and
deactivate. It might also be desirable to defi ne objects of type image as a col-
lection of pixels with other attributes of width, height, and so on. In certain
cases, expression of system functionality is easier to do in an object - oriented
manner.

 4.4.1 Synchronizing Objects and Garbage Collection

 Rather than extending classes through inheritance, in practice, it is often pref-
erable to use composition. However, in doing so, there is the need to support
different synchronization policies for objects, due to different usage contexts.
Specifi cally, consider the following common synchronization policies for
objects:

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED LANGUAGES 163

 • Synchronized Objects . A synchronization object, such as a mutex, is asso-
ciated with an object that can be concurrently accessed by multiple
threads. If internal locking is used, then on method entry, each public
method acquires a lock on the associated synchronization object and
releases the lock on method exit. If external locking is used, then clients
are responsible for acquiring a lock on the associated synchronization
object before accessing the object and subsequently releasing the lock
when fi nished.

 • Encapsulated Objects . When an object is encapsulated within another
object (i.e., the encapsulated object is not accessible outside of the
enclosing object), it is redundant to acquire a lock on the encapsulated
object, since the lock of the enclosing object also protects the encapsu-
lated object. Operations on encapsulated objects therefore require no
synchronization.

 • Thread - Local Objects . Objects that are only accessed by a single thread
require no synchronization.

 • Objects Migrating between Threads . In this policy, ownership of a migrat-
ing object is transferred between threads. When a thread transfers owner-
ship of a migrating object, it can no longer access it. When a thread
receives ownership of a migrating object, it is guaranteed to have exclu-
sive access to it (i.e., the migrating object is local to the thread). Hence,
migrating objects require no synchronization. However, the transfer of
ownership does require synchronization.

 • Immutable Objects . An immutable object ’ s state can never be modifi ed
after it is instantiated. Thus, immutable objects require no synchronization
when accessed by multiple threads since all accesses are read - only.

 • Unsynchronized Objects . Objects within a single - threaded program
require no synchronization.

 To illustrate the necessity of supporting parameterization of synchronization
policies, consider a class library. A developer of a class library wants to ensure
the widest possible audience for this library, so he makes all classes synchro-
nized so that they can be used safely in both single - threaded and multi -
 threaded applications. However, clients of the library whose applications are
single - threaded are unduly penalized with the unnecessary execution over-
head of synchronization that they do not need. Even multi - threaded applica-
tions can be unduly penalized if the objects do not require synchronization
(e.g., the objects are thread - local). Therefore, to promote reusability of a class
library without sacrifi cing performance, classes in a library ideally would allow
clients to select on a per - object basis which synchronization policy to use.

 Garbage refers to allocated memory that is no longer being used but is
not otherwise available either. Excessive garbage accumulation can be detri-
mental, and therefore garbage must be regularly reclaimed. Garbage collec-
tion algorithms generally have unpredictable performance, although average

www.it-ebooks.info

http://www.it-ebooks.info/

164 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

performance may be known. The loss of determinism results from the unknown
amount of garbage, the tagging time of the nondeterministic data structures,
and the fact that many incremental garbage collectors require that every
memory allocation or deallocation from the heap be willing to service a page -
 fault trap handler.

 Furthermore, garbage can be created in both procedural and object - oriented
languages. For example, in C, garbage is created by allocating memory, but
not deallocating it properly. Nonetheless, garbage is generally associated
with object - oriented languages like C ++ and Java. Java is noteworthy in
that the standard environment incorporates garbage collection, whereas C ++
does not.

 4.4.2 Cardelli ’ s Metrics and Object - Oriented Languages

 Consider object - oriented languages in the context of Cardelli ’ s metrics as
paraphrased from his analysis. In terms of economy of execution, object -
 oriented style is intrinsically less effi cient than procedural style. In pure object -
 oriented style, every routine is supposed to be a method. This introduces
additional indirections through method tables and prevents straightforward
code optimizations, such as inlining. The traditional solution to this problem
(analyzing and compiling whole programs) violates modularity and is not
applicable to libraries.

 With respect to economy of compilation, often there is no distinction
between the code and the interface of a class. Some object - oriented languages
are not suffi ciently modular and require recompilation of superclasses when
compiling subclasses. Hence, the time spent in compilation may grow dispro-
portionately with the size of the system.

 On the other hand, object - oriented languages are superior with respect to
economy of small - scale development. For example, individual programmers
can take advantage of class libraries and frameworks, drastically reducing their
workload. When the project scope grows, however, programmers must be able
to understand the details of those class libraries, and this task turns out to be
more diffi cult than understanding typical module libraries. The type systems
of most object - oriented languages are not expressive enough; programmers
must often resort to dynamic checking or to unsafe features, damaging the
robustness of their programs.

 In terms of economy of large - scale development, many developers are
frequently involved in developing new class libraries and tailoring existing
ones. Although reuse is a benefi t of object - oriented languages, it is also the
case that these languages have extremely poor modularity properties with
respect to class extension and modifi cation via inheritance. For instance, it is
easy to override a method that should not be overridden, or to reimplement
a class in a way that causes problems in subclasses. Other large - scale develop-
ment problems include the confusion between classes and object types, which

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED LANGUAGES 165

limits the construction of abstractions, and the fact that subtype polymorphism
is not good enough for expressing container classes.

 Object - oriented languages have low economy of language features. For
instance, C ++ is based on a fairly simple model, but is overwhelming in the
complexity of its many features. Unfortunately, what started as economical
and uniform language (“ everything is an object ”) ended up as a vast collection
of class varieties. Java, on the other hand, represents a step toward reducing
complexity, but is actually more complex than most people realize (Cardelli,
 1996).

 4.4.3 Object - Oriented versus Procedural Languages

 There is no general agreement on which is better for real - time systems —
 object - oriented or procedural languages. This is partially due to the fact that
there is a huge variety of real - time applications — from nonembedded airline
booking and reservation systems to embedded wireless sensors in running
shoes, for example.

 The benefi ts of an object - oriented approach to problem solving and the use
of object - oriented languages are clear, and have already been described.
Moreover, it is possible to imagine certain aspects of a real - time operating
system that would benefi t from objectifi cation, such as process, thread, fi le, or
device. Furthermore, certain application domains can clearly benefi t from an
object - oriented approach. The main arguments against object - oriented pro-
gramming languages for real - time systems, however, are that they can lead to
unpredictable and ineffi cient systems, and that they are hard to optimize.
Nonetheless, we can confi dently recommend object - oriented languages for
soft and fi rm real - time systems.

 The unpredictability argument is hard to defend, however, at least with
respect to object - oriented languages, such as C ++ , that do not use garbage col-
lection . It is likely the case that a predictable system — also a hard real - time
one — can be just as easily built in C ++ as C. Similarly, it is probably just as
easy to build an unpredictable system in C as in C ++ . The case for more unpre-
dictable systems using object - oriented languages is easier to sustain when
arguing about garbage - collecting languages like Java.

 In any case, the ineffi ciency argument against object - oriented languages is
a powerful one. Generally, there is an execution - time penalty in object -
 oriented languages in comparison with procedural languages. This penalty is
due in part to late binding (resolution of memory locations at runtime rather
than at compile time) necessitated by function polymorphism, inheritance,
and composition. These effects present considerable and often uncertain
delay factors. Another problem results from the overhead of the garbage
collection routines. One way to reduce these penalties is not to defi ne too
many classes and only defi ne classes that contain coarse detail and high - level
functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

166 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 The vignette is not an endorsement of this solution strategy, however. It is
simply an illustration of a very special case. Sometimes such cases are used to
dispute the viability of object - oriented languages for real - time applications,
which is not fair — many punctual and robust real - time systems are built in
object - oriented languages. Moreover, while the client ’ s problem was solved in
the straightforward manner described in the vignette, it is easy to see that the
understandability, maintainability, and portability of the system will be prob-
lematic. Hence, the solution on the client ’ s case should have involved a com-
plete reengineering of the system to include reevaluation of the deadlines and
the overall system architecture.

 A more general problem is the inheritance anomaly in object - oriented
languages. The inheritance anomaly arises when an attempt is made to use
inheritance as a code reuse mechanism, which does not preserve substitut-
ability (i.e., the subclass is not a subtype). If the substitutability were preserved,
then the anomaly would not occur. Since the use of inheritance for reuse has
fallen out of favor in object - oriented approaches (in favor of composition), it
seems that most inheritance anomaly rejections of object - oriented languages
for real - time systems refl ect an antiquated view of object orientation.

 Consider the following example from an excellent text on real - time operat-
ing systems (Shaw, 2001):

BoundedBuffer
{
DEPOSIT
pre: not full
REMOVE
pre: not empty

 Vignette: Object - Oriented Languages Lack Certain Flexibility

 The following anecdote (reported by one of Laplante ’ s clients who prefers
to remain anonymous) illustrates that the use of object - oriented language
for real - time systems may present subtle diffi culties as well. A design team
for a particular real - time system insisted that C ++ be used to implement a
fairly simple and straightforward requirements specifi cation. After coding
was complete, testing began. Although the developed system never failed,
several users wished to add a few requirements; however, adding these
features caused the real - time system to miss important deadlines. The client
then engaged an outside vendor to implement the revised design using a
procedural language. The vendor met the new requirements by writing the
code in C and then hand - optimizing certain assembly - language sections
from the compiler output. They could use this optimization approach
because of the close correspondence between the procedural C code and
compiler - generated assembly - language instructions. This straightforward
option was not available to developers using C ++ .

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 167

}
MyBoundedBuffer extends BoundedBuffer
{
DEPOSIT
pre: not full
REMOVE
pre: not empty AND lastInvocationIsDeposit
}

 Assuming that preconditions are checked and have “ wait semantics ” (i.e., wait
for the precondition to become true), then clearly MyBoundedBuffer has
strengthened the precondition of BoundedBuffer , and hence violated
substitutability — and as such is a questionable use of inheritance.

 Most opponents of object - oriented languages for real - time programming
assert that concurrency and synchronization are poorly supported. However,
when built - in language support for concurrency does not exist, it is a standard
practice to create “ wrapper - facade ” classes to encapsulate system - concurrency
 application program interface (API) for use in object orientation (e.g., wrapper
classes in C ++ for POSIX threads). Furthermore, there are several concur-
rency patterns available for object - oriented real - time systems (Douglass, 2003 ;
Schmidt et al., 2000). While concurrency may be poorly supported at the lan-
guage level, it is not an issue since developers use libraries instead.

 In summary, critics of current object - oriented languages for real - time
systems seem fi xated on Java, ignoring C ++ . C ++ is more suitable for real - time
programming since, among other things, it does not have built - in garbage col-
lection and class methods, and by default does not use “ dynamic binding. ” In
any case, there are no strict guidelines when object - oriented approaches and
languages should be preferred. Each specifi c situation needs to be considered
individually.

 4.5 OVERVIEW OF PROGRAMMING LANGUAGES

 For purposes of illustrating the aforementioned language properties, it is
useful to review some of the languages that are currently used in programming
real - time systems. Selected procedural and object - oriented languages are dis-
cussed in alphabetical order, and not in any rank of endorsement or salient
properties.

 4.5.1 Ada

 Ada was originally planned to be the mandatory language for all U.S. DoD
projects that included a high proportion of embedded systems. The fi rst version,
which became standardized by 1983, had rather serious problems. Ada was
intended to be used specifi cally for programming real - time systems, but, at the

www.it-ebooks.info

http://www.it-ebooks.info/

168 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

time, systems builders found the resulting executable code to be bulky and
ineffi cient. Moreover, major problems were discovered when trying to imple-
ment multitasking using the limited tools supplied by the language, such as the
roundly criticized rendezvous mechanism. The programming language com-
munity had been aware of these problems, and virtually since the fi rst delivery
of an Ada 83 compiler, had sought to resolve them. These reform efforts even-
tually resulted in a new version of the language. The thoroughly revised lan-
guage, called “ Ada 95, ” is considered the fi rst internationally standardized
object - oriented programming language, and, in fact, some individuals refer to
Ada 95 as the “ fi rst real - time language. ”

 Three particularly useful constructs were introduced in Ada 95 to
resolve shortcomings of Ada 83 in scheduling, resource contention, and
synchronization:

 1. A pragma that controls how tasks are dispatched.
 2. A pragma that controls the interaction between task scheduling.
 3. A pragma that controls the queuing policy of task - and resource - entry

queues.

 Moreover, other additions to the language strived to make Ada 95 fully object -
 oriented. These included:

 • Tagged types
 • Packages
 • Protected units

 Proper use of these constructs allows for the construction of objects that
exhibit the four characteristics of object - oriented languages: abstract data
typing, inheritance, polymorphism, and messaging.

 In October 2001, a Technical Corrigendum to the Ada 95 Standard was
announced by ISO/IEC, and a major Amendment to the international stan-
dard was published in March 2007. This latest version of Ada is called “ Ada
2005. ” The differences between Ada 95 and Ada 2005 are not extensive — in
any case, not nearly as signifi cant as the changes between Ada 83 and Ada 95.
Therefore, when we refer to “ Ada ” for the remainder of this book, we mean
Ada 95, since Ada 2005 is not a new standard, but just an amendment.

 The amendment, ISO/IEC 8652:1995/Amd 1:2007, includes a few changes
that are of particular interest to the real - time systems community, such as:

 • The real - time systems Annex contains additional dispatching policies,
support for timing events, and support for control of CPU - time utilization.

 • The object - oriented model was improved to provide multiple inheritance.
 • The overall reliability of the language was enhanced by numerous

improvements.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 169

 Ada has never lived up to its promise of universality. Nevertheless, the
revised language is staging somewhat of a comeback, particularly because
selected new DoD systems and many legacy systems use Ada, and because of
the availability of open - source versions of Ada for the popular Linux
environment.

 4.5.2 C

 The C programming language, invented around 1972 at Bell Laboratories, is
a good language for “ low - level ” programming. The reason for this is that it is
descended from the clear - cut language, BCPL (whose successor, C ’ s parent,
was “ B ”), which supported only one type, the machine word. Consequently, C
supports machine - related items like addresses, bits, bytes, and characters,
which are handled directly in this high - level language. These basic entities can
be used effectively to control the CPU ’ s work registers, peripheral interface
units, and other memory - mapped hardware needed in real - time systems.

 The C language provides special variable types, such as register , vola-
tile , static , and constant , which allow for effective control of code
generation at the procedural language level. For example, declaring a variable
as a register type indicates that it will be used frequently. This guides the
compiler to place such a declared variable in a work register, which often
results in faster and smaller programs. Furthermore, C supports call - by - value
only, but call - by - reference can be implemented easily by passing a pointer to
anything as a value. Variables declared as type volatile are not optimized
by the compiler at all. This feature is necessary in handling memory - mapped
I/O and other special instances where the code should not be optimized.

 Automatic coercion refers to the implicit casting of data types that some-
times occurs in C. For example, a float value can be assigned to an int vari-
able, which can result in a loss of information due to truncation. Moreover, C
provides functions, such as printf , that take a variable number of arguments.
Although this is a convenient feature, it is impossible for the compiler to
thoroughly type check the arguments, which means problems may mysteri-
ously arise at runtime.

 The C language provides for exception handling through the use of signals,
and two other mechanisms, setjmp and longjmp , are provided to allow a
procedure to return quickly from a deep level of nesting — a particularly useful
feature in procedures requiring an abort. The setjmp procedure call, which
is actually a macro (but often implemented as a function), saves environment
information that can be used by a subsequent longjmp library function call.
The longjmp call restores the program to the state at the time of the last
setjmp call. For example, suppose a procedure is called to do some processing
and error checking. If an error is detected, a longjmp can be used to transfer
to the fi rst statement after the setjmp .

 Overall, the C language is particularly good for embedded programming,
because it provides for structure and fl exibility without complex language

www.it-ebooks.info

http://www.it-ebooks.info/

170 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

restrictions. The latest version of the international standard of C language is
from 1999 (ANSI/ISO/IEC 9899:1999).

 4.5.3 C ++

 C ++ is a hybrid object - oriented programming language that was originally
implemented as a macro extension of C in the 1980s. Today, C ++ stands as an
individual compiled language, although C ++ compilers should accept standard
C code as well. C ++ exhibits all characteristics of an object - oriented language
and promotes better software - engineering practice through encapsulation and
more advanced abstraction mechanisms than C.

 C ++ compilers implement a preprocessing stage that basically performs an
intelligent search - and - replace on identifi ers that have been declared using the
#define or #typedef directives. Although most advocates of C ++ discourage
the use of the preprocessor, which was inherited from C, it is rather widely
used. Most of the preprocessor defi nitions in C ++ are stored in header fi les,
which complement the actual source - code fi les. The problem with the prepro-
cessor approach is that it provides a way for programmers to inadvertently
add unnecessary complexity to a program. An additional problem with the
preprocessor approach is that it has weak type checking and validation.

 Most software developers agree that the misuse of pointers causes the
majority of bugs in C/C ++ programming. Previously C ++ programmers used
complex pointer arithmetic to create and maintain dynamic data structures,
particularly during string manipulation. Consequently, they spent a lot of time
hunting down complicated bugs for simple string management. Today, however,
standard libraries of dynamic data structures are available. For example, the
 standard template language (STL), is a standard library of C ++ , and it has both
a string and wstring data type for regular and wide character strings,
respectively. These data types neutralize any arguments against early C ++
releases, which were based on string manipulation issues.

 There are three complex data types in C ++ : classes, structures, and unions.
However, C ++ has no built - in support for text strings. The standard technique
is to use null - terminated arrays of characters to represent strings.

 The regular C code is organized into functions, which are global subroutines
accessible to a program. C ++ adds classes and class methods, which are actually
functions that are connected to classes. However, because C ++ still supports
C, there is nothing, in principle, to prevent C ++ programmers from using the
regular functions. This would result in a mixture of function and method use
that would create confusing programs, however.

 Multiple inheritance is a helpful feature of C ++ that allows a class to be
derived from multiple parent classes. Although multiple inheritance is indeed
powerful, it may be diffi cult to use correctly and causes many problems oth-
erwise. It is also complicated to implement from the compiler perspective.

 Today, more and more embedded systems are being constructed in C ++ ,
and many practitioners ask, “ Should I implement my system in C or C ++ ? ”

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 171

The immediate answer is always “ it depends. ” Choosing C in lieu of C ++ in
embedded applications is a diffi cult trade - off: a C program would be faster
and more predictable but harder to maintain, and C ++ program would be
slower and less predictable but potentially easier to maintain. So, language
choice is tantamount to asking should I eat a “ green apple ” or a “ red apple? ”

 C ++ still allows for low - level control; for instance, it can use inline methods
rather than a runtime call. This kind of implementation is not particularly
abstract, nor completely low - level, but is acceptable in typical embedded
environments.

 To its detriment, there may be some tendency to take existing C code and
objectify it by simply wrapping the procedural code into objects with little
regard for the best practices of object - orientation. This kind of approach is to
be strictly avoided since it has the potential to incorporate all of the disadvan-
tages of C ++ , and none of its benefi ts. Furthermore, C ++ does not provide
automatic garbage collection, which means dynamic memory must be managed
manually or garbage collection must be homegrown. Therefore, when convert-
ing a C program to C ++ , a complete redesign is required to fully capture all
of the advantages of an object - oriented design while minimizing the runtime
disadvantages.

 4.5.4 C#

 C# (pronounced “ C sharp ”) is a C ++ - like language that, along with its operat-
ing environment, has similarities to Java and the Java virtual machine, respec-
tively. Thus, C# is fi rst compiled into an intermediate language, which is then
used to generate a native image at runtime. C# is associated with Microsoft ’ s
.NET framework for scaled - down operating systems like Windows CE. Windows
CE is highly confi gurable, capable of scaling from small, embedded system
footprints (< 1 M bytes) and upwards (e.g., for real - time systems requiring
user - interface support). The minimum kernel confi guration provides basic
networking support, thread management, dynamic link library support, and
virtual memory management. While a detailed discussion is beyond the scope
of this text, it is clear that Windows CE was originally intended as a real - time
operating system for the .NET platform.

 Much of this discussion is adapted from Lutz and Laplante (2003) .
 C# supports “ unsafe code, ” allowing pointers to refer to specifi c memory

locations. Objects referenced by pointers must be explicitly “ pinned, ” disal-
lowing the garbage collector from altering their location in memory. The
garbage collector collects pinned objects; it just does not move them. This
capability could increase schedulability, and it also allows for direct memory
access (DMA) to write to specifi c memory locations; a necessary capability in
embedded real - time systems. .NET offers a generational approach to garbage
collection intended to minimize thread blockage during mark and sweep. For
instance, a means to create a thread at a particular instant, and guarantee the
thread completes by a particular point in time, is not supported. Moreover, C#

www.it-ebooks.info

http://www.it-ebooks.info/

172 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

provides many thread synchronization mechanisms, but none with this level
of precision. C# supports an array of thread - synchronization constructs: lock,
monitor, mutex, and interlock. A Lock is semantically identical to a critical
section — a code segment guaranteeing entry into itself by only one thread at
a time. Lock is a shorthand notation for the monitor class type. A mutex is
semantically equivalent to a lock, with the additional capability of working
across process spaces. The downside to mutexes is their performance penalty.
Finally, interlock, a set of overloaded static methods, is used to increment and
decrement numerics in a thread - safe manner in order to implement the
priority - inheritance protocol.

 Timers that are similar in functionality to the widely used Win32 timer exist
in C#. When constructed, timers are confi gured how long to wait in milliseconds
before their fi rst invocation, and are also supplied an interval, again in milli-
seconds, specifying the period between subsequent invocations. The accuracy
of these timers is machine dependent, and thus not guaranteed, reducing their
usefulness in real - time systems to be used in multiple hardware platforms.

 C# and the .NET platform are not appropriate for the majority of hard real -
 time systems for several reasons, including the unbounded execution of its
garbage - collection environment and its lack of threading constructs to ade-
quately support schedulability and determinism. Nonetheless, C# ’ s ability to
interact effectively with operating - system APIs, shield developers from
complex memory management logic, together with C# ’ s good fl oating - point
performance, make it a programming language that is highly potential for soft
and even fi rm real - time applications. However, disciplined programming style
is required (Lutz and Laplante, 2003).

 4.5.5 Java

 Java, in the same way as C#, is an interpreted language, that is, the code com-
piles into machine - independent intermediate code that runs in a managed
execution environment. This environment is a virtual machine (see Fig. 4.3),
which executes “ object ” code instructions as a series of program directives.

 Figure 4.3. The Java interpreter as a model of a virtual machine.

Instructions to
Interpreter

Model of a
Virtual

Machine

Interpreter

Computer

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 173

The obvious advantage of this arrangement is that Java code can run on any
device that implements the virtual machine. This “ write once, run anywhere ”
philosophy has important applications in mobile and portable computing, such
as in cell phones and smart cards, as well as in Web - based computing.

 However, there are also native - code Java compilers, which allow Java to
run directly “ on the bare metal, ” that is, the compilers convert Java to assembly
code or object code. For example, beginning with Java 2, Java virtual machines
support special compilers that compile into machine code for several standard
architectures. Furthermore, there are even special Java microprocessors, which
directly execute Java byte code in hardware (El - Kharashi and Elguibaly, 1997).

 Java is an object - oriented language and the code appears very similar to
C++ . Like C, Java supports call - by - value, but call - by - reference can be simu-
lated, which will be discussed shortly. But Java is a pure object - oriented lan-
guage, that is, all functionality in Java has to be implemented by creating object
classes, instantiating objects of those classes (or base classes), and manipulat-
ing objects ’ attributes through methods. Thus, it is virtually impossible to take
legacy code that was written in a procedural language, say C, and “ convert ”
that code to Java without truly embodying an object - oriented design approach.
Of course, a good object - oriented design is not guaranteed, but the design
obtained in the conversion will be a true object - oriented one based on the
rules of the language. This situation is quite different from the kind of false
object - oriented conversion that can be obtained from C to C ++ in the blunt
manner previously highlighted.

 Java does provide a preprocessor. Constant data members are used in place
of the #define directive, and class defi nitions are used in lieu of the #typedef
directive. The result is that Java source code is typically more consistent and
easier to read than C ++ source code. The Java compiler builds class defi nitions
directly from the source code fi les, which contain both class defi nitions and
method implementations. However, there are natural performance penalties
for the resultant portability.

 The Java language does not support pointers, but it provides similar func-
tionality via references. Java passes all arrays and objects by reference, which
prevents common errors due to pointer mismanagement. The lack of pointers
might seem to preclude implementation of data structures, such as dynamic
arrays. However, any pointer functionality can be conveniently accomplished
with references, with the safety provided by the Java runtime system, such as
boundary checking on array indexing operations — all this with performance
penalty.

 Java only implements one complex data type: classes. Java programmers use
classes when the functionality of structures and unions is desired. This consis-
tency comes at the cost of increased execution time over simple data
structures.

 The Java language does not support standalone functions. Instead, Java
requires programmers to bundle all routines into class methods again with
signifi cant cost.

www.it-ebooks.info

http://www.it-ebooks.info/

174 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 Moreover, Java has no direct support for multiple inheritance. Interfaces,
however, allow for implementation of multiple inheritance. Java interfaces
provide object - method descriptions, but contain no implementations.

 In Java, strings are implemented as fi rst - class objects (String and String-
Buffer), meaning that they are at the core of the Java language. Java ’ s imple-
mentation of strings as objects provides several advantages. First, string
creation and access is consistent across all systems. Next, because the Java
string classes are defi ned as part of the Java language strings function predict-
ably every time. Finally, the Java string classes perform extensive runtime
checking, which helps eliminate errors. But all of these operations increase
execution time.

 Operator overloading is not supported in Java. However, in Java ’ s string
class, “ + ” represents concatenation of strings, as well as numeric addition.

 The Java language does not support automatic coercions. In Java, if a coer-
cion will result in a loss of data, then it is necessary to explicitly cast the data
element to the new type. Java does have implicit “ upcasting. ” However, any
instance can be upcast to Object , which is the parent class for all objects.
Downcasting is explicit, and requires a cast. This explicitness is important to
prevent hidden loss of precision.

 The command line arguments passed from the system into a Java program
differ from the usual command - line arguments passed into a C ++ program. In
C and C ++ , the system passes two arguments to a program: argc and argv .
argc specifi es the number of arguments stored in argv , and argv is a pointer
to an array of characters containing the actual arguments. In Java, on the other
hand, the system passes a single value to a program: args . args is an array
of strings that contains the command - line arguments.

 4.5.6 Real - Time Java

 This section is devoted to the real - time adaptation of Java. Although real - time
Java is just a modifi cation of the standard Java language, it deserves a separate
discussion, because it is used increasingly in implementing soft, fi rm, and even
hard real - time systems, while the standard Java is mainly used for soft real -
 time systems only. While we include the discussion on real - time Java for com-
pleteness and because it illustrates several interesting points, we reiterate our
preference for C ++ over versions of Java in most cases.

 In addition to the unpredictable performance of garbage collection, the
Java specifi cation provides only broad guidance for scheduling. For example,
when there is competition for processing resources, threads with higher
priority are generally executed in preference to threads with lower priority.
This preference is not, however, a guarantee that the highest - priority one of
ready threads will always be running, and thread priorities cannot be used to
reliably implement mutual exclusion. It was soon recognized that this and
other shortcomings rendered standard Java inadequate for most real - time
systems.

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 175

 In response to this problem, a National Institute of Standards and
Technology (NIST) task force was charged with developing a version of Java
that was particularly suitable for embedded real - time applications. The fi nal
workshop report, published already in September 1999, defi nes nine core
requirements for the real - time specifi cation of Java (RTSJ 1.0):

R1. The specifi cation must include a framework for the lookup and discov-
ery of available profi les.

R2. Any garbage collection that is provided shall have a bounded preemp-
tion latency.

R3. The specifi cation must defi ne the relationships among real - time Java
threads at the same level of detail as is currently available in existing
standards documents.

R4. The specifi cation must include APIs to allow communication and syn-
chronization between Java and non - Java tasks.

 R5. The specifi cation must include handling of both internal and external
asynchronous events.

R6. The specifi cation must include some form of asynchronous thread
termination.

R7 . The core must provide mechanisms for enforcing mutual exclusion
without blocking.

R8 . The specifi cation must provide a mechanism to allow code to query
whether it is running under a real - time Java thread or a nonreal - time
Java thread.

R9 . The specifi cation must defi ne the relationships that exist between real -
 time Java and nonreal - time Java threads.

 The RTSJ 1.0 satisfi es all but the fi rst requirement, which was considered
irrelevant because access to physical memory is not part of the NIST require-
ments, but industry input led the group to include it (Bollella and Gosling,
 2000). In 2006, an enhanced version of the real - time specifi cation, RTSJ 1.1,
was announced (Dibble and Wellings, 2009).

 Most of the following discussion has been adapted from Bollella and
Gosling (2000) .

 The RTSJ defi nes the real - time thread class to create threads, which the
resident scheduler executes. Real - time threads can access objects on the heap,
and therefore can incur delays because of garbage collection.

 For garbage collection, the RTSJ extends the memory model to support
memory management in a way that does not interfere with the real - time code ’ s
ability to provide deterministic behavior. These extensions allow both short -
and long - lived objects to be allocated outside the garbage - collection heap.
There is also suffi cient fl exibility to use familiar solutions, such as preallocated
object pools.

www.it-ebooks.info

http://www.it-ebooks.info/

176 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 RTSJ uses “ priority ” somewhat more loosely than is traditionally accepted.
 “ Highest priority thread ” merely indicates the most eligible thread — the
thread that the scheduler would choose from among all threads ready to run.
It does not necessarily presume a strict priority - based dispatch mechanism.

 The system must queue all threads waiting to acquire a resource in priority
order. These resources include the processor as well as synchronized blocks. If
the active scheduling policy permits threads with the same priority, the threads
are queued using the FIFO principle. Specifi cally, the system (1) orders waiting
threads to enter synchronized blocks in a priority queue; (2) adds a blocked
thread that becomes ready to run to the end of the ready queue for that prior-
ity; (3) adds a thread whose priority is explicitly set by itself or another thread
to the end of the ready queue for the new priority; and (4) places a thread that
performs a yield to the end of its priority queue. The priority - inheritance pro-
tocol is implemented by default. The real - time specifi cation also provides a
mechanism by which a systemwide default policy can be implemented.

 The asynchronous event facility comprises two classes: AsyncEvent and
AsyncEventHandler . An AsyncEvent object represents something that
can happen — like a hardware interrupt — or it represents a computed event —
 like an aircraft entering a monitored region. When one of these events occurs,
indicated by the fire() method being called, the system schedules associated
AsyncEventHandlers . An AsyncEvent manages two things: the dispatch-
ing of handlers when the event is fi red, and the set of handlers associated with
the event. The application can query this set and add or remove handlers. An
AsyncEventHandler is a schedulable object roughly similar to a thread.
When the event fi res, the system invokes run() methods of the associated
handlers.

 Unlike other runable objects, however, an AsyncEventHandler has asso-
ciated scheduling, release, and memory parameters that control the actual
execution of read or write.

 Asynchronous control transfer allows for identifi cation of particular
methods by declaring them to throw an AsynchronouslyInterrupted
Exception (AIE). When such a method is running at the top of a thread ’ s
execution stack and the system calls java.lang.Thread.interrupt() on
the thread, the method will immediately act as if the system had thrown an
AIE. If the system calls an interrupt on a thread that is not executing such a
method, the system will set the AIE to a pending state for the thread and will
throw it the next time control passes to such a method, either by calling it or
returning to it. The system also sets the AIE ’ s state to “ pending ” while control
is in, returns to, or enters synchronized blocks.

 The RTSJ defi nes two classes for programmers who want to access physical
memory directly from Java code. The fi rst class, RawMemoryAccess , defi nes
methods that let you build an object representing a range of physical addresses
and then access the physical memory with byte , word , long , and multiple
byte granularity. The RTSJ implies no semantics other than the set and get
methods. The second class, PhysicalMemory , allows the construction of a

www.it-ebooks.info

http://www.it-ebooks.info/

OVERVIEW OF PROGRAMMING LANGUAGES 177

PhysicalMemoryArea object that represents a range of physical memory
addresses where the system can locate Java objects. For example, a new
Java object in a particular PhysicalMemory object can be built using
either the newInstance() or newArray() methods. An instance of
RawMemoryAccess models a raw storage area as a fi xed - size sequence of
bytes. Factory methods allow for the creation of RawMemoryAccess objects
from memory at a particular address range or using a particular memory type.
The implementation must provide and set a factory method that interprets
these requests accordingly. A full complement of get and set methods lets the
system access the physical memory area ’ s contents through offsets from the
base — interpreted as byte , short , int , or long data values — and copy them
to or from byte , short , int , or long arrays.

 4.5.7 Special Real - Time Languages

 A large variety of specialized languages for real - time programming have
appeared and received more or less success over the past decades. These
include, for instance:

 • PEARL . The process and experiment automation real - time language was
developed in the early 1970s by a group of German researchers. PEARL
uses the augmentation strategy and has fairly wide application in Germany,
especially in industrial controls settings. The current version is PEARL - 90.

 • Real - Time Euclid . An experimental language also from the 1970s that
enjoys the distinction of being one of the only languages to be completely
suited for schedulability analysis. This is achieved through language
restrictions. It descended from the Pascal programming language, but
never found its way into mainstream applications.

 • Occam 2 . A language based on the communicating - sequential - processes
formalism that was designed to support concurrency on transputers (see
Section 2.5.2). It appeared in the late eighties and found practical imple-
mentations mainly in the United Kingdom, but disappeared together with
the transputer.

 • Real - Time C . Actually a generic name for any of a variety of C macroex-
tension packages. These macroextensions typically provide timing and
control constructs that are not found in standard C.

 • Neuron ® C . An enhancement to the standard C with extensions for event
handling, network communications, and hardware I/O. It is intended for
supporting LonWorks (a fi eldbus standard for control networking) appli-
cations for Neuron ® processors and corresponding smart transceivers, and
is used widely within the building automation community.

 • Real - Time C ++ . A generic name for one of several object - class libraries
specifi cally developed for C ++ . These libraries augment standard C ++ to
provide an increased level of timing and control.

www.it-ebooks.info

http://www.it-ebooks.info/

178 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 Furthermore, there are numerous other real - time languages and correspond-
ing operating environments, such as Anima, DROL, Erlang, Esterel, Hume,
JOVIAL, LUSTRE, Maruti, RLUCID, RSPL, and Timber. Some of these are
used for highly specialized applications or in research only.

 4.6 AUTOMATIC CODE GENERATION

 At the beginning of the embedded - systems era, it was quickly recognized that
the productivity of average assembly language programmers was poor, and the
availability of skilled programmers continued to be limited. As we know, this
situation was largely relieved by adopting high - level languages (see Fig. 4.1);
the productivity of programmers improved remarkably, and it was much easier
and less time - consuming to become a skilled high - level - language programmer
than a skilled assembly - language programmer. Of course, there were also other
reasons behind that major transition as discussed earlier in this chapter.

 For many years, there was a relevant concern within the developers of hard
real - time systems that high - level - language compilers produced less effi cient
code than would have been possible to create manually with assembly lan-
guage. Today, there are generally far fewer effi ciency concerns, as modern
compilers are able to perform truly effective code optimization automatically;
this will be outlined shortly in Section 4.7 .

 The effi ciency of compilers allows us to increase the level of abstraction
and move from programmer - generated code to automatically generated
code — or moving from the solution space toward the higher - level problem
space (also referred to as “ minimizing the intellectual distance ”). Since the
productivity of programmers is not improving at the same rate as the size of
most applications code is growing, there is considerable pressure toward auto-
matic code generation. At the same time, the required time - to - market of
typical products is decreasing, but a signifi cant proportion of embedded -
 software projects are completed behind the schedule. Furthermore, the general
availability of experienced real - time programmers is not adequate, because of
the great expansion of the embedded - systems fi eld. Clearly, something needs
to be changed to keep up with the growing technological opportunities.

 4.6.1 Toward Production - Quality Code

 Automatic code generation has been a dream of software engineers and
project managers for decades. In fact, the original Fortran language was
described as an “ automatic program generator ” (Backus et al., 1957). In this
context, an automatic code generator is assumed to produce high - level lan-
guage code (seldom assembly language) directly from a system specifi cation
in some form without programmer ’ s intervention. Presently, however, it is
common practice for programmers to improve automatically generated high -
 level language code manually before it is compiled.

www.it-ebooks.info

http://www.it-ebooks.info/

AUTOMATIC CODE GENERATION 179

 By the early 1980s, some pioneering organizations were developing “ auto-
matic code generators ” to speed - up and increase the reliability of the time -
 consuming and error - prone process of assembly coding. These efforts proved
successful, for instance, in the fi eld of automotive control, where a special -
 purpose, proprietary application language was used for specifying the control
software at a high level and then generating assembly code (Srodawa et al.,
 1985).

 During the past few decades, numerous organizations have adopted auto-
matic code generators for limited use in parallel with programmer - generated
code. Certain rigorously specifi able parts of real - time software, such as fi nite
state machines and various numerical algorithms , are automatically composed
from system specifi cations to some high - level programming language, such as
Ada (Alonso et al., 2007) or Java (Hagge and Wagner, 2004). However, most
of the production - quality code is still created manually. Figure 4.4 illustrates
the ongoing evolution path from programmer - generated code to automatically
generated code. While the ultimate destination of Figure 4.4 c is somewhat
hazy, the hybrid code generation approach is the present and growing reality
in many real - time software projects and corresponding organizations.
Nonetheless, automatic code generation is typically used just for small portions
of code and relatively simple applications in well - understood domains. The

 Figure 4.4. A three - step evolution path, (a) → (b) → (c), from programmer - generated
code to automatically generated code.

System
Specification

Automatic
Code Generator

Code Modules

System
Specification

Automatic
Code Generator

Code Modules

System
Specification

Programmers

Code Modules

(a) (c)

(b)

Programmers

Code Modules

Partitioning

www.it-ebooks.info

http://www.it-ebooks.info/

180 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

hybrid approach of Figure 4.4 b is analogous to the classical two - culture situ-
ation, where coexistence of complementary cultures would eventually benefi t
the entire community.

 4.6.2 Remaining Challenges

 There are two principal challenges that need to be tackled before automatic
code generation could become the dominant approach for generating
production - quality code for real - time systems:

 1. How to create rigorous specifi cations of complex and heterogeneous
systems effi ciently?

 2. How to improve the execution speed and memory usage of automatically
generated code?

 The fi rst challenge is related to the requirements - engineering methodologies
to be discussed in Chapter 5 , and the second one resembles the past ineffi -
ciency concerns of high - level language compilers. Both of these areas need a
lot of research and development effort, because designing an effi cient code
generator even for a traditional compiler is one of the most diffi cult parts of
compiler design — both practically and theoretically. And the abstract level of
system specifi cations used as an input to the automatic code generator makes
the problem much harder. To sum up, can the programmer ’ s vast knowledge
and experience ever be captured by (artifi cial intelligence - based) automatic
code generation?

 Maclay sees the issue of automatic code generation connected to the aims of
software reuse, as they both tend to minimize the amount of work performed
by software engineers in a real - time system project (Maclay, 2000). He points
out that automatic code generation is particularly useful in creating prototypes
rapidly, and thus accelerating the algorithm - centered innovation process of novel
embedded systems. However, to be acceptable for demanding applications, such
as automotive control, the automatically generated code should have less than
∼ 10% effi ciency penalty compared with manually created code. Such a reason-
able penalty could be compensated by a slightly more effi cient processor.

 Glass, on the other hand, argues that large - scale automatic code generation
is “ extremely unlikely to happen, ” because the generator would have to know
enough about:

 • The application domain to translate the problem specifi cation into a high -
 level design.

 • The application and implementation domains to translate this high - level
design into a detailed design.

 • Further about the implementation domain to translate the detailed design
into the actual code (Glass, 1996).

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 181

 Although these pragmatic arguments were already presented in the mid -
 nineties, they are still valid since no breakthroughs on automatic code genera-
tion have taken place. Nevertheless, automatic code generation and software
reuse are key techniques in responding to the increasing complexity of real -
 time systems.

 4.7 COMPILER OPTIMIZATIONS OF CODE

 For every piece of source code, there exist infi nitely many object codes that
implement the same computations, in the sense that the codes produce the
same outputs when presented with the same inputs. Some of these object codes
may be faster while others may require less memory; this motivates well the
topic of the present section. Aho and Ullman state in their classic book (Aho
and Ullman, 1977) that it is theoretically impossible for a compiler to produce
the best possible object code for every source code under any reasonable cost
function. Hence, a more appropriate term for code optimization would simply
be “ code improvement. ” Long tradition has provided us with the somewhat
overstated term “ code optimization, ” though.

 When beginning to use a new compiler, it is important to experiment with
it to learn how it handles certain high - level language constructs, such as case
statements versus nested if-then-else statements, integer versus character
variables, and so on. Therefore, a set of relevant test cases should be prepared
for the high - level language in question to expose the intricacies of the com-
piler. No matter which programming language you use in an embedded real -
 time application, make sure that you know both the language and your
compiler thoroughly.

 Moreover, many of the techniques used in code optimization underscore
the fact that in any arithmetic expression, there is no substitute for a sound
mathematical technique. Hence, it is benefi cial to reformulate any algorithm
or expression to eliminate time - consuming function calls, such as those that
compute exponentials, square roots, or transcendental functions, where pos-
sible, to improve real - time performance.

 Most of the code optimization techniques used by compilers can be exploited
to reduce response times. Often these strategies are employed invisibly by the
compiler, or can be turned on or off with compiler directives or switches.
Furthermore, if a particular strategy is not being used by the compiler itself,
it could be implemented manually at the code level instead. Nonetheless, it
should be remembered that optimization efforts should be carried out, in
general, solely if there is a concrete demand for such optimizations. Optimization
for the sake of optimization is just wasting resources and creating unnecessary
expenses in a software project.

 Consider some commonly used code - optimization techniques and their
explicit impact on real - time performance. These techniques include:

www.it-ebooks.info

http://www.it-ebooks.info/

182 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 • Use of arithmetic identities
 • Reduction in strength
 • Common subexpression elimination
 • Use of intrinsic functions
 • Constant folding
 • Loop invariant removal
 • Loop induction elimination
 • Use of registers and caches
 • Dead - code removal
 • Flow - of - control optimization
 • Constant propagation
 • Dead store elimination
 • Dead variable elimination
 • Short - circuit Boolean code
 • Loop unrolling
 • Loop jamming
 • Cross - branch elimination

 Many of these techniques are facilitated through the use of so - called “ peep-
hole ” optimization. In peephole optimization, a small window or peephole of
machine code is compared against known patterns that yield specifi c optimiza-
tion opportunities. These types of code optimizers are fairly straightforward
to implement and allow for multiple optimization passes to be performed.

 4.7.1 Standard Optimization Techniques

 Good compilers use arithmetic identities to eliminate useless code. For example,
multiplication by the constant “ 1 ” or addition by the constant “ 0 ” should natu-
rally be eliminated from executable code, although the common use of sym-
bolic constants can obscure these situations.

Reduction in strength refers to the use of the fastest machine - language
instructions possible to accomplish a given operation. For instance, when
optimizing for speed, some compilers will replace multiplication of an integer
by another integer that is a power of two by a series of shift operations.
Shift instructions are faster than integer multiplication in certain CPU
environments.

 In some compilers, character variables are rarely loaded in registers, whereas
integer variables are. It is assumed that arithmetic operations involving inte-
gers will take place, whereas those involving characters are more unlikely. Care
should therefore be taken in deciding whether a particular variable should be
defi ned as a character or an integer.

 Furthermore, it is well known that division instructions typically take longer
to execute than multiplication instructions. Hence, it may be better to multiply

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 183

by the reciprocal of a number than to divide by that number. For example,
x*0.5 would likely be faster than x/2.0 . Many compilers will not do this
replacement automatically.

Repeated calculations of the same subexpression in two different expressions
should be avoided. For instance, the following C program fragment:

x=6+a*b;
y=a*b+z;

 could be replaced with:

t=a*b;
x=6+t;
y=t+z;

 thus eliminating the other multiplication. This can result in signifi cant savings
if a and b are fl oating - point numbers and the code exists in a tight loop.

 When possible, use intrinsic functions rather than ordinary functions.
Intrinsic functions are simply macros where the actual function call is replaced
by inline code during compilation. This improves real - time performance
because the need to pass parameters, create space for local variables, and
eventually release that space is eliminated.

 Most compilers perform constant folding , but this should not be assumed
when beginning to use a new compiler. As an example, the expression:

x=2.0*x*4.0;

 would be optimized by folding 2.0*4.0 into 8.0 . However, performing this
operation manually leads to code that is easier to debug. And although the
original expression may be more descriptive, a comment can be provided to
explain the optimized one.

 For example, if the program uses π/2 , it could be precomputed during the
initialization phase and stored as a constant named, for example, pi_div_2 .
This will typically save one fl oating point load and one fl oating point divide
instruction — potentially several microseconds. In a 5 - ms real - time cycle, this
alone could lead to time - loading savings of ∼ 0.1%. Incidentally, using this
strategy illustrates the common inverse relationship between execution time
and memory utilization: code execution time has been reduced, but extra
memory is needed to store the pre - computed constant.

 Most compilers will move such computations outside loops that do not need
to be performed within the loop, a process called loop invariant removal . For
instance, consider the following code fragment in C:

x=100;
while (x >0)
x=x-y+z;

www.it-ebooks.info

http://www.it-ebooks.info/

184 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 It can be replaced by:

x=100;
t=y+z;
while (x >0)
x=x-t;

 This moves an addition outside the loop, but again requires more memory.
 An integer variable i is called an induction variable of a loop if it is incre-

mented or decremented by some constant on each cycle of the loop. A common
situation is one in which the induction variable is i and another variable, j ,
which is a linear function of i , is used to offset into some array. Often i is
used solely for a test of loop termination. In such case, variable i can be
eliminated by replacing its test for one on j instead. For example, consider the
following C program fragment:

for (i =1;i<=10;i++)
a[i+1]=1;

 An optimized version is:

for (j =2;j<=11;j++)
a[j]=1;

 eliminating the extra addition within the loop.
 When programming in assembly language or when using languages that

support register - type variables, such as C, it is usually advantageous to perform
calculations using work registers . Typically, register - to - register operations are
faster than register - to - memory ones. Thus, if certain variables are used fre-
quently within a module, and if enough registers are available, the compiler
should be forced to generate register - direct instructions, if possible.

 If the CPU architecture supports memory caching , then it may be possible
to force frequently used variables into the cache at the language level. Although
most optimizing compilers will cache variables when possible, the nature of
the source - level code affects the compiler ’ s abilities.

 One of the easiest methods for decreasing memory utilization is to remove
dead or unreachable code — that is, code that can never be reached in the
normal fl ow - of - control. Such code might be debug instructions that are exe-
cuted only if a debug fl ag is set, or some redundant initialization instructions.
For instance, consider the following C program fragment:

if (debug)
{
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 185

 In a microcontroller environment, the test of the variable debug may take
several microseconds, time that is consumed regardless of whether or not the
code is in debug mode. Therefore, debug code should preferably be imple-
mented using the conditional compile facilities available with most compilers.
Thus, replace the previous fragment with:

#ifdef DEBUG
{
...
}
#endif

 Here, #ifdef is a compiler directive that will include the code between it and
the fi rst #endif only if the symbolic constant DEBUG is so defi ned. Dead code
removal may increases program reliability as well.

 In fl ow - of - control optimization , unnecessary branch - to - branch instructions
are replaced by a single - branch instruction. The following pseudocode illus-
trates such a situation:

goto label_l;
label_0: y=1;
label_l: goto label_2;

 It can be replaced by:

goto label_2;
label_0: y=1;
label_l: goto label_2;

 While such code is not normally generated by skilled programmers, it might
result from an automatic code generation or language - to - language translation
process and escape unnoticed.

 Certain variable - assignment expressions can be changed to constant assign-
ments , thereby permitting registerization opportunities or the use of faster
immediate addressing mode. In C language, the following code could appear
as the result of an automated translation process:

x=100;
y=x;

 The corresponding assembly language code generated by a nonoptimizing
compiler might look like:

LOAD R1,100 ; Load constant 100 to work register R1 .
STORE &x,R1 ; Store the content of R1 to memory location x .

www.it-ebooks.info

http://www.it-ebooks.info/

186 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

LOAD R1, &x ; Load the content of memory location x to R1 .
STORE &y,R1 ; Store the content of R1 to memory location y .

 This can be replaced by:

x=100;
y=100;

 leading to associated assembly - language output:

LOAD R1,100 ; Load constant 100 to work register R1 .
STORE &x,R1 ; Store the content of R1 to memory location x .
STORE &y,R1 ; Store the content of R1 to memory location y .

 Variables that contain the same value within a short segment of code can be
combined into a single temporary variable. For example,

t=y+z;
x=func(t);

 Although many compilers might generate an implicit temporary location for
y+z , this cannot always be relied on. Replacing the code in question with the
following:

x=func(y+z);

 forces the generation of a temporary location and eliminates the need for the
local variable, t .

 A variable is said to be alive at a point in a program if its value can be used
subsequently; otherwise it is dead and subject to removal . The following code
illustrates that z is a dead variable:

x=y+z;
x=y;

 After removal of z , what is left is:

x=y;

 While this example is trivial, again, it could arise as a result of careless coding
or an automated code generation or translation process.

 The test of compound Boolean expressions can be optimized by testing each
subexpression separately. Consider the following:

if ((x >0) && (y >0))
z=1;

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 187

 It could be replaced by:

if (x >0)
if (y >0)
z=1;

 In many compilers, the code generated by the second fragment will be superior
to the fi rst. ANSI - C, however, executes if (expression) constructs sequen-
tially inside the () and drops out at the fi rst FALSE condition. That is, it will
automatically short - circuit Boolean code.

Loop unrolling duplicates instructions executed in a loop in order to reduce
the number of operations, and hence the loop overhead incurred. This tech-
nique is used frequently by programmers when coding time - critical signal -
 processing algorithms. In the exaggerated case, the entire loop is replaced by
inline code. For instance,

for (i =1;i<=6;i++)
a[i]=a[i]*8;

 is replaced by:

a[1]=a[1]*8;
a[2]=a[2]*8;
a[3]=a[3]*8;
a[4]=a[4]*8;
a[5]=a[5]*8;
a[6]=a[6]*8;

Loop jamming or loop fusion is a technique for combining two similar loops
into one, thus reducing loop overhead by a factor of two. For example, the
following C code:

for (i =1;i<=100;i++)
x[i]=y[i]*8;
for (i =1;i<=100;i++)
z[i]=x[i]*y[i];

 can be effectively replaced by:

for (i =1;i<=100;i++)
{
x[i]=y[i]*8;
z[i]=x[i]*y[i];
}

www.it-ebooks.info

http://www.it-ebooks.info/

188 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 If the same code appears in more than one case in a case or switch state-
ment, then it is better to combine such cases into one. This eliminates an
additional branch or cross branch . For example, the following code:

switch (x)
{
case 0: x=x+1;

break;
case 1: x=x*2;

break;
case 2: x=x+1;

break;
case 3: x=2;

break;
}

 can be replaced by:

switch (x)
{
case 0:
case 2: x=x+1;

break;
case 1: x=x*2;

break;
case 3: x=2;

break;
}

 4.7.2 Additional Optimization Considerations

 A sampling of supplementary optimization considerations follows next (Jain,
 1991). Note that in most cases, these techniques will optimize the average case,
not necessarily the worst case.

 • Arrange entries in a table so that the most frequently sought values are
the fi rst to be compared.

 • Replace threshold tests on monotone functions (continuously decreasing
or increasing) by tests on their parameters , thereby avoiding evaluation of
the function itself. For instance, if exp(x) is a function computing ex , then
instead of using:

if (exp(x) < exp(y)) then ...

 use:

if (x < y) then ...

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 189

 which will save two evaluations of the costly function exp() .

 • Link the most frequently used procedures together to maximize the locality
of reference (applies only in cached or paging systems).

 • Store procedures in memory in sequence so that calling and called pro-
cedures will be loaded together to increase the locality of reference.
Again, this only applies in cached or paging systems.

 • Store redundant data elements close to each other to increase the locality
of reference (applies only in cached or paging systems).

 Even though many of the optimization techniques discussed above can be and
have been automated, some compilers only perform one optimization pass,
overlooking opportunities that are not revealed until after at least a single
pass. Hence, manual optimization may provide additional execution - time
savings. To see the cumulative effects of multiple - pass optimization , consider
the following example.

 Example: Multiple - Pass Optimization

 Begin with the nonoptimized C - code fragment:

for (j =1;j<=3;j++)
{
a[j]=0;
a[j]=a[j]+2*x;
}
for (k =1;k<=3;k++)
b[k]=b[k]+a[k]+2*k*k;

Pass 1 : First the code will be optimized by loop jamming, loop invariant
removal, and removal of extraneous code (in this case the initialization of
a[j]). The resultant code is:

t=2*x;
for (j =1;j<=3;j++)
{
a[j]=t;
b[j]=b[j]+a[j]+2*j*j;
}

Pass 2 : Loop unrolling yields:

t=2*x;
a[1]=t;

www.it-ebooks.info

http://www.it-ebooks.info/

190 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

b[1]=b[1]+a[1]+2*1*1;
a[2]=t;
b[2]=b[2]+a[2]+2*2*2;
a[3]=t;
b[3]=b[3]+a[3]+2*3*3;

Pass 3 : After constant folding, the code is:

t=2*x;
a[1]=t;
b[1]=b[1]+a[1]+2;
a[2]=t;
b[2]=b[2]+a[2]+8;
a[3]=t;
b[3]=b[3]+a[3]+18;

Pass 4 : Reduction in strength (assuming that multiplication is slower than
addition) and noticing that a[1]=a[2]=a[3]=t (thus the content of t
should be kept in a work register) lead to the fi nal code:

t=x+x;
a[1]=t;
a[2]=t;
a[3]=t;
b[1]=b[1]+t+2;
b[2]=b[2]+t+8;
b[3]=b[3]+t+18;

 The original code involved nine additions and nine multiplications, numerous
data movement instructions, and loop overhead. The optimized code requires
only seven additions (22% reduction), no multiplications (100% reduction),
less data movement, and no loop overhead. Hence, the improvement is signifi -
cant. It is very unlikely that any compiler would have been able to carry out
such an effective optimization automatically.

 As we saw above, it is highly benefi cial to know the optimization techniques
used by compilers when coding real - time software for time - critical applica-
tions. Understanding the explicit mapping between high - level language source
and assembly language translation for a particular compiler is essential in
generating code that is optimal in either execution time or memory utilization
viewpoints. The easiest and most reliable way to learn about any compiler is
to run a series of tests on specifi c language constructs. For example, in many
compilers, the case statement is effi cient only if more than three cases are to
be compared, otherwise nested if statements should be used. Sometimes, the
code generated for a case statement can be quite convoluted, for instance,

www.it-ebooks.info

http://www.it-ebooks.info/

COMPILER OPTIMIZATIONS OF CODE 191

containing a branch through a register, offset by a table value. This process
can be time - consuming.

 As mentioned earlier, procedure calls are costly in terms of passing of
parameters via the stack. Hence, the software engineer should determine
whether the compiler passes the parameters by byte or by word.

 While modern compilers do provide effective optimization of the assembly
language code output so as to, in many cases, make the decisions just discussed,
it is important to discover what that optimization is specifi cally doing to
produce the resultant code. For instance, compiler output can be affected by
optimization for speed, memory and register usage, branches, and so on, which
can sometimes lead to ineffi cient code, timing problems, or even critical regions.
Thus, real - time systems engineers should preferably be masters of their com-
pilers. That is, at all times, the engineer should know what assembly language
code will be output for a given high - level language instruction. A thorough
understanding of a compiler can only be accomplished by developing a set of
test cases to exercise it. The conclusions suggested by these tests can be
included in the set of coding standards to foster improved use of the language,
and, ultimately, improved real - time performance (Hatton, 1995).

 Finally, although modern compilers usually perform effective code optimiza-
tion, that might not yet be the case when a new CPU architecture is introduced
together with a compiler having a rather low and still unstable version number.

 Vignette: Early Compiler Version

 This anecdote (reported by one of Ovaska ’ s students who wants to stay
anonymous) shows that it should not be assumed that a new compiler can
effectively use all the advanced features of a sophisticated CPU architec-
ture. Some years ago, a digital signal processor with fl oating - point support
was launched with an early version of the ANSI - C compiler. In a research
project, a fairly complex signal - processing algorithm was to be implemented
in the new processor environment. The single software designer had two
competing assignments: (1) use assembly language and do everything you
can to minimize the execution time of the real - time algorithm; (2) use C
language only and pay special attention to the clarity and understandability
of the code. After developing and evaluating those two codes, the following
conclusions were made: the assembly program was 53% faster than the C
program; the assembly code used 45% less program memory and 63% less
data memory than the C code. Hence, the differences were signifi cant. But
what were the main reasons behind the remarkable speed improvement
when assembly language was used? The C compiler did not use the effi cient
circular addressing mode for implementing delay lines, but a for loop
instead. In addition, the compiler did not utilize the parallel instructions of
the processor effectively. The extra data memory locations were used by
the C program at the initialization stage. It took about 18 hours to write

www.it-ebooks.info

http://www.it-ebooks.info/

192 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 Most of this code optimization discussion applies particularly to time - critical
embedded systems, while soft real - time systems are typically programmed
without much concern on such low - level issues — the main emphasis being on
productivity of programmers, as well as maintainability and reusability of code,
instead.

 4.8 SUMMARY

 Programming languages continue to have a vital role in the development of
real - time systems, because they form an explicit interface between software
engineers and real - time hardware. There is a clear trend related to the volume
of code in embedded applications: new products are going to have considerably
more code than their predecessors . This increase is mainly due to enhancements
in functionality and the use of more sophisticated computational algorithms.

 The hardware community has responded to these demands by spatially and
temporally distributed system architectures, advanced communications net-
works, CPUs with higher instruction throughput, and larger memories. These
are needed for running complex signal processing and supervisory control
algorithms, intelligent fault prognosis and self - diagnostics functions, model -
 based virtual sensors replacing physical ones, more comprehensive user - and
system - level interfaces, and so forth.

 How is that global trend affecting the use of programming languages and
the writing of real - time software? Well, the ongoing determined transition
from procedural languages to object - oriented languages is one response to the
growing amount of software found in typical embedded applications. Object -
 oriented languages, such as Ada, C ++ , C#, and Java (or Real - Time Java),
provide basic means for improving the productivity of programmers, as well
as maintainability and reusability of developed code.

 Software reuse, which is seen as an opportunity to reduce the amount of
redundant coding work in software projects, has also a fl ip side: excessive reuse
of existing code may even limit the innovativeness of new products. In addi-
tion, there is a risk of propagating bad code. Hence, code reuse should be
focused on naturally time - invariant and well - proven modules that exist in a
specifi c application from generation to generation. Typical examples include
local control algorithms, reference - signal generators, handling of analog and
digital I/O, as well as standard fi eldbus interfaces.

 From the practicing engineer ’ s viewpoint, automatic code generation can
still be considered as only an emerging technology — even after several decades
of evolution. Nonetheless, the need for automatic code generators is now

and test the assembly code, while the C code was completed in less than 6
hours. Obviously, recent versions of that C compiler perform much better
than this early one — but you cannot know such things without running
appropriate tests yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 193

greater than ever, because of the growing code size in real - time systems. It is,
however, unlikely that automatic code generators will become a mainstream
tool for practitioners in the foreseeable future. But they will certainly have
steadily increasing use in coding such routine structures as fi nite state machines
and certain numerical algorithms that do not require the problem - solving
ability of programmers.

 While productivity, maintainability, and reusability are truly important
factors, they do not matter if the real - time requirements of a system are not
met. It is challenging to run sophisticated algorithms at high sampling rates in
a cost - effective hardware platform. Therefore, in certain application domains,
special real - time programming languages need to be used instead of the
general purpose ones. Such tailored languages lead to highly predictable real -
 time behavior and minimal language - originated overhead. Furthermore, it is
still justifi able to use procedural languages, like the C language, for coding
smaller and time - critical applications, or even use assembly language in par-
ticular rare occasions.

 The ultimate desire of real - time programmers is a standardized program-
ming language and an associated compiler with a high level of abstraction , strict
real - time predictability , and effectively optimized object - code generation . In the
following chapter, we will discuss requirements - engineering methodologies
that have an obvious link to the increasing level of abstraction, which appears
to be a central issue when improving productivity of software engineers.

 Finally, it may be time to reconsider the pioneering but largely forgotten
work of Weinberg, where he proposed a new fi eld of study: “ computer pro-
gramming as a human activity, or, in short, the psychology of computer pro-
gramming ” (Weinberg, 1998). Although that fi eld never became a major one,
it could offer complementary ideas for the continuing struggle to improve the
productivity of real - time programmers.

 4.9 EXERCISES

4.1. What are the reasons why the once - popular PL/I - derivative languages,
such as Intel ’ s PL/M, Motorola ’ s MPL and Zilog ’ s PL/Z, practically
disappeared by the late 1980s (see Fig. 4.1)?

4.2. It can be argued that in some cases there exists an apparent confl ict
between good software engineering practices and real - time performance.
Consider the relative merits of recursive program design versus interac-
tive techniques, and the use of global variables versus parameter lists.
Using these topics and an appropriate programming language for exam-
ples, compare and contrast real - time performance versus good software
engineering practices as you understand them.

4.3. What programming restrictions should be used in a programming lan-
guage to permit straightforward analysis of real - time applications?

www.it-ebooks.info

http://www.it-ebooks.info/

194 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

4.4. Write a set of coding standards for use with any of the real - time applica-
tions introduced in Chapter 1 for the programming language of your
choice. Document the rationale for each provision of the coding
standard.

4.5. Why is it very important to cite the reference for any computational
algorithm that is used in a real - time program in the program ’ s
annotation?

4.6. In a procedural language of your choice, develop an abstract data type
called “ image ” with associated functions. Be sure to follow the principle
of information hiding. Make any assumptions that you need to about the
properties of the images.

4.7. In the object - oriented language of your choice, design and code an
 “ image ” class that could be useful across a wide range of projects. Be
sure to follow the best principles of object - oriented design.

4.8. How can misuse or misunderstanding of a software technology impede
a software project? For instance, writing structured C code instead of
classes in C ++ , or reinventing a tool for each project instead of using a
standard one.

4.9. Java has been compared with Ada 95 in terms of “ hype ” and
 “ unifi cation ” — defend or refute the arguments for this comparison.

4.10. By using the fi ve metrics of Cardelli, compare the fi tness of C and C ++
languages for real - time programming; use pentacle diagrams (see Fig.
 4.2) for visualizing your justifi ed comparison.

4.11. Are there any language features that are exclusive to C/C ++ ? Do these
features provide specifi c advantage or disadvantage in embedded
environments?

4.12. You are hired to defi ne a set of principal requirements for a new real -
 time programming language for embedded control applications. What
are the most important requirements that your defi nition would contain?
Justify your answer.

4.13. What compiler options are available in your favorite C compiler and
what do they specifi cally do?

4.14. Develop a set of tests to exercise a compiler to determine the best use
of the language in a real - time processing environment. For example, your
tests should determine such things as when to use case statements
versus nested if-then-else statements; when to use integers versus
Boolean variables for conditional branching; whether to use while or
for loops, and when; and so on.

4.15. Use standard compiler - optimization methods and multiple optimization
phases to optimize the following C code by hand:

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 195

#define UNIT 1
#define FULL 1
void main(void)
{
int a,b;
a=FULL;
b=a;
if ((a ==FULL) && (b ==FULL))
{
if (debug)
printf("a=%d b =%d",a,b);
a=(b*UNIT)/2;
a=2.0*a*4;
b=b*sqrt(a);
}

}

 REFERENCES

 A. V. Aho and J. D. Ullman , Principles of Compiler Design . Reading, MA : Addison -
 Wesley , 1977 .

 D. Alonso , C. Vicente - Cicote , P. S á nchez , B. Á lvarez , and F. Losilla , “ Automatic Ada
code generation using a model - driven engineering approach , ” Lecture Notes in
Computer Science , 4498 , pp. 168 – 179 , 2007 .

 J. W. Backus et al., “ The FORTRAN automatic coding system , ” Proceedings of the
Western Joint Computer Conference , Los Angeles, CA, 1957 , pp. 188 – 198 .

 G. Bollella and J. Gosling , “ The real - time specifi cation for Java , ” IEEE Computer , 33 (6),
pp. 47 – 54 , 2000 .

 A. Burns and A. Wellings , Real - Time Systems and Programming Languages: Ada, Real -
 Time Java, and C/Real - Time POSIX , 4th Edition . Harlow, UK : Pearson Education
Limited , 2009 .

 L. Cardelli , “ Bad engineering properties of object - oriented languages , ” ACM Computing
Surveys , 28 (4), pp. 150 – 158 , 1996 .

 P. Dibble and A. Wellings , “ JSR - 282 status report , ” Proceedings of the 7th International
Workshop on Java Technologies for Real - Time and Embedded Systems , Madrid,
Spain, 2009 , pp. 179 – 182 .

 B. P. Douglass , Real - Time Design Patterns: Robust Scalable Architecture for Real - Time
Systems . Boston : Addison - Wesley , 2003 .

 M. W. El - Kharashi and F. Elguibaly , “ Java microprocessors: Computer architecture
implications , ” Proceedings of the IEEE Pacifi c Rim Conference on
Communications, Computers and Signal Processing , Victoria, Canada, 1997 ,
pp. 277 – 280 .

 R. L. Glass , “ Some thoughts on automatic code generation , ” ACM SIGMIS Database ,
 27 (2), pp. 16 – 18 , 1996 .

www.it-ebooks.info

http://www.it-ebooks.info/

196 PROGRAMMING LANGUAGES FOR REAL-TIME SYSTEMS

 N. Hagge and B. Wagner , “ Mapping reusable control components to Java language
constructs , ” Proceedings of the 2nd IEEE International Conference on Industrial
Informatics , Berlin, Germany, 2004 , pp. 108 – 113 .

 L. Hatton , Safer C: Developing Software for High - Integrity and Safety - Critical Systems .
 Maidenhead, UK : McGraw - Hill , 1995 .

 G. Hedin , L. Bendix , and B. Magnusson , “ Introducing software engineering by means
of Extreme Programming , ” Proceedings of the 25th International Conference on
Software Engineering , Portland, OR, 2003 , pp. 586 – 593 .

 R. Jain , The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling . New York : John Wiley & Sons ,
 1991 .

 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,
 2003 .

 X. Li and C. Prasad , “ Effectively teaching coding standards in programming , ”
Proceedings of the 6th Conference on Information Technology Education , Newark,
NJ, 2005 , pp. 239 – 244 .

 M. Lutz and P. A. Laplante , “ An analysis of the real - time performance of C# , ” IEEE
Software , 20 (1), pp. 74 – 80 , 2003 .

 D. Maclay , “ Click and code , ” IEE Review , 46 (3), pp. 25 – 28 , 2000 .
 D. L. Parnas , “ On the criteria to be used in decomposing system into modules , ”

Communications of the ACM , 15 (12), pp. 1053 – 1058 , 1972 .
 C. Petzold , Programming Windows , 5th Edition . Redmond, WA : Microsoft Press , 1999 .
 D. C. Schmidt , M. Stal , H. Robert , and F. Bushmann , Pattern - Oriented Software

Architecture Volume 2: Patterns for Concurrent and Networked Objects . New York :
 John Wiley & Sons , 2000 .

 A. C. Shaw , Real - Time Systems and Software . New York : John Wiley & Sons , 2001 .
 B. Sick and S. J. Ovaska , “ Fusion of soft and hard computing: Multi - dimensional catego-

rization of computationally intelligent hybrid systems , ” Neural Computing &
Applications , 16 (2), pp. 125 – 137 , 2007 .

 R. J. Srodawa , R. E. Gach , and A. Glicker , “ Preliminary experience with the automatic
generation of production - quality code for the Ford/Intel 8061 microprocessor , ”
IEEE Transactions on Industrial Electronics , IE - 32 (4), pp. 318 – 326 , 1985 .

 G. M. Weinberg , The Psychology of Computer Programming: Silver Anniversary Edition .
 New York : Dorset House Publishing , 1998 .

www.it-ebooks.info

http://www.it-ebooks.info/

 5
REQUIREMENTS ENGINEERING
METHODOLOGIES

197

 Since the embedded - systems era, the emphasis of real - time software develop-
ment has evolved remarkably from programming toward requirements engi-
neering. In a typical software project today, requirements engineering activities
may take an equal amount of effort (in person months) as code development
and debugging. Requirements engineering is a core discipline of software and
systems engineering that is concerned with determining the objectives, func-
tionality, and constraints of software systems in the problem space, as well as
the representation of these aspects in forms amenable to modeling and analysis.
The ultimate goal of requirements engineering is to compose a requirements
document that is complete, balanced, unambiguous, correct, and easily under-
standable to both nontechnical customers and software developers. This last
goal creates somewhat of a dilemma, as it indicates the duality of purpose of
requirements documents: to provide (1) adequate insight for the customers to
ensure the product under development meets their needs and expectations, and
(2) a complete representation of the features and constraints of the software
system as a basis for developers . In the real - time systems domain, the situation
is further complicated by the obvious need to represent exact timing and per-
formance constraints, as well as the more readily elicited requirements.

 While programming (or exploration of the solution space) is considered
increasingly as a commoditized activity that can be outsourced, requirements

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

198 REQUIREMENTS ENGINEERING METHODOLOGIES

engineering is crucial activity of any systems development project, and it
should, therefore, be conducted by the development organization — together
with an appropriate group of customer representative. Requirements engi-
neering has a principal role in providing real - time software on - time and on -
 budget (Laplante, 2009), and it relies heavily on well - defi ned documentation
practices, appropriate methodologies and supporting tools, as well as skills and
discipline in using them.

 In Section 5.1 , an introductory discussion on the requirements engineering
process and the different classes of requirements is given to form a foundation
for the succeeding sections. The discussion shows that requirements elicitation
involves gathering requirements through a diverse collection of techniques.
Moreover, there are standardized requirement classes that are applicable to
practically all software projects. Formal methods in real - time system specifi ca-
tion are discussed with illustrative examples in Section 5.2 . These rigorous
methods are particularly useful when automatic design and code generation
approaches are to be used later in the development project. Section 5.3 is a
dual section to the previous one as it provides a pragmatic presentation on
leading semiformal methods for system specifi cation. The outcome of the
requirements engineering phase, the requirements document , is introduced
from the structural and contents points of view in Section 5.4 . Section 5.5 gives
a ruminative summary of this chapter. A diverse collection of revealing exer-
cises on requirements engineering is available in Section 5.6. Lastly, a compre-
hensive case study on specifying requirements for real - time software is given
in Section 5.7 . That study of a sophisticated traffi c light control system will be
continued from the design viewpoint in an appendix of Chapter 6 .

 Some parts of this chapter have been adapted from Laplante (2003; 2009) ,
which should be considered general references throughout.

 5.1 REQUIREMENTS ENGINEERING FOR REAL - TIME SYSTEMS

 5.1.1 Requirements Engineering as a Process

 A multistep workfl ow for the requirements engineering phase is shown in
Figure 5.1 , where specifi c engineering activities are represented as thin - line
rectangles and the documents resulting from those activities are thick - line
rectangles. Every requirements engineering process should begin with a pre-
liminary study. This study is an investigation into the motivation for the pos-
sible development project and the nature of primary problems to be solved.
Such an investigation may consist of stakeholder perspectives and constraints,
determination of project scope and feature priorities, as well as some early
analysis of the temporal constraints imposed upon the entire real - time system.
One of the main deliverables of the requirements engineering process is a
feasibility report that may even advise discontinuing development of the
planned software product. Usually, however, this will not be the case, and the
preliminary study will be followed smoothly by requirements elicitation.

www.it-ebooks.info

http://www.it-ebooks.info/

REQUIREMENTS ENGINEERING FOR REAL-TIME SYSTEMS 199

 Requirements elicitation involves gathering various requirements through
a variety of techniques that may include stakeholder interviews and question-
naires, focus groups, company - or customer - wide workshops, and prototyping.
While requirements can be expressed in several forms ranging from natural
language text through mathematical formalisms, it is common for high - level
requirements to be outlined in the form of a domain model, that is, a model
of the application domain that may include such artifacts as context diagrams,
use cases, or entity relationship diagrams — depending on the methodology
preferred.

 The next stage is requirements defi nition. It is important to defi ne, precisely
enough, each of the captured requirements so that they can be analyzed for
completeness, consistency, and correctness in the validation stage. The overall
outcome of this process is a requirements document containing a software (or
systems) requirements specifi cation (SRS), which is a description of the fea-
tures, behaviors, and constraints of the fi nal system. Precise software specifi ca-
tions provide an essential basis for analyzing the requirements, validating that
they are the stakeholder ’ s true intentions, defi ning what the designers have to
build, and fi nally verifying that they have done so correctly (Robertson and
Robertson, 2005).

 5.1.2 Standard Requirement Classes

 While there are a number of alternative taxonomies of requirements available,
the most established one is the simple functional versus nonfunctional
classifi cation. A general software - specifi cation scheme, applicable also for

 Figure 5.1. The requirements engineering process; adapted from Sommerville (2000).

Preliminary

Study

Feasibility

Report

Requirements

Elicitation

Requirements

Definition

Domain

Model

Requirements

Validation

Definition of

Requirements

Requirements

Specification

Requirements

Document

www.it-ebooks.info

http://www.it-ebooks.info/

200 REQUIREMENTS ENGINEERING METHODOLOGIES

specifying real - time software, is defi ned by the Institute of Electrical and
Electronics Engineers (IEEE) Std 830 – 1998, Recommended Practice for
Software Requirements Specifi cations (IEEE, 1998). It describes the content
and qualities of a solid software requirements document. This widely used
standard defi nes the following six classes of requirements:

C1. Functional : Fundamental actions or features
C2. External Interfaces : Inputs and outputs
C3. Performance : Static and dynamic numerical requirements
C4. Logical Database : Logical requirements for any database information
C5. Design Constraints : Standards and hardware restrictions
C6. Software - System Attributes : Various quantifi able attributes

 Here, classes C2 through C6 are considered to be nonfunctional.
 Functional requirements include a description of all system inputs and the

sequence of operations associated with each particular input set. Either
through case - by - case description or some other general form of description
(e.g., using universal quantifi cation), the exact sequence of operations and
outputs to normal and abnormal situations must be provided for every input
possibility. Moreover, abnormal situations might include error handling and
recovery, including failure to meet deadlines. In essence, functional require-
ments describe the complete deterministic behavior of the real - time system.
Generally, the functional requirements are partitioned to software and hard-
ware before requirements analysis begins, although a careful trade - off analysis
may cause these to shift later in the project lifecycle.

 External interface requirements are a description of all inputs and outputs
to/from the system including:

 • Name of item
 • Description of purpose
 • Source of input or destination of output
 • Valid range, accuracy, and/or tolerance
 • Units of measure
 • Timing
 • Relationships to other inputs/outputs
 • Screen formats/organization
 • Window formats/organization
 • Data formats
 • Command formats
 • End messages

 Performance requirements include both static and dynamic numerical require-
ments placed on the software or on human interaction with the software as a

www.it-ebooks.info

http://www.it-ebooks.info/

REQUIREMENTS ENGINEERING FOR REAL-TIME SYSTEMS 201

whole. For a nonembedded real - time system, static requirements could include
the number of simultaneous users to be supported. The dynamic requirements,
on the other hand, might include the number of transactions and tasks and the
amount of data to be processed within certain time limits under both normal
and peak workload conditions. With embedded systems, however, the indi-
vidual performance requirements may vary greatly from those of software that
is nonembedded.

 Logical - database requirements include the defi nitions of tabulated infor-
mation used by various functions, such as accessing capabilities, data entities
and their relationships, data - retention requirements, frequency of use, and
integrity constraints.

 Design - constraint requirements are related to such imperative issues as
standards compliance and hardware limitations.

 Lastly, software system attribute requirements include availability, main-
tainability, portability, reliability, security, and energy usage of the real - time
software. It is important to specify the attributes explicitly to make it possible
to verify their proper existence objectively. These attributes are often archi-
tecture driven.

 At this point, it is worth noting that the traditional nomenclature for func-
tional versus nonfunctional requirements is somewhat inaccurate, because the
terms “ functional ” and “ nonfunctional ” are not necessarily separable in the
context of real - time systems. Thus, a more logical classifi cation could be
between a behavior that is observable via execution (e.g., some response time)
and behavior that is nonobservable via execution (e.g., maintainability). Such
a classifi cation principle has an analogy to the concept of observability in
control theory.

 5.1.3 Specifi cation of Real - Time Software

 There is no single approach for specifi cation of real - time software, but real -
 time systems engineers typically use a case - specifi c combination of the follow-
ing approaches:

 • Top - down decomposition or structured analysis
 • Object - oriented approaches
 • Software description languages or in - house pseudocode
 • High - level functional specifi cations that are not further decomposed
 • Ad hoc techniques, including natural language, mathematical descriptions,

and various models

 There are three general classifi cations of specifi cation techniques: formal ,
informal , and semiformal . Formal methods have a rigorous, mathematical or
logical basis. A representative sampling of these approaches is discussed in the
following sections. Any requirements specifi cation technique is informal if it

www.it-ebooks.info

http://www.it-ebooks.info/

202 REQUIREMENTS ENGINEERING METHODOLOGIES

cannot be completely transliterated into a rigorous mathematical notation and
associated rules. Rudimentary informal specifi cations, such as fl owcharting,
have little or no underlying mathematical/logical structure, and hence they
cannot be completely analyzed. In the case of fl owcharts, the topological struc-
ture is mathematically rigorous — either sequence or branch — but the seman-
tics in the process and decision blocks, typically expressed using natural
language, are not. All that can be done with informal specifi cations is to fi nd
counterexamples of where the system fails to meet the requirements or where
there are confl icts. This is simply not adequate for most real - time systems,
where formal substantiation of performance characteristics of requirements is
necessary. Approaches to requirements specifi cation that defy classifi cation as
either formal or informal are called semiformal. Semiformal approaches, while
not appearing to be fully rigorous, might be. For example, some contend that
the unifi ed modeling language (UML) is semiformal, because the statechart
is formal while other metamodeling techniques it employs have a pseudomath-
ematical basis. Others contend, however, that UML is not even semiformal,
because it has serious holes and inconsistencies — this heavy criticism applies
to UML 1.x only. The thoroughly revised UML 2.x contains additional formal
components, and there are serious intentions to formalize it even further
(Miles and Hamilton, 2006). In any case, UML largely enjoys the benefi ts of
both informal and formal techniques and is extensively used in real - time
systems specifi cation and design, because it is supporting the ongoing transi-
tion from procedural programming languages to object - oriented ones.

 5.2 FORMAL METHODS IN SYSTEM SPECIFICATION

 Formal methods contribute signifi cantly to requirements formulation and vali-
dation by the use and extension of effective mathematical techniques (Liu,
 2010). And this practice is becoming more and more feasible with the increas-
ing availability of supporting tools. These techniques and associated tools
employ some combination of abstract algebra, discrete mathematics, λ - calculus,
number theory, predicate calculus, programming language semantics, recursive
function theory, and so forth. One of the primary benefi ts of formal methods
is that they provide an exact scientifi c perspective to system specifi cation and
software design. Formal requirements offer the opportunity of discovering
errors at the earliest phase of development, when the errors can be corrected
more easily and at a lower cost. Informal specifi cations, on the other hand,
might not support this goal, because while they can be used to refute a specifi c
requirement by counterexamples, such counterexamples may be diffi cult to
create.

 By their nature, specifi cations for real - time systems usually contain some
formalism in the mathematical expression of the interactions with the operat-
ing environment or within systems in which they are embedded. While this
does not justify the claim that every real - time system specifi cation is fully

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 203

formalizable, it does lead to certain optimism that most real - time systems are
suitable for, at least, partial formalization.

 Nevertheless, formal methods are generally perceived to be diffi cult to use
by even expertly trained engineers, and may be error - prone if used without
proper computer - based tools. For these reasons, and because they are often
believed to increase early lifecycle costs and even delay projects, formal
methods are, unfortunately, too often avoided.

 It should be understood, however, that formal methods are not intended to
take on an all - encompassing role in real - time software specifi cation and design.
Instead, carefully selected techniques may be used in one or two stages of the
development process. There are three typical uses for formal methods among
software engineers:

 1. Consistency Checking . This is where the system ’ s behavioral require-
ments are described using a mathematics - originated notation.

 2. Model Checking . Finite state machines or their extensions are used to
verify whether a given property is satisfi ed under all conditions.

 3. Theorem Proving . Here, axioms of system behavior are used to derive a
proof that a system will behave in a given way.

 In addition, formal methods offer unique opportunities for reusing require-
ments. Embedded systems are often developed as families of similar products,
or as incremental redesigns of existing products. For the fi rst situation, formal
methods can help to identify a consistent set of core requirements and abstrac-
tions to reduce duplicate engineering effort. For redesigns, having formal
specifi cations for the existing system provides an unambiguous reference for
baseline behavior and a convenient way to analyze proposed changes (Bowen
and Hinchey, 1995).

 Example: Consistency Proof of Requirements

 Consider the following excerpt from a software requirements specifi cation:

R1. If interrupt A arrives, then task B stops executing.

 R2. Task A begins executing upon arrival of interrupt A.

R3. Either Task A is executing and Task B is not, or Task B is executing
and Task A is not, or both are not executing.

 These textual requirements can be formalized by rewriting each in terms
of their component propositions, namely:

p : Interrupt A arrives.

q : Task B is executing.

r : Task A is executing.

www.it-ebooks.info

http://www.it-ebooks.info/

204 REQUIREMENTS ENGINEERING METHODOLOGIES

 Then rewriting the requirements using these propositions and standard
logical connectives yields:

R1. p ⇒ ¬ q

R2. p ⇒ r

R3. (r ∧ ¬ q) ∨ (q ∧ ¬ r) ∨ (¬ q ∧ ¬ r)

 Notice the obvious diffi culties in dealing with the articulation of temporal
behavior. For instance, in requirement R2, Task A begins executing upon
arrival of interrupt A; but for how long does it continue executing? This
relationship needs to be clarifi ed using some other methodology.

 In any case, the consistency of these requirements can be proved by
demonstrating that there is at least one set of truth values that makes all
requirements true simultaneously . This can be verifi ed explicitly by creating
the corresponding truth table (see Table 5.1). Looking at the table, rows 3,
6, 7, and 8 in columns 6, 7, and 8, corresponding to requirements R1, R2,
and R3, are all true, and hence this set of requirements is consistent.

 Consistency checking, leading to a formal proof, is particularly useful when
there is a large number of complicated requirements. If automated tools with
a convenient user interface are available to perform the checking process, even
large specifi cations could be consistency checked this way. However, aside
from the diffi culties in formalizing the notation, fi nding a set of individual truth
values that yield a composite truth value for the set of propositions is, in fact,
a Boolean satisfi ability problem, which is an NP - complete problem (to be
discussed in Chapter 7).

 TABLE 5.1. Truth Table Used to Verify the Consistency of the Example Set of
Requirements (T = True and F = False)

 1 2 3 4 5 6 7 8

p q r ¬q ¬ r P ⇒ ¬q p ⇒ r (r ∧ ¬q) ∨ (q ∧ ¬r) ∨ (¬ q ∧ ¬ r
)

 1 T T T F F F T F
 2 T T F F T F F T
3 T F T T F T T T
 4 T F F T T T F T
 5 F T T F F T T F
6 F T F F T T T T
7 F F T T F T T T
8 F F F T T T T T

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 205

 5.2.1 Limitations of Formal Methods

 Formal methods have two major limitations that are of special concern to
real - time system developers. First, although formalism is often used in pursuit
of absolute correctness and safety, it can eventually guarantee neither. And,
second, formal techniques do not offer effi cient or intuitive ways to reason
about alternative architectures or designs.

 Correctness and safety are two of the original motivating factors driving
adoption of formal methods. Aerospace, automotive, defense, elevator, mass
transportation, and nuclear regulations in several countries mandate (or
strongly suggest) the use of formal methods for specifying safety - critical sub-
systems. Furthermore, some academic researchers emphasize the “ correct-
ness ” properties of particular mathematical approaches, without clarifying that
mathematical correctness in one part of the development process might not
translate into implemented correctness in the entire system.

 Nevertheless, it is the specifi cation that must be produced and proven at this
stage — not the software product itself. Formal software specifi cations need to
be converted to a design, and then encoded using some programming language(s).
The translation process is subject to the potential pitfalls of any programming
effort. For this reason, testing is just as important when using formal require-
ments engineering methods as when using informal or semiformal ones, though
the testing effort can be reduced with the use of formal methods. Formal veri-
fi cation is also subject to many of the same limitations as traditional testing,
namely, that testing cannot prove the absence of errors, only their presence.

 Notation evolution is a slow but ongoing process in the formal methods
community. It can take many years from when a new notation is introduced
until it is adopted universally. A major challenge in applying formal methods
to real - time embedded systems is choosing an appropriate technique to match
the problem at hand. Still, to make formal models truly usable for a wide
spectrum of people, requirements documents should also use complementary
nonmathematical notations, such as natural language, structured text, or some
form of graphical diagrams.

 5.2.2 Finite State Machines

 The fi nite state machine (FSM), fi nite state automaton (FSA), or state -
 transition diagram (STD) is a formal mathematical model used in the
specifi cation and design of real - time software (Wagner et al., 2006). Of those
three equivalent terms, we use “ fi nite state machine ” throughout this text.
Intuitively, fi nite state machines rely on the fact that many systems can be
represented by a fi xed number of unique states and certain transitions between
them. The system may change its state depending on time (real - time clock) or
the occurrence of specifi c events. Formally, fi nite state machines can be repre-
sented by the fi ve tuple:

 M S i T= { }, , , , ,Σ δ (5.1)

www.it-ebooks.info

http://www.it-ebooks.info/

206 REQUIREMENTS ENGINEERING METHODOLOGIES

where S is a fi nite, nonempty set of states; i is the initial state (i ∈ S); T is the
fi nite set of terminal states (T ⊆ S); Σ is a fi nite alphabet of symbols or events
used to mark transitions between states; and δ is a transition function that
describes the next state of the FSM given the current state and a symbol from
the alphabet. That is, δ : S × Σ → S . A fi nite state machine can be expressed in
diagrammatic, matrix, and set - theoretic representations, but we prefer the two
fi rst ones in this text. While graphical diagrams are easy to create and understand
by engineers, matrices are appropriate inputs for automatic code generators.

 Example: Representations of a Practical Finite State Machine

 To illustrate the diagrammatic and matrix representations, suppose it is
desired to model the door - control subsystem of an elevator controller. This
safety - critical subsystem has the following seven states:

Closed : The door is fully closed.

Opening : The door is opening due to an initial open command or a later
reopen command.

Open : The door is fully open.

Closing : The door is closing normally.

Nudging : The door is closing at a creeping speed and with a reduced force
after several reopenings.

Fault C : The door could not be fully closed due to some failure.

Fault O : The door could not be fully opened due to some failure.

 The fi rst fi ve states (Closed, Opening, Open, Closing, and Nudging) are
visited regularly in normal operation of the elevator, but the two last ones
(Fault C and Fault O) represent serious fault conditions when the elevator
must be shut down since the door cannot be either closed or opened due
to some (typically) mechanical failure. In those abnormal terminal states,
certain fault - recovery procedures are initiated, often leading to a service
visit by an elevator technician. It is generally known that broken doors are
causing most of the elevator shut - downs.

 The door - control subsystem reacts to various events generated by the
elevator controller itself, door contacts and safety sensors, push buttons
inside the car, as well as different timeout timers. These events are listed below:

CC : Command from the elevator controller to close the door.

OC : Command from the elevator controller to open the door.

DC : Door - closed contact (the door is fully closed).

DO : Door - open contact (the door is fully open).

CB : Door - close button.

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 207

 OB : Door - open button.

 SE : Safety edge to sense a passenger (or some obstacle) between closing
door blades.

 PC : Photocell(s) to sense a passenger (or some obstacle) between
closing door blades.

 T1 : Timeout to indicate the door could not be closed in a fairly long
time due to several reopenings.

 T2 : Timeout to indicate the door could not be closed in an overly long
time due to a likely failure.

 T3 : Timeout to indicate the door could not be opened in a nominal (plus
some margin) time due to a possible failure.

 The possible transitions from state to state triggered by specifi c events are
illustrated in Figure 5.2 . It is assumed that “ Closed ” is the initial state.

 This FSM can be expressed using the fi ve tuple of Equation 5.1 as follows:

 S = { }Closed Opening Open Closing Nudging Fault C Fault O, , , , , ,

 i = Closed

 T = { }Fault C Fault O,

 Σ = { }CC OC DC DO CB OB SE PC T T T, , , , , , , , , ,1 2 3

 The transition function, δ , is embodied in the diagram itself, and is conve-
nient to represent with a transition matrix, as shown in Table 5.2 .

 Figure 5.2. A diagrammatic representation of a fi nite state machine for the elevator
door - control subsystem.

Open

Opening

Fault O

Closing

Closed

Fault C

Nudging

Else

Else

Else

Else Else

CC, CB

DO

T3

OB, SE, PC

OC, OB
DC

DC

T1

T2

CB

www.it-ebooks.info

http://www.it-ebooks.info/

 TA
B

L
E

 5
.2

.
 Tr

an
si

ti
on

 M
at

ri
x

R
ep

re
se

nt
at

io
n

fo
r

th
e

F
in

it
e

St
at

e
M

ac
hi

ne
 in

 F
ig

ur
e

 5.
2

 C
C

 O

C

 D
C

 D

O

 C
B

 O

B

 SE

 P
C

 T

1
 T

2
 T

3

 C
lo

se
d

 C
lo

se
d

 O
pe

ni
ng

 C

lo
se

d
 C

lo
se

d
 C

lo
se

d
 O

pe
ni

ng

 C
lo

se
d

 C
lo

se
d

 C
lo

se
d

 C
lo

se
d

 C
lo

se
d

 O
pe

ni
ng

 O

pe
ni

ng

 O
pe

ni
ng

 O

pe
ni

ng

 O
pe

n

 C
lo

si
ng

 O

pe
ni

ng

 O
pe

ni
ng

 O

pe
ni

ng

 O
pe

ni
ng

 O

pe
ni

ng

 Fa
ul

t
O

 O
pe

n
 C

lo
si

ng

 O
pe

n
 O

pe
n

 O
pe

n
 C

lo
si

ng

 O
pe

n
 O

pe
n

 O
pe

n
 O

pe
n

 O
pe

n
 O

pe
n

 C
lo

si
ng

 C

lo
si

ng

 C
lo

si
ng

 C

lo
se

d

 C
lo

si
ng

 C

lo
si

ng

 O
pe

ni
ng

 O

pe
ni

ng

 O
pe

ni
ng

 N

ud
gi

ng

 C
lo

si
ng

 C

lo
si

ng

 N
ud

gi
ng

 N

ud
gi

ng

 N
ud

gi
ng

 C

lo
se

d

 N
ud

gi
ng

 N

ud
gi

ng

 N
ud

gi
ng

 N

ud
gi

ng

 N
ud

gi
ng

 N

ud
gi

ng

 Fa
ul

t
C

 N

ud
gi

ng

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
C

 Fa

ul
t

C

 Fa
ul

t
O

 Fa

ul
t

O

 Fa
ul

t
O

 Fa

ul
t

O

 Fa
ul

t
O

 Fa

ul
t

O

 Fa
ul

t
O

 Fa

ul
t

O

 Fa
ul

t
O

 Fa

ul
t

O

 Fa
ul

t
O

 Fa

ul
t

O

208

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 209

 A fi nite state machine that does not depict any outputs during state transi-
tions is called a Moore machine, where all outputs are dependent on states
only. Thus far, we have considered solely Moore machines in this discussion.
However, outputs during transitions can be depicted by an extension of the
Moore machine called a Mealy machine. The Mealy machine can be described
accordingly by a six - tuple:

 M S i T= { }, , , , ,Σ Γδ (5.2)

where the fi rst fi ve elements are the same as for the Moore machine of
Equation 5.1 , while the sixth element, Γ , represents the set of possible outputs.
However, the transition/output function, δ , is here somewhat different from
the pure transition function of the Moore FSM, as it describes the next state
and the associated output given the current state and an input symbol from
the alphabet. Hence, it can be expressed as δ : S × Σ → S × Γ . A generic Mealy
machine for a system with three states, three inputs, and three outputs is illus-
trated in Figure 5.3 . The corresponding transition matrix is given in Table 5.3 .
It is commonly known that the number of states required in a Mealy FSM is
less than or equal to the number of states in a corresponding Moore machine.

 Finite state machines are straightforward to construct, and program code
can be easily (or even automatically) generated using matrices to specify the
transitions between states. FSMs are also unambiguous, since they can be
represented with a formal mathematical description. In addition, concurrency

 Figure 5.3. A fully connected Mealy FSM with states S1, S2, and S3, inputs E1, E2, and
E3, and outputs O1, O2, and O3.

S1

S2

E2/O2

S3

E3/O3

E1/O1

E2/O2

E1/O1

E2/O2

E3/O3E3/O3

E1/O1

www.it-ebooks.info

http://www.it-ebooks.info/

210 REQUIREMENTS ENGINEERING METHODOLOGIES

in a real - time system can be depicted by using multiple fi nite state machines.
When constructing a fi nite state machine, special attention should be given to
the following concerns (Yourdon, 1989):

 • Have you defi ned all necessary states?
 • Can all the states be reached?
 • Can all the states, except the terminal ones, be exited?

 Because rigorous mathematical techniques for reducing the number of states
exist, program code based on FSMs can be formally optimized. Such optimiza-
tion could even be automated. A rich theory surrounds fi nite state machines,
and this can be exploited in the development of system specifi cations. On the
other hand, a major disadvantage of FSMs is that the internal aspects of
modules cannot be depicted. That is, there is no way to indicate how functions
(states) can be broken down into subfunctions (substates). In addition, inter-
task communication between multiple FSMs is diffi cult to depict. Finally,
depending on the particular system and alphabet used, the number of states
may sometimes grow very large. Both of these problems, however, can be
overcome through the use of statecharts to be introduced shortly. Furthermore,
the use of fi nite state machines in the design of real - time software is discussed
in Chapter 6 .

 5.2.3 Statecharts

 Statecharts — or originally Harel ’ s statecharts (Harel, 2009) — have their roots
in the avionics industry, and they provide “ diagrammatic/visual formalism ” for
system and software engineers. They combine fi nite state machines ’ user -
 friendliness with data fl ow diagrams and a feature called broadcast commu-
nication, in a way that can depict both synchronous and asynchronous
operations. Statecharts can be defi ned informally as:

 Statechart FSM Depth Orthogonality Broadcast Communication= + + + ..

 Here, FSM is a fi nite state machine, depth represents hierarchical levels of
detail, orthogonality represents the existence of parallel states, and broadcast
communication is a method for allowing multiple orthogonal states to react

 TABLE 5.3. Transition Matrix Representation for the
Finite State Machine in Figure 5.3

 E1 E2 E3

 S1 S1/O1 S2/O2 S3/O3
 S2 S1/O1 S2/O2 S3/O3
 S3 S1/O1 S2/O2 S3/O3

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 211

 Figure 5.6. Navigation subsystem containing four orthogonal tasks.

Read and

Compensate

Gyro Data

40 ms

Compensate

All Data

Read and

Compensate

Raw

Accelerometer

Pulses

5 ms

Navigation

Background

Task

1 s

Update Display

5 ms

Interrupt

40 ms

Interrupt

1 s Interrupt

to the same event. Actually, hierarchy and orthogonality are the two principal
ideas behind statecharts, and they can be fl exibly compounded. The value of
hierarchy and orthogonality is mainly in their convenience and naturalness . In
principle, hierarchy could always be fl attened and orthogonality could be
removed. However, “ convenience ” is exactly what engineers appreciate when
using any methodology.

 The statechart is an extension of a fi nite state machine, where each state
can contain its own FSM that further describes its behavior. The fundamental
components of the statechart are introduced below (see also Figures 5.4 – 5.7):

 Figure 5.4. Statechart format where A and B are states, x is an event that causes the
transition marked by the arrow, y is an optional event triggered by x , and e 1 , . . . e n are
optional conditions qualifying the primary event; adapted from Laplante (2003).

A Bx(e ,...e)/y1 n

 Figure 5.5. A statechart depicting insideness; adapted from Laplante (2003).

A1

A2

A

a1 a2

B1

B2

B

b1 b2
e/f

www.it-ebooks.info

http://www.it-ebooks.info/

212 REQUIREMENTS ENGINEERING METHODOLOGIES

 • The FSM is represented in the usual way, with capital letters or descriptive
phrases used to label the states.

 • Depth or hierarchy is represented by the insideness of states.
 • Orthogonality is represented by dashed lines separating parallel states (or

tasks in a multitasking system).
 • Broadcast communications are represented by labeled arrows, similarly

as transitions in FSMs.
 • Symbols a , b , . . . z represent events that trigger transitions, in the same

way transitions are represented in FSMs.
 • Lowercase letters within parentheses stand for conditions that must be

true for the associated transition to occur.

 A noteworthy characteristic of statecharts is the explicit encouragement of
top - down design of modules or suchlike. As an example, for any module (rep-
resented like a state in an FSM), increasing detail is depicted as substates
internal to it. In Figure 5.5 , the system is composed of two primary states, A
and B, drawn as rounded rectangles. Each of these, in turn, has been decom-
posed into substates Al and A2, and B1 and B2, respectively, which might
represent individual program modules. Those internal states can also be
decomposed, and so forth. To the programmer using some procedural lan-
guage, each nested substate within a state represents a procedure within
another procedure.

 Orthogonality depicts concurrency in the system for states that run in isola-
tion, called AND states. Orthogonality is represented by separating the orthogo-
nal components by dashed lines. For instance, if a state S consists of AND
components P and Q, S is called the orthogonal product of P and Q. If S is
entered from the outside without any conditional information, then the states
P and Q are entered simultaneously. Communication between the AND states
can be achieved conveniently through careful use of global memory, whereas
synchronization can be achieved through a feature of statecharts called broad-
cast communication. Figure 5.6 illustrates a statechart for the aircraft -
 navigation subsystem discussed earlier in the text containing four orthogonal

 Figure 5.7. A statechart depicting a chain reaction; adapted from Laplante (2003).

A

B

e /f

E

F

g

C

D

f/g

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 213

tasks and six internal states or substates. This highly condensed visual descrip-
tion of the entire subsystem gives a clear picture of the multitasking function-
ality. However, it is necessary to understand the underlying algorithms and
constraints before it is possible to compose such a statechart.

 Broadcast communication is depicted by the transition of orthogonal states
based on the same event, and it is a simple way to coordinate the orthogonal
statechart components. For example, if the inertial measurement system
switches from “ standby ” to “ ready ” mode, an event indicated by an interrupt
can cause a simultaneous state change in multiple tasks (or even subsystems).
Another valuable aspect of broadcast communication is the concept of chain
reaction ; that is, events triggering other events in a sequence. Its implementa-
tion follows from the observation that statecharts can be viewed as an exten-
sion of Mealy - type fi nite state machines, and output events can be attached to
the triggering event. In contrast with the standard Mealy machine, however,
the output is not seen by the outside world; instead, it affects the behavior of
an orthogonal component only. For instance, in Figure 5.7 suppose there exists
a transition labeled e / f , and if event e occurs, then event f is immediately acti-
vated. Furthermore, event f could trigger another transition, such as f / g . The
length of a chain reaction is the number of transitions triggered by the fi rst
event. Such chain reactions are assumed to occur instantaneously, although in
practical uniprocessor implementations, this is not possible to be accomplished
precisely. In the system of Figure 5.7 , a chain reaction of length two will occur
when the e / f transition fi rst occurs.

 Statecharts are excellent for representing real - time systems since they can
depict concurrency while preserving modularity. In addition, the concept of
broadcast communication allows for easy intertask - communication represen-
tation. As a real - world example, Figure 5.A5 found in the case study of Section
 5.7 illustrates a statechart corresponding to the sophisticated traffi c - light
control system.

 In summary, the statechart combines the best of data fl ow diagrams and
fi nite state machines. Commercial products allow a practicing engineer to
defi ne graphically a real - time system using statecharts, perform comprehen-
sive simulation analysis, and even generate program code automatically.
Moreover, statecharts can be used in conjunction with both structured and
object - oriented methods. Statecharts are widely used today, because an object -
 oriented variant has become a standard part of UML (Samek, 2009).

 5.2.4 Petri Nets

 Petri nets are another class of formal methods used to specify and analyze
concurrent operations in real - time systems (Mazzeo et al., 1997). Commercially
available Petri net tools can produce executable specifi cations and are particu-
larly suitable for modeling synchronizations among asynchronous tasks. While
Petri nets have a rigorous mathematical basis, they can still be described
graphically as interconnections of only two basic entities. A set of circles called

www.it-ebooks.info

http://www.it-ebooks.info/

214 REQUIREMENTS ENGINEERING METHODOLOGIES

 “ places ” is used to represent data stores or conditions. Rectangular boxes, on
the other hand, represent transitions or events. Each place (P) and transition
(T) is labeled with a data count and transition function, respectively, and they
are connected by unidirectional arrows. Petri nets are sometimes called Place/
Transition nets in reference to the central role of places and transitions. In
addition, fi nite state machines can be interpreted as a subclass of Petri nets,
but their expressiveness is obviously weaker.

 The initial Petri net graph is labeled with a marking given by m 0 , which
represents the initial data count in all the places. Subsequent markings, m i ,
 i ∈ {1, 2, 3, . . . }, are results of the fi ring of transitions, where each fi ring is an
atomic operation by its nature. A transition fi res if it has as many input data
as required for producing an associated output. In Petri nets, the graph topol-
ogy does not change over time; only the marking or data count of the places
do. The modeled real - time systems may also advance nondeterministically (i.e.,
there is more than one possible next state) as transitions fi re. To illustrate the
notion of fi ring, consider the simple Petri net given in Figure 5.8 and the cor-
responding fi ring table provided in Table 5.4 .

 As another example, consider the Petri net of Figure 5.9 . Moving from top
to bottom and left to right indicates the consecutive stages of fi rings in the net.
Table 5.5 depicts the corresponding fi ring table. When the number of outgoing
arrows is lower than that of incoming arrows, the particular transition is called
a consumer ; and when a transition has more outgoing than incoming arrows,
it is a producer (Bucci et al., 1995).

 Figure 5.8. A simple Petri net before (m 0) and after (m 1) fi ring; adapted from Laplante
(2003) .

P1 P2

T1

m0

P1 P2

T1

m1

 TABLE 5.4. Firing Table for the Petri Net Shown in
Figure 5.8 ; Adapted from (Laplante, 2003)

 P 1 P 2

 m 0 1 0
 m 1 0 1

www.it-ebooks.info

http://www.it-ebooks.info/

FORMAL METHODS IN SYSTEM SPECIFICATION 215

 TABLE 5.5. Firing Table for the Petri Net
Shown in Figure 5.9

 P 1 P 2 P 3 P 4 P 5 P 6 P 7

 m 0 1 1 0 0 0 0 0
 m 1 0 0 1 0 0 0 0
 m 2 0 0 0 1 1 0 0
 m 3 0 0 0 0 0 1 1

 Figure 5.9. Sequential behavior of a Petri net with both “ consumer ” and “ producer ”
transitions.

P1

m0

P2

P3

P4

P5

P6

P7

P1

m1

P2

P3

P4

P5

P6

P7

P1

m2

P2

P3

P4

P5

P6

P7

P1

m3

P2

P3

P4

P5

P6

P7

www.it-ebooks.info

http://www.it-ebooks.info/

216 REQUIREMENTS ENGINEERING METHODOLOGIES

 Petri nets can be used to model (parts of) real - time systems and to search
for possible timing confl icts, as well as race conditions. They are excellent for
representing distributed and event - driven systems, such as communications
protocols and discrete manufacturing systems. As Petri nets are purely math-
ematical in nature, rigorous techniques for system optimization and program
proving can be employed. However, Petri nets can be overkill if the system to
be modeled is very simple. Similarly, if the system is highly complex, the overall
timing behavior can easily become obscured.

 The Petri net is a powerful tool that is frequently used for the analysis of
 race - conditions and for deadlock identifi cation. For example, suppose a require-
ments specifi cation contains a subnet that resembles Figure 5.10 . Clearly, it is
impossible to tell which of the two transitions (labeled with a question mark)
will fi re, though in any case, only one of them will fi re. Moreover, Petri nets
can be used effectively to identify such cycles that indicate a potential dead-
lock. For instance, suppose a set of requirements can be modeled as in Figure
 5.11 , which is, in fact, a formal replica of Figure 3.13 involving two parallel
tasks and two shared resources. Obviously, this scenario represents an inevi-
table deadlock. And while it is unlikely that such a confl ict situation would be
created intentionally, Petri nets can also be used to identify unreachable states,
which would be represented by a marking that can never be reached. Petri net
analysis by appropriate simulation tools can be used to identify nonobvious

 Figure 5.10. Race - condition identifi cation with a Petri net.

P1

T1

P3

T2
P2 ?

 Figure 5.11. Deadlock in Figure 3.13 illustrated using a Petri net.

P1

T1

P2

T2

www.it-ebooks.info

http://www.it-ebooks.info/

SEMIFORMAL METHODS IN SYSTEM SPECIFICATION 217

cycles that appear as subnets in complex diagrams. This kind of situation is
briefl y discussed in the following vignette by Ovaska.

 Vignette: Petri Net Simulation Helps in Identifying Deadlocks

 A communications protocol was developed for the elevator control system
of Figure 3.17 . The protocol was implemented and tested, and everything
seemed to work just fi ne. However, the critical communications between
the group dispatcher and up to eight elevator controllers could enter a
deadlocked state sporadically. This situation happened infrequently, once
every few days. Hence, it was diffi cult to identify the reason for such a
dramatic failure. For some time, it was assumed the deadlock was hardware
originated and caused by electromagnetic interferences. But no evidence to
such a hypothetical problem was found. The responsible software engineer
was practice oriented and did not have any trust in formal methods for
system specifi cation. Nonetheless, two computer science students were
invited to create a detailed Petri net model of the communications protocol
as their special assignment. They performed systematical simulations with
the formal model and soon identifi ed a rare error condition leading to the
hunted deadlock. The bug was corrected and the communications protocol
worked perfectly since that. After this shaking experience, the engineer
removed Petri nets from his subjective “ to be avoided list. ”

 The basic Petri net model described in this section is just one of a variety of
available models. For example, there are timed Petri nets, which enable syn-
chronization of fi rings, colored Petri nets, which allow for labeled data to
propagate through the net, and timed - colored Petri nets, which embody both
features.

 5.3 SEMIFORMAL METHODS IN SYSTEM SPECIFICATION

 Semiformal methods are used extensively in specifying real - time systems
because of their typical versatility — some of those methods are even consid-
ered to advance the laborious system- specifi cation process itself. In the follow-
ing discussion, we contemplate two widespread approaches for specifying
real - time software: structured analysis and structured design (SA/SD) methods
and the unifi ed modeling language (UML). While the use of UML is expand-
ing rapidly with the ongoing transition from procedural programming lan-
guages to object - oriented ones in real - time applications (see Figure 4.1), SA/
SD still has a solid position with the users of procedural languages in embed-
ded systems. Moreover, the easy - to - learn SA/SD methods are particularly
convenient when introducing the topic of system specifi cation to undergradu-
ate students or other newcomers in the fi eld of software engineering.

www.it-ebooks.info

http://www.it-ebooks.info/

218 REQUIREMENTS ENGINEERING METHODOLOGIES

 5.3.1 Structured Analysis and Structured Design

 During the past, for over three decades, methods for SA/SD have evolved
gradually from the early defi nitions of De Marco (1978) to the latest exten-
sions of Yourdon (2006) , and are used widely in diverse real - time applications
throughout the world. One reason behind the exceptional popularity of SA/
SD is that those techniques are closely associated with the procedural pro-
gramming languages with which they co - evolved (such as the C language) and
in which countless real - time systems are written. Another reason is obviously
the global availability of established SA/SD engineering tools. Although struc-
tured methods appear in many forms, the de facto standard is undisputedly
Yourdon ’ s Modern Structured Analysis (Yourdon, 1989).

 Several extensions to the original structured analysis (SA) emerged already
in the 1980s to account, for instance, system dynamics and the usage of SA for
the specifi cation of embedded systems. Particularly, Ward and Mellor extended
data fl ow diagrams by adding a way to model control fl ows (such as interrupts),
as well as fi nite state machines (or state - transition diagrams), for defi ning
control processes (Ward and Mellor, 1985). Other real - time extensions include
Gomaa ’ s DARTS (design approach for real - time systems) (Gomaa, 1988), for
example.

 Structured analysis for real - time systems is still based on the fundamental
notion of the fl ow of data between successive data transformations, and it
provides very little support for identifying concurrency. Hence, depending
upon the detail of the analysis phase, there is usually something arbitrary in
identifying the appropriate set of processes. This may result in the implementa-
tion of unnecessary processes (causing extra scheduling overhead) and the
possibility that some process needs concurrency internally (causing additional
implementation complexity) (Bucci et al., 1995). To prevent these ineffi cien-
cies, it is truly important to use the SA/SD methods iteratively — such a multi -
 pass approach is supported by the SA/SD engineering tools.

 Yourdon ’ s Modern Structured Analysis has three complementary models
(or viewpoints) to describe a real - time system:

M1. Environmental model
M2. Behavioral model
M3. Implementation model

 The elements of each model are shown in Figure 5.12 . The environmental
model embodies the analysis aspect of SA/SD and consists of a context diagram
and an associated event list. The purpose of the environmental model is to
model the system at a high level of abstraction. On the other hand, the behav-
ioral model embodies the design aspect of SA/SD as a series of data fl ow and
control fl ow diagrams, entity - relationship diagrams, process and control speci-
fi cations, state transition diagrams, and a data dictionary. Using suitable com-
binations of these elements, the designer models the real - time system in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMIFORMAL METHODS IN SYSTEM SPECIFICATION 219

It is suggested, however, that the data fl ow and control - fl ow analysis should
be performed separately — not concurrently. Finally, in the implementation
model, the developer uses a selection of structure charts, pseudocode, and
temporal logic to describe the system to a level that can be readily translated
to some procedural programming language. In addition, all the models M1 – M3
may also contain some natural language descriptions. The presence of natural
language descriptions is usually an indication that diagrams are not clear
enough to the customer or developer, and textual clarifi cations are needed to
complement visual modeling.

 Structured analysis is a highly potential way to overcome the problems of
classic analysis using graphical tools and a top - down, functional decomposition
method to defi ne system requirements. SA deals only with those aspects of
analysis that can be structured: the functional specifi cations and the
 environment / user interface . Moreover, structured analysis is used to model a
system ’ s context (where inputs come from and where outputs go to), processes
(what functions the system performs, how the functions interact, and how
inputs are transformed to outputs), and content (the data the system needs to
perform its functions).Structured analysis seeks to overcome the heteroge-
neous challenges inherent in system analysis through:

 • Easy maintainability of the target document.
 • Use of illustrative graphics.
 • Effective reduction of ambiguity and redundancy.

 Figure 5.12. Models and elements of structured analysis and structured design.

Environmental Model

Context Diagram

Event List

Natural Language

Behavioral Model

Data Flow Diagram

Control Flow Diagram

Entity Relationship Diagram

Process Specification

Control Specification

State Transition Diagram

Data Dictionary

Natural Language

Implementation Model

Structure Chart

Pseudocode

Temporal Logic

Natural Language

www.it-ebooks.info

http://www.it-ebooks.info/

220 REQUIREMENTS ENGINEERING METHODOLOGIES

 • Providing a supportive method for functional partitioning.
 • Building a logical model of the system before implementation.

 The target document for SA is called the structured specifi cation . It consists of
a system context diagram, a hierarchical set of data fl ow diagrams showing the
decomposition and interconnectivity of various components, and an event list
to represent the set of external events that drive the system.

 To illustrate the use of the structured analysis technique, consider the fol-
lowing example of the elevator control system introduced in Section 3.3.8 .
Some liberties have been taken with the notation, but this is common, as each
organization tends to have its own “ house style, ” that is, conventions that are
dependent either on computer - aided software engineering (CASE) tools
being used or individual preferences.

 Example: Context Diagram of an Embedded System

 The context diagram of Figure 5.13 defi nes the operating environment of
the elevator control system (ECS). To make it easier to understand the
diagram from the application viewpoint, it is necessary to give brief intro-
ductions to the purpose and operation of the six terminators (rectangular
boxes) that are connected to the data transformation (a bubble):

 1. Motion Control Unit (MCU) . Drives the elevator car safely, smoothly,
and precisely from one fl oor to another; provides car position and
operational status information.

 2. Door Operator (DO) . Opens and closes the door blades swiftly but
safely (see the fi nite state machine of Figure 5.2); provides operational
as well as safety sensor and open/close button status information.

 3. Car Operating Panel (COP) . Shows the car - position and other run -
 specifi c information to the passengers; provides operational status
information and an interface to car - call buttons.

 4. Hall Operation Panel (HOP) . Shows the car - position information to
waiting passengers; controls a “ lantern ” and “ gong, ” which indicate
the run direction of the arriving/departing elevator; provides opera-
tional status information.

 5. Group Dispatcher (GD) . Assigns registered hall calls to appropriate
elevators in the elevator bank using some optimal call - allocation
strategy.

 6. Service Tool (ST) . Provides a password - protected user - interface for
service personnel to give special commands, monitor the elevator in
detail, and access operational statistics.

 Here, the single data transformation of the context diagram models the
whole elevator control system. The communication between the ECS and

www.it-ebooks.info

http://www.it-ebooks.info/

SEMIFORMAL METHODS IN SYSTEM SPECIFICATION 221

 While the intent in the above example is not to present a complete system
design — which means there are a few simplifi cations — a point to be made is
that missing functionality is more easily recognized during the requirements
elicitation process if some form of graphical aid, such as the SA context
diagram, is available.

 5.3.2 Object - Oriented Analysis and the Unifi ed Modeling Language

 As a viable alternative to the structured - analysis approach to developing
software requirements specifi cations, we next consider using an object - oriented
approach (H ø ydalsvik and Sindre, 1993). In contrast to procedural program-
ming, which employs algorithmic procedures, object - oriented programming
uses a structure of collaborating objects, in which each part performs its spe-
cialized processing by reacting to inputs from its immediate neighbors. There
are various “ fl avors ” of object - oriented analysis (OOA), each using its own
toolsets. In the dominating approach discussed below, the system specifi cation

all terminators (external devices or subsystems) is bidirectional as indicated
by data fl ows, and the transferred data is identifi ed by descriptive labels. It
should be noted that the data fl ows appearing in the context diagram ought
to have the same abstraction level as the context diagram itself has. To
conclude, the context diagram of Figure 5.13 forms a sound starting point
for the remaining SA/SD process.

 Figure 5.13. Context diagram for the elevator control system.

ST

MCU

ECS

GD

DO HOP

COP

Motion Status

Run/Stop Commands

Door Status

Door Commands

Run-Specific Information Car Calls and Operational Status

Car Position and Direction

Indicator Status

Elevator Status

Assigned Calls

Special Commands Requested Data

www.it-ebooks.info

http://www.it-ebooks.info/

222 REQUIREMENTS ENGINEERING METHODOLOGIES

phase begins with the representation of externally accessible functionality as
use cases of the UML. Among practitioners, OOA is defi ned informally as “ an
analytical operation that uses UML diagrams ” (Gelbard et al., 2010).

 The UML approach, as a whole, is clearly more time - consuming to learn
and more complicated to use than the SA/SD methods, since it (UML 2.2) has
altogether 14 types of partially redundant diagrams divided into structural and
behavioral categories (Miles and Hamilton, 2006):

 1. Structural
 • Class diagram
 • Component diagram
 • Composite structure diagram
 • Deployment diagram
 • Object diagram
 • Package diagram
 • Profi le diagram

 2. Behavioral
 2.1. General

 • Activity diagram
 • State - machine diagram
 • Use - case diagram

 2.2. Interaction
 • Communication diagram
 • Interaction overview diagram
 • Sequence diagram
 • Timing diagram

 All of these diagram types will be introduced in Chapter 6 , while in the present
discussion, we concentrate solely on those diagrams that are most relevant in
the requirements engineering phase of a real - time software project.

 Use cases are an essential artifact in object - oriented analysis and design
and are described graphically using any of several techniques. The use - case
diagram can be considered analogous to the context diagram in structured
analysis in that it represents the interactions of the software application with
its external environment. In the specifi cation of an embedded system, this is
also where overall timing constraints, sampling rates, and deadlines are often
specifi ed. Textual descriptions are used commonly to complement the use - case
diagrams. A pragmatic discussion on creating appropriate use cases is available
in Cockburn, (2001) .

 Use cases are represented graphically as ellipses, with the actors involved
represented by stick fi gures, as can be seen in Figure 5.14 . In that illustration,
the use cases correspond to the fi ve - level task structure proposed in Section
 3.3.8 . Generally speaking, it is often frustrating to decide on the level of detail

www.it-ebooks.info

http://www.it-ebooks.info/

SEMIFORMAL METHODS IN SYSTEM SPECIFICATION 223

for a use case or try to understand what a particular use case consists of
(Agarwal and Sinha, 2003). The lines drawn from the actor to the use case
represent the communication between them. Each use case is actually a docu-
ment that describes scenarios of operation of the system under consideration,
as well as possible pre - and post - conditions and exceptions. In an iterative
development process, these use cases will become increasingly refi ned and
detailed as the analysis and design workfl ows progress. Next, interaction dia-
grams are created to describe the behaviors defi ned by each use case. In the
fi rst iteration, these diagrams depict the entire system as a black box, but once
domain modeling has been completed, the black box is transformed into a col-
laboration of multiple objects. As an example, Figure 5.A3 in the case study in
Section 5.7 illustrates the use - case diagram for the traffi c - light control system.

 Furthermore, an analysis class diagram presents the static structure of the
system, system abstractions, and their relationships. It contains classes that
represent entities with common characteristics, including attributes, opera-
tions, and associations that represent relationships between classes. The classes
are depicted by rectangles, and the connection paths represent associations
between classes. Classes require a name within the rectangle, whereas associa-
tions may not have an attached name. Moreover, the diamond attachment
represents an aggregation relationship. If the diamond is fi lled, it is a depen-
dent aggregation; otherwise it is independent, that is, the objects so aggregated
can exist separately. Figure 5.A4 in the case study in Section 5.7 illustrates an
analysis class diagram for the traffi c - light control system. Class diagrams are
used widely as a “ cornerstone ” of OOA.

 Figure 5.14. Use - case diagram for the elevator control system.

ECS

GD

Communicate with the
Group Dispatcher

Register Car Calls and
Determine the Destination

Perform Runs and
Door Operations

Carry out Supervisions and
Self-Diagnostics

Handle Service-Tool
Functions

ST

MCUDO

COP

HOP

www.it-ebooks.info

http://www.it-ebooks.info/

224 REQUIREMENTS ENGINEERING METHODOLOGIES

 The use of object - oriented approaches in real - time systems modeling pro-
vides numerous desired characteristics:

 • Distributivity and concurrency
 • Effective management of complexity
 • Enhanced reusability
 • Excellent traceability
 • Improved understandability and maintainability
 • Increased extensibility
 • Modularity of design

 Nevertheless, there are potential disadvantages when using an object - oriented
approach with time- critical embedded systems, as discussed in Section 4.4.3 .

 A critical view on OOA and a discussion on specifi c weaknesses of using
UML in the analysis phase are available in Gelbard et al. (2010) . Their justifi ed
criticism concentrates on the observation that “ UML representations have not
been effective in large - scale projects for context and communication. ” They
also argue that “ OOA methodology lacks clarity and comprehensiveness. ”
However, it is broadly recognized that the object - oriented approach strongly
supports the design and implementation phases of (real - time) software devel-
opment (Agarwal and Sinha, 2003).

 5.3.3 Recommendations on Specifi cation Approach

 The preceding discussions illustrate typical challenges encountered by soft-
ware engineers specifying real - time systems:

 • Combining low - level hardware functionality and higher - level software
and systems functionality at the same level of hierarchy.

 • Mixing of descriptive and operational specifi cations.
 • Omission of timing information.

 It is not practical to prescribe here a single preferred technique, since it is well
known that there is no “ silver bullet ” when it comes to software specifi cation
and design of a particular system. Therefore, each approach should be consid-
ered case - by - case on its specifi c merits. Usability of any technique has a crucial
role in its initial acceptance and lifetime success. However, irrespective of the
approach selected, real - time system modeling should incorporate the follow-
ing best practices:

 • Use uniform modeling techniques throughout the specifi cation, for
example, top - down decomposition together with structured analysis or
object - oriented approaches.

 • Separate operational specifi cation from descriptive behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

THE REQUIREMENTS DOCUMENT 225

 • Use consistent levels of abstraction within models and conformance
between levels of refi nement across models.

 • Model nonfunctional requirements as a part of the specifi cation models,
in particular, timing properties.

 • Omit hardware – software partitioning in the specifi cation phase (which is
an aspect of design rather than analysis; a specifi cation describes just what
a real - time system must do, not how it will be done).

 Finally, it should be noted that the borderline between analysis and design is
usually hazy. The same applies to the other borderline between design and
implementation, as well. And every organization can freely adjust those bor-
derlines according to its needs and preferences.

 5.4 THE REQUIREMENTS DOCUMENT

 There are numerous ways to organize a software requirements specifi cation
(SRS), but the IEEE Std 830 – 1998 provides a sound template of what the SRS
should look like (IEEE, 1998). The SRS can be seen as a binding contract
among designers , programmers , testers , and customers , and it encompasses
multiple paradigms or views for system design. The recommended design
views include a combination of decomposition, dependency, interface, and
detail descriptions. Together with boilerplate front matter, these form a stan-
dard template for software requirements specifi cations, which is shown in
Figure 5.15 . Sections 1 and 2 are self - evident; they provide front matter and
introductory material for the SRS. The core of the SRS is, however, in the
description sections, and their headings can be broken down further using, for
example, structured analysis.

 Figure 5.15. Recommended table of contents for the SRS from the IEEE Std 830 – 1998
(IEEE, 1998).

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions and Acronyms

1.4 References

1.5 Overview

2. Overall Description

2.1 Product Perspective

2.2 Product Functions

2.3 User Characteristics

2.4 Constraints

2.5 Assumptions and Dependencies

3. Specific Requirements

Appendices

Index

www.it-ebooks.info

http://www.it-ebooks.info/

226 REQUIREMENTS ENGINEERING METHODOLOGIES

 The IEEE Std 830 provides for several alternative (or complementary)
means to represent the requirements specifi cations, aside from a function
perspective. In particular, the software requirements can be organized by:

 • System mode (e.g., normal, fi reman service, and maintenance)
 • User class (e.g., passenger, fi refi ghter, and elevator technician)
 • Objects (e.g., motor drive, car position sensors, and signaling devices)
 • Feature (e.g., transport passengers from one fl oor to another)
 • Stimulus (e.g., door contacts, push buttons, and safety sensors)
 • Response (e.g., starting a fl oor - to - fl oor run upwards or downwards)
 • Functional hierarchy (by common inputs, outputs or internal data access)
 • Hybrid (combining two or more of the preceding)

 5.4.1 Structuring and Composing Requirements

 The text structure of the SRS can be depicted by the number of section identi-
fi ers at each hierarchical level. High - level requirements rarely have numbered
sections below a depth of four (e.g., Section 3.2.1.5). Well - organized docu-
ments have typically a pyramidal structure to the requirements. Requirements
with an hourglass structure, on the other hand, have too many administrative
details, while diamond - structured requirements indicate subjects introduced
at higher levels were addressed at different levels of detail (see Figure 5.16).
Whatever approach is used in organizing the SRS, the IEEE Std 830 describes
the characteristics of good requirements. Good requirements are:

 • Correct . They must correctly describe the system behavior.
 • Unambiguous . The requirements must be clear, not subject to multiple

interpretations.

 Figure 5.16. Triangle - , hourglass - , and diamond - shaped requirements structures.

1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, ...

2.1.1, 2.1.2, 2.1.3

2.1.1.1, 2.1.1.2, 2.1.1.3, ...

1, 2, 3, 4, 5, 6

1.1, 2.1
1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1.1

1.1.1.1, 1.1.1.2

1.1.1.2.1

www.it-ebooks.info

http://www.it-ebooks.info/

THE REQUIREMENTS DOCUMENT 227

 • Complete . There must be no missing requirements.
 • Consistent . No requirement may contradict another.
 • Ranked for importance and/or stability . Designers will obtain guidance

from ranked requirements when making trade - off decisions.
 • Verifi able . A requirement that cannot be verifi ed is a requirement that

cannot be checked to have been met.
 • Modifi able . The requirements need to be written in such a way so as to

be easy to change.
 • Traceable . The requirements provide a starting point for the backward/

forward traceability chain.

 To meet these criteria and to compose/edit clear requirements documentation,
there are several best practices that the requirements engineer (or technical
writer) can use. These include as follows:

 • Use some standard format, and use it for all requirements.
 • Use language in a consistent way and make sure that possible translations

are exact in content.
 • Use “ shall ” for essential requirements.
 • Use “ should ” for desirable requirements.
 • Use text highlighting to identify key parts of the requirements.
 • Avoid the use of technical jargon unless it is warranted.

 To illustrate this, consider the following fi ve requirements:

 1. “ The system should be reliable. ”
 2. “ The system shall be modular. ”
 3. “ The system should be maintainable. ”
 4. “ The system shall be fast. ”
 5. “ The system shall be accurate. ”

 These requirements are obviously bad for a number of reasons. None of them
is verifi able; for instance, how are “ reliability ” and “ modularity ” supposed to
be measured?

 Next, consider a set of related requirements:

 1. “ The mean time between failures (MTBF) shall be at least 500 hours of
continuous operation. ”

 2. “ The cyclomatic complexity of each program module shall be within the
range of 10 to 40. ”

 3. “ The installing of any software update shall not take more than 15
minutes. ”

www.it-ebooks.info

http://www.it-ebooks.info/

228 REQUIREMENTS ENGINEERING METHODOLOGIES

 4. “ Response times for all level - one operations shall be 250 ± 50 ms. ”
 5. “ The amplitude error in all estimated quantities shall be less than 3.5%. ”

 These latter requirements are much better than the preceding ones. Each is
measurable, because each makes some attempt to quantify the qualities that
are desired: MTBF is a measure of reliability, cyclomatic complexity is a
measure of modularity, updating time is a measure of maintainability, response
time is a measure of speed, and amplitude error is a measure of accuracy.

 5.4.2 Requirements Validation

 Verifi cation of the fi nal software product means ensuring that the software is
conforming to the SRS. It is akin to asking the question “ Am I building the
software as specifi ed? ” in that it requires satisfaction of all requirements.

 Requirements validation, on the other hand, is tantamount to asking the
question “ Am I building the right software? ” Too often, development projects
deliver a fully functional real - time system that conforms to the SRS, only to
discover that it is not what the customer really wanted. How could such an
unfortunate outcome be prevented? Well, obviously, by strictly following a
thorough requirements validation process, which is developed continually and
systematically.

 Performing such a requirements validation involves checking the following:

 • Validity . Does the system provide functions that best (within the existing
constraints) support the customer ’ s needs?

 • Consistency . Are there any requirements confl icts?
 • Completeness . Are all functions required by the customer included?
 • Realism . Can the requirements be implemented given available budget,

time, and technology?
 • Verifi ability . Can the requirements be checked?

 There are a number of ways of checking the software requirements specifi ca-
tion for conformance to the IEEE standard ’ s best practices and for ultimate
validity. These mutually complementary approaches include (in alphabetic
order):

 • Automated consistency analysis
 • Checking the consistency of a structured requirements description
 • Comparing the requirements to those for a similar system
 • Developing tests for requirements to check testability
 • Prototyping
 • Requirements reviews
 • Systematic manual analysis of the requirements

www.it-ebooks.info

http://www.it-ebooks.info/

THE REQUIREMENTS DOCUMENT 229

 • Test - case generation
 • Using an executable model of the system to check requirements

 Of these approaches, automated checking is the most desirable but, unfortu-
nately, the least likely, because of the context sensitivity of natural languages,
and the impossibility of verifying such cumbersome issues as requirements
completeness. However, supporting tools can be developed to perform straight-
forward spelling and grammar checking (which may also indicate ambiguity
and incompleteness), fl agging of keywords that may be vague (e.g., “ fast ”),
identifi cation of missing requirements (e.g., search for the typical phrase “ to
be determined ”) and overly complex sentences (which can indicate unclear
requirements).

 Model checking is a formal technique that can be used to perform analysis
of executable requirements specifi cations, even partial ones. The aim, however,
is to fi nd errors, not to prove correctness. One such methodology uses fi nite
state machines to test for safety and liveness. The fi rst step involves building
a state model of the system (or one of its subsystems), for instance, using
statecharts. Once this initial model is obtained, the state - space size is estimated
in order to assess the potential for automated validation. Next, the state space
is minimized by identifying possible equivalence classes and by exploiting
symmetries and subclasses. Finally, a symbolic representation of the main
features of the requirements is derived. This represents a behavioral, temporal
logic structure that emulates the coarse - grain behavior of the system. For
example, to check for fault tolerance, relevant faults are injected into the
emulating model, and this model is exercised to identify possible problems
(Schneider et al., 1998). Model checking represents, in some way, a high - level
prototype of the requirements.

 Automated requirements checking is used to assess certain qualities of
requirements specifi cations, not to assess the correctness of the SRS. One
example of such an approach is NASA ’ s Automated Requirements
Measurement (ARM) tool (Wyatt et al., 2003). Versatile tools, like ARM, use
several requirements indicators at both a coarse - grain and fi ne - grain scale.
Coarse - grain indicators include:

 • Readability
 • Size of requirements
 • Specifi cation depth
 • Text structure

 Fine - grain measures, on the other hand, look at the use of certain categories
of words in the documents. Typical indicators are as follows:

 • Imperatives
 • Continuances

www.it-ebooks.info

http://www.it-ebooks.info/

230 REQUIREMENTS ENGINEERING METHODOLOGIES

 • Directives
 • Options
 • Weak phrases

 Various imperatives are listed in Table 5.6 .
 Continuances follow an imperative and introduce the specifi cation of

requirements at a lower level. Continuances include such words/phrases as:

 • “ As follows ”
 • “ Below ”
 • “ Following ”
 • “ In particular ”
 • “ Listed ”
 • “ Support ”

 Directives are words and phrases that point to illustrative information:

 • “ Depict ”
 • “ Figure ”
 • “ For example ”
 • “ Such as ”
 • “ Table ”

 Options give the developer latitude in satisfying the specifi cations, and include:

 • “ Can ”
 • “ Could ”

 TABLE 5.6. Imperatives Found in Requirements Specifi cations
and Their Purpose (Wilson, 1997)

 Imperative Purpose

 Shall Dictates provision of fundamental capability
 Must Establishes performance requirements or constraints
 Must not Establishes performance requirements or constraints
 Is required to Used in specifi cations statements written in passive voice
 Are applicable Used to include, by reference, standards, or other documentation

as an addition to the requirements being specifi ed
 Responsible for Used as an imperative for systems whose architectures are

already defi ned
 Will Generally used to cite things that the operational or

development environment are to provide to the capability
being specifi ed

 Should Not recommended for use

www.it-ebooks.info

http://www.it-ebooks.info/

THE REQUIREMENTS DOCUMENT 231

 • “ May ”
 • “ Optionally ”

 Moreover, weak phrases, which should be avoided in the SRS, include:

 • “ Adequate ”
 • “ As a minimum ”
 • “ As applicable ”
 • “ Be able to ”
 • “ Be capable ”
 • “ But not limited to ”
 • “ Capability of ”
 • “ Capability to ”
 • “ Effective ”
 • “ If practical ”
 • “ Normal ”
 • “ Provide for ”
 • “ Timely ”
 • “ To be determined ”

 These fi ne - grained measures can, minimally, be used to measure certain size
quantities of the SRS, such as:

 • Imperatives
 • Lines of text
 • Paragraphs
 • Subjects (unique words following imperatives)

 Useful numerical ratios can also be computed from these fi ne - grained mea-
sures, which can be used to judge the overall fi tness of the software specifi ca-
tion. Typical ratios are shown in Table 5.7 .

 TABLE 5.7. Numerical Ratios Derived from Software Requirements Specifi cations
and Their Purpose

 Ratio Purpose

 Imperatives to subjects Indicates level of detail
 Lines of text to imperatives Indicates conciseness
 Number of imperatives found at

each document level
 Counts the number of lower - level items that

are introduced at a higher level by an
imperative followed by a continuance

 Specifi cation depth to total lines
of text

 Indicates conciseness of the SRS

www.it-ebooks.info

http://www.it-ebooks.info/

232 REQUIREMENTS ENGINEERING METHODOLOGIES

 Readability statistics, similar to those used to measure writing level (or
comprehension diffi culty), can be used as a quality measure for the SRS. These
statistics include:

 • Flesch Reading Easiness Index . Total number of words/sentences and
syllables/words.

 • Flesch – Kincaid Grade Level Index . Flesch index converted to a grade
level that is easier to judge (standard writing is seventh or eighth grade
on the K – 12 scale).

 • Coleman – Liau Grade Level Index . Uses word - length in characters and
sentence - length in words to determine the grade level.

 • Bormuth Grade Level Index . Same as Coleman – Liau.

 Any of these requirements metrics can be incorporated into a metrics manage-
ment discipline, and if used consistently, constructively, and with good judg-
ment, will improve the particular real - time system in the long run (as well as
future real - time systems to be developed).

 5.5 SUMMARY

 Requirements engineering is the fi rst phase of the software development
process. And if it is not carried out properly, the software product may not
fulfi ll the expectations and needs of customers — the resulting real - time system
is simply “ wrong ” from the customers ’ point of view. In such an extreme sce-
nario, it does not matter how well the system was designed or implemented.
A decent recovery from inadequate requirements engineering can be costly
and lead to considerable losses of revenue; some amount of redesign and
reimplementation must defi nitely be done, and hence the product may come
to market with a signifi cant delay.

 In spite of the critical role of requirements engineering, only a few under-
graduate engineering programs stress the importance of this discipline. The
majority of practicing engineers who perform requirements engineering are
therefore educated on - the - job. Recently, however, some software programs
are introducing requirements engineering as mandatory in the curriculum
(Laplante, 2009). This should become more common in educational institu-
tions around the world.

 The large variety of existing specifi cation methods (which ones to choose?)
and the high cost of established CASE tools (can we afford them?) are tricky
problems related to requirements engineering. Furthermore, it can be a major
investment to a development organization to train its personnel to use the
selected methods and acquired CASE tools effectively. For understandable
reasons, it is desirable to have integrated CASE support during the entire
software development process, but the license fees of complete CASE envi-
ronments may be overly expensive for small and mid - size companies. A thor-

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 233

ough cost – benefi t analysis is therefore required when selecting suitable
methods and associated tools for an organization or project. Another impor-
tant issue to consider is obviously whether the nontechnical customers will be
able to comprehend the various diagrams (SA/SD or UML, for instance) in
the requirements document.

 As a rule of thumb, the number of specifi cation methods used should be as
low as possible but still adequate for the project at hand. Some combination
of semiformal and formal methods is often advantageous when specifying
real - time systems. While semiformal methods are typically of general - purpose
character, formal methods like Petri nets are particularly useful when specify-
ing communications protocols, for example. When tailoring a combination of
semiformal and formal methods, the usability of individual methods and avail-
able CASE tools is of utmost importance.

 Although it is a questionable stereotype, engineers are usually regarded as
poor writers and communicators. On the other hand, the requirements docu-
ment is an extensive written composition that is targeted not only to software
developers but also to customers. Hence, it is important to use a sound tem-
plate for organizing the software requirements specifi cation. If no established
in - house standard is yet in use, the IEEE Std 830 – 1998 offers a good frame-
work for structuring the requirements document. In addition, it would be
important to improve the technical writing profi ciency of future practitioners
already during the undergraduate studies. Nevertheless, it is challenging to
integrate more guided writing opportunities to the usually overcrowded engi-
neering curricula.

 Finally, the main point of this chapter is that requirements engineering
deserves more attention and systematic consideration, since it can be
seen as one keystone toward sustainable success of software - development
organizations.

 5.6 EXERCISES

5.1. Estimate and justify the relative percentage of person months spent in
each phase of the requirements engineering process (see Figure 5.1) for
some embedded real - time system.

 The instructor is encouraged to collect the estimates of all students
and summarize the results (averages/medians/standard deviations) — this
is usually a fruitful starting point for a discussion or even a debate in class .

5.2. Who should compose, analyze, and validate software requirements
specifi cations?

5.3. Under what circumstances should software requirements specifi cations
be changed? Who is authorizing such changes?

5.4. For an embedded system with which you are familiar, fi nd three good
requirements and three bad requirements in the software requirements

www.it-ebooks.info

http://www.it-ebooks.info/

234 REQUIREMENTS ENGINEERING METHODOLOGIES

specifi cation. Rewrite the bad requirements so that they comply with the
IEEE Std 830 – 1998.

5.5. Give a concrete example of a case where it is benefi cial to use a Mealy
FSM instead of a Moore FSM for creating a formal part of software
specifi cations.

5.6. The door - open button in Figure 5.2 is of momentary - pressure type.
Hence, it is enough to press the button momentarily to open the door.
However, when there is a fi re in the building and the elevator is switched
to in - car fi reman service , the doors are not operated automatically
anymore, but a fi refi ghter operates the doors directly with door open/
close buttons; no safety sensors or timeouts are in use. Besides, the door -
 open button is then of constant - pressure type. That is, the fi refi ghter must
press the button constantly until the door is fully open, otherwise the
door will reclose swiftly (what is the motivation behind this functional-
ity?). Redraw the fi nite state machine to fulfi ll the requirements of in - car
fi reman service.

5.7. For some traffi c intersection in your neighborhood, draw a fi nite state
machine that defi nes a common - sense control algorithm for the vehicle/
pedestrian traffi c lights.

5.8. Draw a statechart model of the control software for a simple digital
camera. State clearly your assumptions regarding specifi c features of the
camera.

5.9. Create a statechart with multiple orthogonal states (similar to that in
Figure 5.6) for the elevator control system discussed in Section 3.3.8 .

5.10. Use Petri nets instead of a fi nite state machine to represent the door -
 control subsystem of elevators depicted in Figure 5.2 .

5.11. Using structured analysis, draw fi rst a context diagram for a credit - card
system described below. Then, go ahead and depict details of the func-
tionality of the system. You are free to make assumptions as needed, but
make sure that you have stated them clearly.

 The credit - card system under consideration handles transactions for
retail stores. For instance, a transaction might consist of buying a text-
book from your favorite bookstore. Your data fl ow diagram(s) should
include functions for retrieving and checking a credit - card record for a
customer, approving and recording each transaction, and maintaining a
log of transactions for each retail store. The system should maintain fi les
of credit - card holders, current transactions, and accounts payable
(approved transactions) for each store.

5.12. Draw a complete use case diagram for the credit - card system described
in Exercise 5.11.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 235

5.13. Consider a hospital ’ s patient monitoring system. Each patient is con-
nected to electronic instruments monitoring blood pressure, heart rate,
and ECG. These monitoring instruments issue a binary signal indicating
a STABLE (= 0) or UNSTABLE (= 1) condition. The results of each of
these instruments areOR ed together to form a signal called EMERGENCY.
The EMERGENCY signals for each of the rooms (one patient per
room) are then OR ed together and sent to the nurse ’ s workstation. If any
instrument on any patient indicates an UNSTABLE condition, the emer-
gency alarm is sounded and the nurse is urgently directed to the appro-
priate patient. Write a pseudo - code specifi cation for such a system
(defi ne a simple pseudo - code syntax yourself).

5.14. What would be an appropriate combination of techniques to write soft-
ware specifi cations for the:

(a) Semi - autonomous pasta sauce bottling system.
(b) Navigation unit for fi ghter aircraft.
(c) Airline reservation and booking system for local use.

5.15. What are the typical problems and ramifi cations of translating a formal
requirements specifi cation from one modeling technique (e.g., Petri
nets) to another (e.g., statecharts)?

 5.7 APPENDIX 1

 CASE STUDY IN SOFTWARE REQUIREMENTS SPECIFICATION

 The following is an excerpt from the Software Requirements Specifi cation for
a traffi c - light control system. It embodies many of the elements discussed in
this chapter in more detail, and provides a fully developed example of an
object - oriented approach to requirements specifi cation of a complex real - time
system.

 5.7.1 Introduction

 Traffi c controllers currently in use comprise simple timers that follow a fi xed
cycle to allow vehicle/pedestrian passage for a predetermined amount of time
regardless of demand, actuated traffi c controllers that allow passage by means
of vehicle/pedestrian detection, and adaptive traffi c controllers that determine
traffi c conditions in real - time by means of vehicle/pedestrian detection and
respond accordingly in order to maintain the highest reasonable level of effi -
ciency under varying conditions. The traffi c controller described in this speci-
fi cation is capable of operating in all three of these modes.

5.7.1.1 Purpose This specifi cation defi nes the software design require-
ments for an intersection control system for simple, four - way pedestrian/

www.it-ebooks.info

http://www.it-ebooks.info/

236 REQUIREMENTS ENGINEERING METHODOLOGIES

vehicular traffi c intersections. The specifi cation is intended for use by end
users, as well as software developers.

5.7.1.2 Scope This software package is part of a control system for
pedestrian/vehicular traffi c intersections that allows for (1) a fi xed cycle mode,
(2) an actuated mode, (3) a fully adaptive automatic mode, (4) a locally con-
trolled manual mode, (5) a remotely controlled manual mode, and (6) an
emergency preempt mode. In the fully adaptive automatic mode, a volume
detection feature has been included so that the system is aware of changes in
traffi c patterns. Pushbutton fi xtures are also included so the system can account
for and respond to pedestrian traffi c. The cycle is controlled by an adaptive
algorithm that uses data from many inputs to achieve maximum throughput
and acceptable wait times for both pedestrians and motorists. A preempting
feature allows emergency vehicles to pass through the intersection in a safe
and timely manner by altering the state of the signals and the cycle time.

5.7.1.3 Defi nitions, Acronyms, Abbreviations The following is a list of
terms and their defi nitions as used in this document.

 5.7.1.3.1 10 - base T Physical connection formed by a twisted - pair as
described in IEEE 802.3. Networking connection designed to transfer up to
10 megabits per second.

 5.7.1.3.2 ADA Americans with Disabilities Act.

 5.7.1.3.3 API Application Program Interface.

 5.7.1.3.4 Approach Any one of the routes allowing access to an
intersection.

 5.7.1.3.5 Arterial Road A major traffi c route or route used to gain access
to a highway.

 5.7.1.3.6 Aspect The physical appearance of an illuminated traffi c
standard.

 5.7.1.3.7 Attribute Property of a class.

 5.7.1.3.8 Cycle Time The time required to complete an entire rotation
(cycle) of traffi c signals at any one intersection.

 5.7.1.3.9 Direct Route A route directly through the intersection that does
not require the vehicle to turn.

 5.7.1.3.10 DOT Department of Transportation.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 237

 5.7.1.3.11 Downstream The normal travel direction for vehicles.

 5.7.1.3.12 Ethernet The most commonly used local area networking method
as described in IEEE 802.3 .

 5.7.1.3.13 Intersection A system, including hardware and software, that
regulates vehicle and pedestrian traffi c where two or more major roads tra-
verse. The class of intersection considered in this specifi cation has only two
roads.

 5.7.1.3.14 Manual Override A device located at and physically connected
to each intersection control system that allows traffi c regulatory personnel to
control the intersection manually.

 5.7.1.3.15 Method Procedure within a class exhibiting an aspect of class
behavior.

 5.7.1.3.16 Message An event thrown from one code unit and caught by
another.

 5.7.1.3.17 Occupancy Loop A device used to detect the presence of vehi-
cles in an approach or to count the passage of vehicles using an approach.

 5.7.1.3.18 Offset The time difference between cycle start times at adjacent
intersections. Applies only to coordinated intersection control, which is not
covered by this specifi cation.

 5.7.1.3.19 Orthogonal Route A route through an intersection that requires
a vehicle to turn.

 5.7.1.3.20 Pedestrian Presence Detector A button console located on the
corner of an intersection which gives pedestrians who wish to cross a street
the ability to alert the intersection control system to their presence.

 5.7.1.3.21 Pedestrian Traffi c Standard Signals facing in the direction of
pedestrian cross walks which have lighted indicators marked “ Walk ” and
 “ Don ’ t Walk. ”

 5.7.1.3.22 Phase The state of an intersection. A particular period of the
regulatory traffi c pattern.

 5.7.1.3.23 Remote Override A computer host that includes a software inter-
face allowing a remote administrator to control the intersection remotely.

 5.7.1.3.24 RTOS Real - time operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

238 REQUIREMENTS ENGINEERING METHODOLOGIES

 5.7.1.3.25 Secondary Road A route that does not typically support high
traffi c volume or experiences less usage relative to another route.

 5.7.1.3.26 SNMP (Simple Network Management Protocol) The de facto
standard for inter - network management, defi ned by RFC 1157.

 5.7.1.3.27 Split The duty cycle for a given phase, expressed as a decimal or
percentage.

 5.7.1.3.28 Vehicle Traffi c Standard A traditional traffi c signal with red,
yellow, and green indicators.

 5.7.1.3.29 Upstream Direction opposite to the normal direction of vehicle
travel.

 5.7.1.3.30 Vehicle Presence Detector See 5.7.1.3.17, Occupancy Loop.

 5.7.1.3.31 WAN Wide area network.

5.7.1.4 Communications Standards

 • 10 base - T Ethernet (IEEE 802.3)
 • SNMP (RFC 1157)

5.7.1.5 Overview

 5.7.2 Overall Description

5.7.2.1 Intersection Overview The intersection class to be controlled is
illustrated in below Figure 5.A1 .

 The target class of intersection has the following characteristics:

 1. Four - way crossing.
 2. Roadway gradients and curvatures are small enough to be neglected.
 3. No right - turn or left - turn lanes or right - turn and left - turn signals (note,

however, that the intersection is wide enough to allow vehicles passing
directly through to pass to the right of vehicles turning left).

 4. Intersecting roads of different priorities (e.g., one road may be an arterial
while the other may be a secondary road) or of equal priority.

 5. Two vehicle traffi c standards per approach: one suspended by overhead
cable, the other mounted on a pedestal.

 6. One pedestrian crosswalk per approach.

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
5.

A
1.

 I
nt

er
se

ct
io

n
to

po
gr

ap
hy

.

W
A

L
K

W
A

L
K

W
A

L
K

W
A

L
K

WALK

WALK

WALK

WALK

R
E

A
L

 T
IM

E
 R

O
A

D
 (

A
R

T
E

R
IA

L
)

IDLE AVENUE (SECONDARY)

O
C

C
U

P
A

N
C

Y

L
O

O
P

N
E

X
T

 I
N

T
E

R
S

E
C

T
IO

N
 (

D
O

W
N

S
T

R
E

A
M

)

N
E

X
T

 I
N

T
E

R
S

E
C

T
IO

N
 (

D
O

W
N

S
T

R
E

A
M

)

S
P

E
E

D
L

IM
IT

5
5

S
P

E
E

D
L

IM
IT

3
0

A
ll

a
p
p
ro

a
c
h

e
s
 a

re
 l
e
v
e
l,

ta
n

g
e

n
t

s
u

rf
a

c
e

s
.

P
R

E
V

IO
U

S
 I
N

T
E

R
S

E
C

T
IO

N
 (

U
P

S
T

R
E

A
M

)

D
IR

E
C

T
 R

O
U

T
E

O
R

T
H

O
G

O
N

A
L
 R

O
U

T
E

w

N S

E

A
P

P
R

O
A

C
H

E
S

:

W
-E

E
-W

N
-S

S
-N

239

www.it-ebooks.info

http://www.it-ebooks.info/

240 REQUIREMENTS ENGINEERING METHODOLOGIES

 7. Pedestrian traffi c standards, pedestal mounted, on each side of each
crosswalk.

 8. Pedestrian presence detectors (pushbuttons) on each side of each crosswalk.
 9. Stop - line vehicle presence detectors (loop detectors) in all approaches

(one per approach) for detecting vehicle presence and for counting
vehicles passing through the intersection.

5.7.2.2 Product Perspective

 5.7.2.2.1 System Interfaces These are described in detail in the sections
below.

 5.7.2.2.2 User Interfaces

5.7.2.2.2.1 P edestrians Pedestrian pushes button, generating service
request to software and receives, in time, the “ Walk ” signal.

5.7.2.2.2.2 M otor V ehicles In ACTUATED mode, vehicle enters the inter-
section, generating service request to software and receives, in time, the “ Okay
to Proceed ” signal.

 In ADAPTIVE mode, vehicle passes over the loop detector, increasing the
vehicle count, which, in turn, causes an adjustment in intersection timings.

5.7.2.2.2.3 E mergency V ehicle Emergency vehicle operator activates the
 “ emergency vehicle override signal, ” generating priority service request to
software and receives, in a preemptive time, the “ Okay to proceed ” signal.

5.7.2.2.2.4 T raffi c R egulatory P ersonnel Traffi c regulatory personnel
will remove the manual override device from the control box and press buttons
to control the intersection manually.

5.7.2.2.2.5 R emote O perator Remote operator uses a software control
panel either to control the state of the intersection directly or to observe and
manipulate the parameters and state of a specifi c intersection control system.

5.7.2.2.2.6 M aintainer Maintainer accesses system through Ethernet port
to perform maintenance.

 5.7.2.2.3 Hardware Interfaces The Intersection Control System hardware
interfaces are summarized in Figure 5.A2 on the following page.

 5.7.2.2.3.1 M ajor H ardware C omponents: S ummary (T able 5.A1)

5.7.2.2.3.2 W ired I nterfaces: I nternal Hard - wired connections between
the intersection controller and the following hardware components within the
intersection controller enclosure are provided:

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
5.

A
2.

 I
nt

er
se

ct
io

n
co

nt
ro

lle
r

ha
rd

w
ar

e
(n

ot
 a

ll
de

ta
ils

 a
nd

 in
te

rc
on

ne
ct

s
sh

ow
n)

.

A
P

P
R

O
A

C
H

 E
-W

 (
T

Y
P

IC
A

L
)

W
A

L
K

D
O

N
'T

W
A

L
K

W
A

L
K

D
O

N
'T

W
A

L
K

R
E

D

Y
E

L
L
O

W

G
R

E
E

N

D
O

N
'T

 W
A

L
K

W
A

L
K

6 2

2

4

N
E

U
T

R
A

L

L
O

O
P

P
U

S
H

B
U

T
T

O
N

S

A
P

P
R

O
A

C
H

 W
-E

A
P

P
R

O
A

C
H

 N
-S

A
P

P
R

O
A

C
H

 S
-N

1
6

1
6

1
6

C
O

N
T

R
O

L
L
E

R

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

2

G
R

E
E

N
/W

A
L
K

 S
IG

N
A

L
N

E
U

T
R

A
L

S
A

F
E

T
Y

 R
E

L
A

Y

S
A

F
E

T
Y

 R
E

L
A

Y
 C

O
N

T
R

O
L

G
R

E
E

N
/W

A
L
K

 S
IG

N
A

L
N

E
U

T
R

A
L

G
R

E
E

N
/W

A
L
K

 S
IG

N
A

L

N
E

U
T

R
A

L

G
R

E
E

N
/W

A
L
K

 S
IG

N
A

L
N

E
U

T
R

A
L

G
R

E
E

N
/

W
A

L
K

S
IG

N
A

L

N
E

U
T

R
A

L

I/
O

 F
O

R
 L

O
O

P
,

P
U

S
H

B
U

T
T

O
N

S

A
N

D
 O

T
H

E
R

A
P

P
R

O
A

C
H

E
SL

A
M

P
D

R
IV

E
R

(T
Y

P
IC

A
L
)

O
N

F
L
A

S
H

1
2
0
 V

A
C

6
0
 H

Z

`

P
O

W
E

R
 S

U
P

P
L
Y

 w
ith

 U
P

S

R
E

G
U

L
A

T
E

D

O
U

T
P

U
T

P
O

W
E

R

L
A

M
P

P
O

W
E

R

M
A

N
U

A
L

 O
V

E
R

R
ID

E

C
O

N
S

O
L
E

N

E
M

E
R

G
E

N
C

Y
 V

E
H

IC
L
E

T
R

A
N

S
P

O
N

D
E

R

D
O

T
 N

E
T

W
O

R
K

M
A

IN
T

E
N

A
N

C
E

 P
O

R
T

E
T

H
E

R
N

E
T

 C
O

N
N

E
C

T
IO

N

x
 2

(T
y
p
ic

a
l)

241

www.it-ebooks.info

http://www.it-ebooks.info/

242 REQUIREMENTS ENGINEERING METHODOLOGIES

 TABLE 5.A1. Major Intersection Control System Hardware Components

 Item Description Quantity

 1 Intersection controller enclosure 1
 1.1 Input circuit breaker 1
 1.2 Input transformer 1
 1.3 Input power supply with UPS 1
 1.4 Intersection controller 1
 1.5 Lamp driver 20
 1.6 Lamp current sensor 40
 1.7 Green signal safety relay 1
 1.8 Manual override console 1
 1.9 Vehicle presence detector interface unit (not shown in

Figure 5.A2)
 4

 1.10 Pedestrian request detector interface unit (not shown
in Figure 5.A2)

 8

 1.11 RJ - 45 Ethernet connector — DOT network 1
 1.12 RJ - 45 Ethernet connector — maintenance 1
 1.13 Enclosure wiring A/R
 2 Vehicle traffi c standard — suspended 4
 3 Vehicle traffi c standard — pole mounted 4
 4 Pedestrian traffi c standard 8
 5 Pedestrian request detector 8
 6 Vehicle presence detector 4
 7 Emergency vehicle transponder 1
 8 Field wiring A/R

 1. Traffi c standard lamp drivers (20)
 2. Traffi c standard lamp current sensors (40)
 3. Vehicle presence detector interface units (4)
 4. Pedestrian presence detector interface units (4)
 5. Green signal safety relay (1)
 6. Manual override console (1)
 7. Maintenance connector (2; 10 - base T twisted pair)

5.7.2.2.3.3 W ired I nterfaces: E xternal Hard - wired connections between
the intersection control enclosure and the following external hardware com-
ponents are provided:

 1. Pedestrian presence detector
 2. Pedestrian traffi c standard
 3. Vehicle presence detector
 4. Vehicle traffi c standard
 5. Emergency vehicle transponder
 6. DOT wide - area network (WAN)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 243

5.7.2.2.3.4 E mergency V ehicle T ransponder The emergency vehicle tran-
sponder is a radio frequency link between the intersection control system and
the emergency vehicle override controller.

5.7.2.2.3.5 E thernet C onnection to DOT WAN Interaction between the
software system and the remote operator console is conducted over a standard
10 base - T local area network. Each intersection control system is identifi ed
with a unique, statically assigned IP address.

 5.7.2.2.4 Software Interfaces

5.7.2.2.4.1 O perating S ystem The intersection controller interfaces to the
RTOS via standard OS API calls.

5.7.2.2.4.2 R esource M anagers Interfaces to hardware are handled by
resource managers not specifi ed in this SRS. Resource managers are assumed
to have direct access to the object model defi ned here.

5.7.2.2.4.3 S oftware C ontrol P anel The intersection control system must
be able to interact with the software control panel to allow remote user access.
This interface provides a remote user the ability to modify system parameters,
perform maintenance functions, or assume manual control of the intersection.
The standard protocol for this communication will be SNMP version 1.

 5.7.2.2.5 Communications Interfaces The system will utilize TCP/IP ’ s
SNMP interface for inter - system communication.

 5.7.2.2.6 Memory Constraints

5.7.2.2.6.1 F lash M emory Flash memory will be the memory media of
choice for the system. The software will require no more than 32 M bytes of
fl ash memory for RTOS, application program, and data.

5.7.2.2.6.2 RAM RAM will be used for application execution. The system
shall not require more than 32 M bytes of RAM. Upon boot, the RTOS, appli-
cation program and static data needed for execution will be copied from fl ash
into the RAM.

 5.7.2.2.7 Operations

 1. Automatic, unattended operation (normal operation)
 2. Local manual operation (through override console)
 3. Remote manual operation (through WAN port)
 4. Local observed operation (through maintenance port)
 5. Remote observed operation (through WAN port)
 6. Remote coordinated operation (option; through WAN port)

www.it-ebooks.info

http://www.it-ebooks.info/

244 REQUIREMENTS ENGINEERING METHODOLOGIES

 5.7.2.2.8 Site Adaptation Requirements This is summarized above in Section
5.7.2.1.

5.7.2.3 Product Functions The Intersection Control System provides the
following functions:

 1. Control of the intersection vehicle traffi c standards
 2. Control of the intersection pedestrian traffi c standards
 3. Collection and processing of traffi c history from all approaches
 4. Adaptive control of intersection timings in response to traffi c fl ow
 5. Actuated control of intersection in response to vehicle presence
 6. Timed control of intersection in response to a fi xed scheme
 7. Handling of pedestrian crossing requests
 8. Handling of emergency vehicle preemption
 9. Intersection control in response to manual override commands

 10. Intersection control in response to remote override commands
 11. Management of traffi c history and incident log databases
 12. Handling of maintenance access requests from the maintenance port
 13. Handling of maintenance access requests from the DOT WAN

5.7.2.4 User Characteristics

 5.7.2.4.1 Pedestrians General population, including persons with disabilities.

 5.7.2.4.2 Motor Vehicle Automobiles and trucks, depending on roadway use
limitations.

 5.7.2.4.3 Traffi c Regulatory Personnel Authorized DOT, police, or other
personnel trained in use of the Manual Override console. Must have key to
the system enclosure.

 5.7.2.4.4 System Administrators Authorized DOT personnel with training
in the use of this system.

5.7.2.5 Constraints System Constraints include the following:

 1. Regulatory policy (e.g., ADA)
 2. DOT specifi cations
 3. Local ordinances
 4. Hardware limitations
 5. Minimum time for pedestrian to cross
 6. Minimum stopping distance for vehicles
 7. Momentary power droops/outages
 8. Interfaces to other applications

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 245

 9. Audit functions
 10. Higher - order language requirements (OO language supported by

RTOS required)
 11. Network protocols (e.g., SNMP)
 12. Reliability requirements
 13. Criticality of the application
 14. Security considerations
 15. Safety considerations

5.7.2.6 Assumptions and Dependencies

 1. SI units are used for all physical quantities.
 2. Commercially available RTOS is used.
 3. Hardware interfaces have resource managers (drivers) already developed

and available for integration with the software system specifi ed here.
 4. DOT WAN will use SNMP to communicate with intersection control

system.
 5. Watchdog circuitry forces safe default intersection state through hardware.

 5.7.3 Specifi c Requirements

 This section describes the basic functional elements of the intersection control
system. In particular, the software object model is described in detail, with
attributes and methods enumerated. External interfaces to users, hardware,
and other software elements are described, and background on the adaptive
algorithm to be used is provided.

5.7.3.1 External Interface Requirements

5.7.3.1.1 User Interfaces (Figure 5.A3)

 1. Vehicle presence detector — user: motor vehicle
 2. Pedestrian presence detector — user: pedestrian
 3. Emergency vehicle override — user: emergency vehicle
 4. Manual override — user: traffi c control offi cer
 5. Remote override — user: DOT offi cer
 6. Maintenance interface — user: maintainer

 5.7.3.1.2 Hardware Interfaces

 1. Vehicle
 2. Pedestrian crossing pushbutton
 3. Traffi c standard
 4. Walk signal

www.it-ebooks.info

http://www.it-ebooks.info/

246 REQUIREMENTS ENGINEERING METHODOLOGIES

Figure 5.A3. Top - level use case diagram.

 5. Hardware watchdog
 6. Uninterruptible power supply

 5.7.3.1.3 Software Interfaces

 1. RTOS API calls
 2. Hardware resource manager interfaces

 5.7.3.1.4 Communications Interfaces

 1. Interface to RTOS TCP/IP stack

5.7.3.2 Classes/Objects Figure 5.A4 depicts the classes constituting the
intersection control system software application.

 The Intersection Controller is responsible for managing the following
functions:

 1. Initialization
 2. Instantiation of contained objects

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

5.
A

4.
 P

re
lim

in
ar

y
in

te
rs

ec
ti

on
 c

on
tr

ol
le

r
cl

as
s

di
ag

ra
m

.

247

www.it-ebooks.info

http://www.it-ebooks.info/

248 REQUIREMENTS ENGINEERING METHODOLOGIES

 3. Control of the intersection vehicle traffi c standards
 4. Control of the intersection pedestrian traffi c standards
 5. Collection and processing of traffi c history from all approaches
 6. Adaptive control of intersection timings in response to traffi c fl ow
 7. Actuated control of intersection in response to vehicle presence
 8. Timed control of intersection in response to a fi xed scheme
 9. Handling of pedestrian crossing requests

 10. Handling of emergency vehicle preemption
 11. Intersection control in response to manual override commands
 12. Intersection control in response to remote override commands
 13. Management of traffi c history and incident log databases
 14. Handling of maintenance access requests from the maintenance port
 15. Handling of maintenance access requests from the DOT WAN

 Table 5.A2 below illustrates the attributes, methods, and events of the Inter-
section Controller class. Figure 5.A5 gives the statechart behavioral descrip-
tion for intersection control.

 The corresponding traffi c standard aspects are shown in Figure 5.A6 .

 5.7.3.2.1 Approach This is the programmatic representation of an intersec-
tion approach.

 The Approach object is responsible for managing the following functions:

 1. Instantiation of contained objects
 2. Control of the traffi c standards associated with the approach
 3. Handling of pedestrian crossing events
 4. Handling of loop detector entry and exit events
 5. Tracking the vehicle count

 Table 5.A3 below illustrates the attributes, methods, and events of the Approach
class.

 5.7.3.2.2 Pedestrian Traffi c Standard This is the programmatic representa-
tion of a pedestrian crossing signal.

 The Pedestrian Traffi c Standard object is responsible for managing the fol-
lowing functions:

 1. Displaying the commanded indication aspect from the Approach
 2. Determining the indication actually displayed

 Table 5.A4 below illustrates the attributes, methods, and events of the
Pedestrian Traffi c Standard class.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 249

 TABLE 5.A2. Intersection Controller Class

 Intersection Controller

 Name Description

 Attributes Approaches Array of Approach objects.
 Manual Override Represents the Manual Override console.
 Remote Override Represents the Remote Software console.
 Traffi c History Contains the traffi c history for up to at

least 7 days.
 Incident Log Contains the incident log for up to at least

7 days.
 Network Interface Object that provides an interface from the

Network resource manager (driver) to
the Intersection Controller object.

 Emergency Vehicle
Interface

 Object that provides an interface between
the Emergency Vehicle transponder and
the Intersection Controller object.

 Mode Current operating mode of the
Intersection Controller.

 Priority Relative priority of the approaches.
 Cycle Time Time to complete a full traversal of all

intersection phases.
 Splits Array of numbers defi ning the fraction of

the cycle time allocated to each phase.
 Current Phase Current intersection phase.
 Phase Time Remaining Time remaining until the intersection

moves to the next phase in the sequence.
 Commanded Green

Signal Safety Relay
State

 Based on the Current Phase, this attribute
holds the value required for the Green
Signal Safety Relay resource manager,
which is responsible for driving the relay.

 Detected Green Signal
Safety Relay State

 This holds the actual state of the Green
Signal Safety Relay.

 Methods Initialize
 Advance Phase Advance the intersection phase to the next

phase in the sequence.
 Calculate Cycle

Parameters
 Calculate the cycle time and splits for the

next cycle based on traffi c data.
 Events Phase Time Remaining

Value Reaches 0
 Fires when the Phase Time Remaining

timer reaches 0.
 Override Activated Fires when either the Manual Override or

Remote override is activated.
 Override Canceled Fires when Overrides are deactivated.
 Watchdog Timeout Fires on a watchdog trip.
 Error Fires when an error occurs. Takes the

Error code as a parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

5.
A

5.
 S

ta
te

ch
ar

t
fo

r
in

te
rs

ec
ti

on
 c

on
tr

ol
le

r
ph

as
e

se
qu

en
ce

.

250

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 251

 Figure 5.A6. Traffi c standard aspects for each phase.

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

Phase E-W/W-E N-S/S-N

Default_3

Phase_1

Phase_2

Phase_3

Phase_4

Phase_5

Phase_6

Phase_7

Phase_8

DONT

WALK

WALK

DONT

WALK

WALK

Default_2

Default_1

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

DONT

WALK

WALK

Flashing

Red

Flashing

Yellow

Flashing

DON'T

WALK

www.it-ebooks.info

http://www.it-ebooks.info/

252 REQUIREMENTS ENGINEERING METHODOLOGIES

 TABLE 5.A3. Approach Class

 Approach

 Name Description

 Attributes Pedestrian Traffi c
Standard

 Object representing the two pedestrian traffi c
standards associated with the approach.

 Vehicle Traffi c
Standards

 Object representing the two vehicle traffi c
standards associated with the approach.

 Pedestrian
Service Button

 Object representing the two pedestrian service
pushbuttons associated with the approach.

 Vehicle Presence
Detector

 Object representing the proximity detection loop,
located at the stop line, associated with the
approach.

 Vehicle Count Count of vehicles passing through the approach.
 Indication Array used to store the indications actually being

displayed on all associated traffi c standards.
 Current Aspect Current commanded aspect corresponding to the

Intersection Controller phase.
 Speed Limit Value (in km/h) of the speed limit associated

with the approach.
 Methods Set Aspect Set the displayed aspect to the Commanded

Aspect.
 Get Aspect Get the actual displayed aspect based on signals

from the current sensor hardware resource
manager.

 Increment Count Increase the vehicle count by 1.
 Reset Count Reset the vehicle count to 0.

 Events Pedestrian
Request

 Fires when a pedestrian request has been made.

 Vehicle Entry Fires when the loop detector detects vehicle
entry.

 Vehicle Exit Fires when the loop detector detects vehicle exit.

 TABLE 5.A4. Pedestrian Traffi c Standard Class

 Pedestrian Traffi c Standard

 Name Description

 Attributes Commanded Aspect Commanded aspect from the
Intersection Controller.

 Methods Set Indication Set the displayed indication to the
Commanded Indication.

 Get Indication Get the actual displayed indication
based on signals from the current
sensor hardware resource manager.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 253

 5.7.3.2.3 Vehicle Traffi c Standard This is the programmatic representation
of a vehicle traffi c signal.

 The Vehicle Traffi c Standard object is responsible for managing the follow-
ing functions:

 1. Displaying the commanded aspect from the Intersection Controller.
 2. Determining the aspect actually displayed.

 Table 5.A5 above illustrates the attributes, methods, and events of the Vehicle
Traffi c Standard class.

 5.7.3.2.4 Pedestrian Service Button This is an object representing the set of
push - button consoles located on opposite sides of the crosswalk associated
with an approach.

 The Pedestrian Service Button object is responsible for managing the fol-
lowing functions:

 1. Filtering of pushbutton service requests.
 2. Generation of Pedestrian Service Request event.

 Table 5.A6 below illustrates the attributes, methods, and events of the
Pedestrian Service Button class.

 5.7.3.2.5 Vehicle Presence Detector This is an object representing the prox-
imity detection loop located near the stop line associated with an approach.
The object class is based on the Pedestrian Service Button class.

 The Vehicle Presence Detector object is responsible for managing the fol-
lowing functions:

 1. Filtering of vehicle service requests (ACTUATED mode).
 2. Generation of Vehicle Service Request event (ACTUATED mode).

 TABLE 5.A5. Vehicle Traffi c Standard Class

 Vehicle Traffi c Standard

 Name Description

 Attributes Commanded
Aspect

 Commanded aspect from the Intersection
Controller.

 Methods Set Indication Set the displayed indication to the Commanded
Indication.

 Get Indication Get the actual displayed indication based on
signals from the current sensor hardware
resource manager.

www.it-ebooks.info

http://www.it-ebooks.info/

254 REQUIREMENTS ENGINEERING METHODOLOGIES

 TABLE 5.A6. Pedestrian Service Button Class

 Pedestrian Service Button

 Name Description

 Attributes Request Masked Indicates whether pedestrian service
pushbutton signals should be ignored or
processed.

 Request State Indicates whether or not a pedestrian
service request is active.

 Methods Set Request State In response to a signal from the pushbutton
hardware resource manager, determine
whether or not to modify the Request
State and raise an event.

 Reset Request State Clear the Request State.
 Ignore Request

State
 Masks subsequent pedestrian button

operations.
 Listen Request

State
 Respond to subsequent pedestrian button

operations.
 Events Pedestrian Service

Request
 Indicates that a valid pedestrian service

request is active.

 3. Maintenance of the vehicle count statistic (FIXED, ACTUATED and
ADAPTIVE mode).

 Table 5.A7 above illustrates the attributes, methods, and events of the Vehicle
Presence Detector class.

 5.7.3.2.6 Manual Override This is an object representing the set of push -
 buttons on the manual override console.

 The Manual Override object is responsible for managing the following
functions:

 TABLE 5.A7. Vehicle Presence Detector Class

 Vehicle Presence Detector

 Name Description

 Attributes Request State Indicates whether or not a vehicle service
request is active (ACTUATED mode).

 Methods Set Request State Set the Request State.
 Reset Request State Clear the Request State.

 Events Vehicle Entry Indicates that the detector loop is occupied.
 Vehicle Exit Indicates that the detector loop is no longer

occupied.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 255

 TABLE 5.A8. Manual Override Class

 Manual Override

 Name Description

 Attributes None None
 Methods None None
 Events Override Activated Fires when the override is activated.

 Override Canceled Fires when the override is de - activated.
 Advance Phase Fires in response to the ADVANCE button

on the override console being pressed.

 1. Triggering the appropriate mode change.
 2. Generation and handling of events required to control intersection

phase.

 Table 5.A8 above illustrates the attributes, methods, and events of the Manual
Override class.

 5.7.3.2.7 Remote Override This is an object representing the commands
available on the Remote Software console. Additionally, the object provides
an interface for remote access to and update of intersection traffi c data and
cycle parameters for coordinated intersection control (option).

 The Remote Override object is responsible for managing the following
functions:

 1. Triggering the appropriate mode change.
 2. Generation and handling of events required to control intersection phase.

 Table 5.A9 below illustrates the attributes, methods, and events of the Remote
Override class.

 5.7.3.2.8 Emergency Vehicle Interface This is an object that manages the
wireless transponder interface to authorized emergency vehicles and accesses
the Intersection Control object in order to display the correct traffi c signals,
allowing the emergency vehicle priority access to the intersection.

 The Emergency Vehicle Interface object is responsible for managing the
following functions:

 1. Triggering the appropriate mode change.
 2. Reception of emergency vehicle preemption requests.
 3. Decryption and validation of emergency vehicle preemption requests.
 4. Generation and handling of events required to control intersection

phase.

www.it-ebooks.info

http://www.it-ebooks.info/

256 REQUIREMENTS ENGINEERING METHODOLOGIES

 TABLE 5.A9. Remote Override Class

 Remote Override

 Name Description

 Attributes None None
 Methods Process Command Processes the events generated by the object,

modifying the appropriate attribute or
calling the appropriate method of the
Intersection Controller object.

 Get Status Retrieves the all parameter and other status
data used as inputs to the Calculate Cycle
Parameters adaptive control algorithm.

 Set Parameters Sets the cycle timing parameters as calculated
by the remote host.

 Events Override Activated Fires when the override is activated.
 Override Canceled Fires when the override is de - activated.
 Advance Phase Fires in response to the ADVANCE command

from the Remote Software console.

 TABLE 5.A10. Emergency Vehicle Interface Class

 Emergency Vehicle Interface

 Name Description

 Attributes None None
 Methods None None
 Events Preempt Activated Fires when preemption is activated.

 Preempt Canceled Fires when preemption is de - activated.
 Preempt Timeout Fires when the preempt cancellation timeout

interval expires.

 Table 5.A10 above illustrates the attributes, methods, and events of the
Emergency Vehicle Interface class.

 5.7.3.2.9 Network Interface This is an object that manages communication
via the Ethernet port.

 The Network Interface object is responsible for managing the following
functions:

 1. Routing control messages to the appropriate objects.
 2. Transferring traffi c history and incident log data.
 3. Management of maintenance operations.

 Table 5.A11 below illustrates the attributes, methods, and events of the
Network Interface class.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 257

 TABLE 5.A11. Network Interface Class

 Network Interface

 Name Description

 Attributes None
 Methods Process Message Analyzes and routes network messages.

 Receive Message Receives network messages.
 Send Message Sends network messages.
 Events None

 5.7.3.2.10 Traffi c History This is an object that manages the stored traffi c
history.

 The Traffi c History object is responsible for managing the following functions:

 1. Storage and retrieval of traffi c history database records.
 2. Clearing of traffi c history in response to a command from a remote host.

 Table 5.A12 above illustrates the attributes, methods, and events of the Traffi c
History class.

 5.7.3.2.11 Incident Log This is an object that manages the stored inci-
dent log.

 The Incident Log object is responsible for managing the following functions:

 TABLE 5.A12. Traffi c History Class

 Traffi c History

 Name Description

 Attributes Record An array of structures, each of which holds
a single traffi c history record.

 First Record Index of the fi rst active record.
 Last Record Index of the record most recently added.
 Record Pointer Index used to sequence through the Traffi c

History records.
 Methods Write Record Writes a database record at the current

position or at a specifi ed position.
 Read Record Reads a database record at the current

position or at a specifi ed position.
 Move Record Pointer Moves record pointer as specifi ed.
 Clear Database Returns the database to an empty state.

 Events EOF Fires when the last record is reached.
 Database Full Fires when all allocated space for the

database is used. Since the database is a
FIFO structure, records will begin to be
overwritten.

www.it-ebooks.info

http://www.it-ebooks.info/

258 REQUIREMENTS ENGINEERING METHODOLOGIES

 1. Storage and retrieval of incident log database records.
 2. Clearing of incident in response to a command from a remote host.

 Incidents are generated by the following events:

 1. Error conditions.
 2. Traffi c History database full.
 3. System resets.
 4. Mode changes, including emergency vehicle preempts.
 5. Maintenance actions, as updated by maintenance personnel through por-

table test equipment (laptop).

 Table 5.A13 below illustrates the attributes, methods, and events of the Incident
Log class.

5.7.3.3 Performance Requirements

 5.7.3.3.1 Timing Requirements

5.7.3.3.1.1 S ummary Table 5.A14 below provides a summary of all timing
requirements.

 This is illustrated in Figures 5.A7 and 5.A8 below.

 TABLE 5.A13. Incident Log Class

 Incident Log

 Name Description

 Attributes Record An array of structures, each of which
holds a single traffi c history record.

 First record Index of the fi rst active record.
 Last record Index of the record most recently added.
 Record pointer Index used to sequence through the

Traffi c History records.
 Methods Write record Writes a database record at the current

position or at a specifi ed position.
 Read record Reads a database record at the current

position or at a specifi ed position.
 Move record pointer Moves record pointer as specifi ed.
 Clear database Returns the database to an empty state.

 Events EOF Fires when the last record is reached.
 Database full Fires when all allocated space for the

database is used. Since the database is a
FIFO structure, records will begin to be
overwritten.

www.it-ebooks.info

http://www.it-ebooks.info/

 TA
B

L
E

 5
.A

14
.

 So
ft

w
ar

e
T

im
in

g
R

eq
ui

re
m

en
ts

 ID

 D
es

ig
na

ti
on

 A

pp
lie

s
to

 M
od

e(
s)

 O

bj
ec

t/
Fr

om
 E

ve
nt

 O

bj
ec

t/
To

 R
es

po
ns

e
 M

in
 T

im
e

(m
s)

 M
ax

 T
im

e
(m

s)

 1
 In

it
ia

liz
at

io
n

 A
ll

 H
ar

dw
ar

e/
R

es
et

 S
ig

na
l

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

In
it

ia
liz

at
io

n
C

om
pl

et
e

 –

 49
00

 2
 Se

t
D

ef
au

lt

P
ha

se
 A

ll
 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
In

it
ia

liz
at

io
n

C
om

pl
et

e
 A

ll
Tr

af
fi c

 S
ta

nd
ar

ds
/

D
is

pl
ay

 o
f

C
om

m
an

de
d

P
ha

se

 –

 10
0

 3
 St

ar
t

N
or

m
al

O

pe
ra

ti
on

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 T

IM
E

D

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

In
it

ia
liz

at
io

n
C

om
pl

et
e

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 o

f
P

ha
se

 1

 –

 50
0

 4
 A

dv
an

ce

P
ha

se
 —

 N
or

m
al

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 T

IM
E

D

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

P
ha

se

T
im

e
R

em
ai

ni
ng

 R
ea

ch
es

 0

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 o

f
C

om
m

an
de

d
P

ha
se

 –

 10
0

 5
 A

dv
an

ce

P
ha

se
 —

 L
oc

al
 L

O
C

A
L

_M
A

N
U

A
L

 M

an
ua

l O
ve

rr
id

e/
R

ec
ei

pt
 o

f
A

dv
an

ce
 P

ha
se

 s
ig

na
l f

ro
m

M

an
ua

l O
ve

rr
id

e
P

an
el

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 o

f
C

om
m

an
de

d
P

ha
se

 –

 10
0

 6
 A

dv
an

ce

P
ha

se
 —

 R
em

ot
e

 R
E

M
O

T
E

_
M

A
N

U
A

L

 R
em

ot
e

O
ve

rr
id

e/
R

ec
ei

pt
 o

f
A

dv
an

ce
 P

ha
se

 s
ig

na
l f

ro
m

N

et
w

or
k

In
te

rf
ac

e

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 o

f
C

om
m

an
de

d
P

ha
se

 –

 10
0

 7
 C

al
cu

la
te

 C
yc

le

P
ar

am
et

er
s —

 A
ct

ua
te

d

 A
C

T
U

A
T

E
D

 P

ed
es

tr
ia

n
D

et
ec

to
r

or
 V

eh
ic

le

D
et

ec
to

r/
P

ed
es

tr
ia

n
R

eq
ue

st

si
gn

al
 o

r
V

eh
ic

le
 R

eq
ue

st
 s

ig
na

l

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

C
yc

le
 T

im
e

an
d

Sp
lit

s
up

da
te

d

 –

 10
0

 8
 C

al
cu

la
te

 C
yc

le

P
ar

am
et

er
s —

 A
da

pt
iv

e

 A
D

A
P

T
IV

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

St
ar

t
of

la

st
 p

ha
se

 in
 c

yc
le

 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
C

yc
le

 T
im

e
an

d
Sp

lit
s

up
da

te
d

 –

 25
0

 9
 C

ri
tic

al
 E

rr
or

 —
 D

is
pl

ay

D
ef

au
lt

s

 A
ll

 A
ny

/C
ri

ti
ca

l E
rr

or

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 o

f
D

ef
au

lt

St
at

e

 –

 50

(C
on

tin
ue

d)

259

www.it-ebooks.info

http://www.it-ebooks.info/

 ID

 D
es

ig
na

ti
on

 A

pp
lie

s
to

 M
od

e(
s)

 O

bj
ec

t/
Fr

om
 E

ve
nt

 O

bj
ec

t/
To

 R
es

po
ns

e
 M

in
 T

im
e

(m
s)

 M
ax

 T
im

e
(m

s)

 10

 C
ri

ti
ca

l
E

rr
or

 —
 A

la
rm

 A
ll

 A
ny

/C
ri

ti
ca

l E
rr

or

 N
et

w
or

k
In

te
rf

ac
e/

In
it

ia
ti

on
 o

f A
la

rm

Tr
an

sm
is

si
on

 –

 10
00

 11

 C
ri

ti
ca

l
E

rr
or

 —
 R

es
et

 A
ll

 A
ny

/C
ri

ti
ca

l E
rr

or

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

Sy
st

em
 R

es
et

 45

00

 50
00

 12

 W
ri

te
 E

rr
or

L

og
 A

ll
 A

ny
/A

ny
 E

rr
or

 In

ci
de

nt
 L

og
/W

ri
te

C

om
pl

et
ed

 –

 50
0

 13

 Se
t

P
ha

se

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 M

A
N

U
A

L

 R
E

M
O

T
E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

A
dv

an
ce

ph

as
e

 A
ll

Tr
af

fi c
 S

ta
nd

ar
ds

/
D

is
pl

ay
 C

om
m

an
de

d
ph

as
e

 –

 10
0

 14

 G
et

 P
ha

se

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 M

A
N

U
A

L

 R
E

M
O

T
E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

G
et

 p
ha

se

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

D
is

pl
ay

ed
 p

ha
se

de

te
rm

in
ed

 2

 15
0

 15

 C
he

ck
 P

ha
se

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 M
A

N
U

A
L

 R

E
M

O
T

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

C
he

ck

ph
as

e
 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
P

ha
se

 c
he

ck
 s

ta
tu

s
re

tu
rn

ed

 –

 10

 16

 P
ed

es
tr

ia
n

R
eq

ue
st

L
at

ch
in

g

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 T

IM
E

D

 R
es

ou
rc

e
M

an
ag

er
/P

ed
es

tr
ia

n
R

eq
ue

st
 s

ig
na

l
 P

ed
es

tr
ia

n
D

et
ec

to
r/

L
at

ch
in

g
of

 P
ed

es
tr

ia
n

D
et

ec
to

rP
en

di
ng

 s
ta

te

 –

 10

 17

 P
ed

es
tr

ia
n

R
eq

ue
st

R
es

et

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 T

IM
E

D

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

co
m

pl
et

io
n

of
 p

ha
se

(s
)

du
ri

ng

w
hi

ch
 p

ed
es

tr
ia

n
re

qu
es

ts
 m

ay

be
 a

cc
ep

te
d

 P
ed

es
tr

ia
n

D
et

ec
to

r/
C

le
ar

in
g

of
 P

ed
es

tr
ia

n
D

et
ec

to
rP

en
di

ng
 s

ta
te

 –

 10
0

 18

 P
ed

es
tr

ia
n

R
eq

ue
st

P
ro

ce
ss

in
g

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 T

IM
E

D

 P
ed

es
tr

ia
n

D
et

ec
to

r/
L

at
ch

in
g

of

P
ed

es
tr

ia
n

D
et

ec
to

rP
en

di
ng

st

at
e

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

U
pd

at
in

g
of

 c
yc

le
 t

im
e

fo
r

ne
xt

 t
w

o
(2

)
cy

cl
es

;
up

da
ti

ng
 o

f
al

l s
pl

it
s

fo
r

ne
xt

 t
w

o
(2

)
cy

cl
es

.

 –

 10
0

TA
B

L
E

 5
.A

14
 (

C
on

tin
ue

d)

260

www.it-ebooks.info

http://www.it-ebooks.info/

 ID

 D
es

ig
na

ti
on

 A

pp
lie

s
to

 M
od

e(
s)

 O

bj
ec

t/
Fr

om
 E

ve
nt

 O

bj
ec

t/
To

 R
es

po
ns

e
 M

in
 T

im
e

(m
s)

 M
ax

 T
im

e
(m

s)

 19

 V
eh

ic
le

E

nt
ra

nc
e

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 R
es

ou
rc

e
M

an
ag

er
/V

eh
ic

le
 E

nt
ry

si

gn
al

 V
eh

ic
le

 D
et

ec
to

r/
V

eh
ic

le

E
nt

ry
 s

ta
te

 s
et

 –

 10

 20

 V
eh

ic
le

 E
xi

t
 F

IX
E

D

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 R
es

ou
rc

e
M

an
ag

er
/V

eh
ic

le
 E

xi
t

si
gn

al
 V

eh
ic

le
 D

et
ec

to
r/

V
eh

ic
le

E

nt
ry

 s
ta

te
 c

le
ar

ed

 –

 10

 21

 V
eh

ic
le

R

eq
ue

st
P

ro
ce

ss
in

g

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 V
eh

ic
le

 D
et

ec
to

r/
E

nt
ry

 s
ta

te
 s

et

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

P
ro

ce
ss

 V
eh

ic
le

R

eq
ue

st

 –

 10
0

 22

 V
eh

ic
le

 R
es

et

R
eq

ue
st

 S
ta

te

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
R

es
et

V

eh
ic

le
 R

eq
ue

st
 s

ta
te

 V

eh
ic

le
 d

et
ec

to
r/

C
le

ar

V
eh

ic
le

 E
nt

ry
 s

ta
te

 –

 10

0

 23

 V
eh

ic
le

 C
ou

nt

U
pd

at
e

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 V
eh

ic
le

 D
et

ec
to

r/
E

nt
ry

 S
ta

te

C
le

ar
ed

 A
pp

ro
ac

h/
B

um
p

C
ou

nt

 –

 50

 24

 V
eh

ic
le

 C
ou

nt

Fe
tc

h
 F

IX
E

D

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

G
et

C

ou
nt

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

C
ou

nt
 R

et
ur

ne
d

 –

 10
0

 25

 V
eh

ic
le

 C
ou

nt

R
es

et
 F

IX
E

D

 A
C

T
U

A
T

E
D

 A

D
A

P
T

IV
E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

P
ha

se

C
ha

ng
e

 A
pp

ro
ac

h/
R

es
et

 C
ou

nt

 –

 10
0

 26

 G
et

 C
yc

le

P
ar

am
et

er
s

 R
E

M
O

T
E

 R

em
ot

e
O

ve
rr

id
e/

P
ar

am
et

er

R
eq

ue
st

 N
et

w
or

k
In

te
rf

ac
e/

P
ac

ke
t

R
ea

dy
 t

o
Se

nd

 –

 10
0

 27

 U
pd

at
e

C
yc

le

P
ar

am
et

er
s

 R
E

M
O

T
E

 R

em
ot

e
O

ve
rr

id
e/

P
ar

am
et

er

U
pd

at
e

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

P
ar

am
et

er
s

U
pd

at
ed

 –

 10

0

 28

 P
ro

ce
ss

M

es
sa

ge
 E

M
E

R
G

E
N

C
Y

P

R
E

E
M

P
T

 E
m

er
ge

nc
y

V
eh

ic
le

 I
nt

er
fa

ce
/

A
ct

iv
at

e
 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
M

od
e

C
ha

ng
ed

 –

 20

0

 29

 P
ro

ce
ss

C

om
m

an
d

 E
M

E
R

G
E

N
C

Y

P
R

E
E

M
P

T
 E

m
er

ge
nc

y
V

eh
ic

le
 I

nt
er

fa
ce

 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
E

m
er

ge
nc

y
V

eh
ic

le

O
pe

ra
ti

on
s

 –

 10
0

(C
on

tin
ue

d)

261

www.it-ebooks.info

http://www.it-ebooks.info/

 ID

 D
es

ig
na

ti
on

 A

pp
lie

s
to

 M
od

e(
s)

 O

bj
ec

t/
Fr

om
 E

ve
nt

 O

bj
ec

t/
To

 R
es

po
ns

e
 M

in
 T

im
e

(m
s)

 M
ax

 T
im

e
(m

s)

 30

 P
ro

ce
ss

M

es
sa

ge
 R

E
M

O
T

E

 R
em

ot
e

O
pe

ra
ti

on
s

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r/

N
et

w
or

k
In

te
rf

ac
e

 –

 20
0

 31

 Fe
tc

h
D

at
ab

as
e

 R
E

M
O

T
E

 R

em
ot

e
O

pe
ra

ti
on

s
 In

te
rs

ec
ti

on
 C

on
tr

ol
le

r/
N

et
w

or
k

In
te

rf
ac

e
 –

 10

00

 32

 A
dd

 R
ec

or
d

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r

 Tr
af

fi c
 H

is
to

ry

 –

 20
0

 33

 C
le

ar
 D

at
ab

as
e

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r

 Tr
af

fi c
 H

is
to

ry

 –

 20
0

 34

 A
dd

 R
ec

or
d

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r

 In
ci

de
nt

 L
og

 –

 20

0

 35

 C
le

ar
 D

at
ab

as
e

 F
IX

E
D

 A

C
T

U
A

T
E

D

 A
D

A
P

T
IV

E

 In
te

rs
ec

ti
on

 C
on

tr
ol

le
r

 In
ci

de
nt

 L
og

 –

 20

0

 N
ot

es
: T

he
 t

im
in

g
re

qu
ir

em
en

ts
 f

or
 v

eh
ic

le
 d

et
ec

ti
on

 a
re

 b
as

ed
 o

n
th

e
fo

llo
w

in
g

co
ns

id
er

at
io

ns
:

 M
in

im
um

 v
eh

ic
le

 le
ng

th
 =

 8
 f

t

 M
in

im
um

 f
ol

lo
w

in
g

di
st

an
ce

 in
 m

ot
io

n
 =

 4
 ft

 L
oo

p
w

id
th

 =
 4

 f
t

 L
oo

p
de

te
ct

s
en

tr
an

ce
 w

it
h

le
ad

in
g

ov
er

la
p

 =
 2

 ft

 L
oo

p
de

te
ct

s
ex

it
 w

it
h

tr
ai

lin
g

ov
er

la
p

 =
 1

 ft

 M
ax

im
um

 v
eh

ic
le

 s
pe

ed
 =

 6
5

 m
ph

 (
 =

 95
.3

 f
t/

s)

 V
eh

ic
le

 s
pe

ed
 f

or
 m

in
im

um
 g

ap
 t

im
e

(s
ee

 b
el

ow
)

 =
 10

 m
ph

 (
 =

 14
.6

7
 ft

/s
)

 M
in

im
um

 p
re

se
nc

e
pu

ls
e

w
id

th
 =

 9
 f

t/
95

.3
 f

t/
s

 =
 94

.4
 m

s

 M
in

im
um

 g
ap

 t
im

e
(t

im
e

be
tw

ee
n

ex
it

 a
nd

 n
ex

t
ve

hi
cl

e
en

tr
an

ce
)

 =
 3

 ft
/1

4.
67

 f
t/

s
 =

 20
4.

5
 m

s

TA
B

L
E

 5
.A

14
 (

C
on

tin
ue

d)

262

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
5.

A
7.

 M
in

im
um

 p
re

se
nc

e
pu

ls
e

w
id

th
.

V
m

a
x

V
m

a
x

V
m

a
x

4
' 8
'

V
m

a
x

=
 6

5
 m

p
h

2
'

1
'

N
O

T
 P

R
E

S
E

N
T

P
R

E
S

E
N

T

E
N

T
R

Y

E
X

IT

9
'

D
 =

 9
 f

t

V
m

a
x

=
 6

5
 m

p
h

 =
 9

5
.3

 f
t/

s

T
p
re

s
e
n
t =

 D
/V

m
a
x

=
 (

9
 f

t)
/(

9
5

.3
 f

t/
s
)

 =
 9

4
.4

 m
s

T
p
re

s
e
n
t =

 t
e

xi
t -

 t
e
n
tr

y

263

www.it-ebooks.info

http://www.it-ebooks.info/

264 REQUIREMENTS ENGINEERING METHODOLOGIES

 Figure 5.A8. Minimum gap pulse width.

Vmin

Vmin = 10 mph

2'

1'

NOT PRESENT PRESENT

ENTRY 1

EXIT 1

9'

D = 3 ft
V

max
 = 10 mph = 14.7 ft/s

T
gap

 = D/V
max

 = (3 ft)/(14.7 ft/s) = 204.5 ms

T
gap

 = t
exit1

 - t
entry2

4'

4'

4'

1'

4'

2'

ENTRY 2

 It is necessary to determine the speed at which the minimum gap time
between vehicles occurs in order to determine that time. The distance a fol-
lowing vehicle must cover in order to trigger the loop detector after the
leading vehicle has exited is given by

 D v

v

v
a a

v
gap()

,

,

=

<

−
⋅⎛

⎝
⎞
⎠

+ ≥

⎧

⎨
⎪⎪

⎩

4 10

2

10
88
60

2
3 10

2

2

ft mph

mph
ft mph⎪⎪

⎪

.

 Given this, the gap time is given by

 T v
D v

v
vgap

gap()
()

, .= > 0

 It can be shown that the minimum gap time occurs for v = 10 mph.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 265

 REFERENCES

 R. Agarwal and A. P. Sinha , “ Object - oriented modeling with UML: A study of develop-
ers ’ perceptions , ” Communications of the ACM , 46 (9), pp. 248 – 256 , 2003 .

 J. P. Bowen and M. G. Hinchey , “ Ten commandments of formal methods , ” IEEE
Computer , 28 (4), pp. 56 – 63 , 1995 .

 G. Bucci , M. Campanai , and P. Nesi , “ Tools for specifying real - time systems , ” Real - Time
Systems , 8 (2/3), pp. 117 – 172 , 1995 .

 A. Cockburn , Writing Effective Use Cases . Boston : Addison - Wesley , 2001 .

 T. De Marco , Structured Analysis and System Specifi cation . New York : Yourdon Press ,
 1978 .

 R. Gelbard , D. Te ’ eni , and M. Sadeh , “ Object - oriented analysis — is it just theory? ”
IEEE Software , 27 (1), pp. 64 – 71 , 2010 .

 H. Gomaa , “ Extending the DARTS software design method to distributed real time
applications , ” Proceedings of the 21st Annual Hawaii International Conference on
System Sciences , Kailua - Kona, HI, 1988 , pp. 252 – 261 .

 D. Harel , “ Statecharts in the making: A personal account , ” Communications of the
ACM , 52 (3), pp. 67 – 75 , 2009 .

 G. M. H ø ydalsvik and G. Sindre , “ On the purpose of object - oriented analysis , ”
Proceedings of the 8th Annual Conference on Object - Oriented Programming
Systems, Languages, and Applications , Washington, DC, 1993 , pp. 240 – 255 .

 Institute of Electrical and Electronics Engineers , IEEE Std 830 – 1998, Recommended
Practice for Software Requirements Specifi cation . New York : IEEE Computer
Society , 1998 .

 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,
 2003 .

 P. A. Laplante , Requirements Engineering for Software and Systems . Boca Raton, FL :
 CRC Press , 2009 .

 S. Liu , Formal Engineering for Industrial Software Development: Using the SOFL
Method . Berlin, Germany : Springer - Verlag , 2010 .

 A. Mazzeo , N. Mazzocca , S. Russo , and V. Vittorini , “ A systematic approach to the Petri
net based specifi cation of concurrent systems , ” Real- Time Systems , 13 (3), pp. 219 –
 236 , 1997 .

 R. Miles and K. Hamilton , Learning UML 2.0 . Sebastopol, CA : O ’ Reilly Media , 2006 .

 S. Robertson and J. C. Robertson , Requirements- Led Project Management: Discovering
David ’ s Slingshot . New York : Addison - Wesley , 2005 .

 M. Samek , Practical UML Statecharts in C/C ++ : Event - Driven Programming for
Embedded Systems , 2nd Edition . Burlington, MA : Newnes , 2009 .

 F. Schneider , S. M. Easterbrook , J. R. Callahan , and G. J. Holzmann , “ Validating require-
ments for fault tolerant systems using model checking , ” Proceedings of the 3rd
IEEE International Conference on Requirements Engineering , Colorado Springs,
CO, 1998 , pp. 4 – 13 .

 I. Sommerville , Software Engineering . New York : Addison - Wesley , 2000 .

 F. Wagner , R. Schmuki , T. Wagner , and P. Wolstenholme , Modeling Software with Finite
State Machines: A Practical Approach . Boca Raton, FL : CRC Press , 2006 .

www.it-ebooks.info

http://www.it-ebooks.info/

266 REQUIREMENTS ENGINEERING METHODOLOGIES

 P. Ward and S. Mellor , Structured Development for Real - Time Systems . 1 – 3 . New York :
 Yourdon Press , 1985 .

 W. Wilson , “ Writing effective requirements specifi cations , ” in USAF Software
Technology Conference , Salt Lake City, UT, 1997 .

 V. Wyatt , J. DiStefano , M. Chapman , and E. Aycoth , “ A metrics based approach for
identifying requirements risks , ” Proceedings of the 28th Annual NASA Goddard
Software Engineering Workshop , Greenbelt, MD, 2003 , pp. 23 – 28 .

 E. Yourdon , Modern Structured Analysis . Englewood Cliffs, NJ : Prentice - Hall , 1989 .
 E. Yourdon , Just Enough Structured Analysis . New York : Yourdon Press , 2006 (free

e - book available from http://www.yourdon.com/jesa/, last accessed August 17,
2011).

www.it-ebooks.info

http://www.it-ebooks.info/

 6
SOFTWARE DESIGN APPROACHES

267

 Software design is a salient part of the entire software development process,
which can be an individual subprocess of the high - level product development
process. Furthermore, in embedded applications, the product development
process may include concurrent hardware and subsystem development subpro-
cesses, too. Software designers translate the problem - domain requirements
document discussed in the previous chapter into physical models of the solution
that are suffi cient for straightforward implementation or programming. The
resultant design document should be such that even an external programming
consultant could implement the code with minimal interaction with the design
team. Completeness of the design document is particularly important in glob-
ally distributed projects, where the requirements document might be created in
the United States, the design document in Finland, and the implementation in
India, for instance. Integrated CASE environments, which provide smooth
transitions from the requirements engineering phase to the design phase and
further to the implementation phase, should be used throughout the software
development process. Besides, it is essential to use standardized/widespread
modeling techniques, such as the SA/SD methods or the UML, to make the core
documentation understandable for various collaborating teams.

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

268 SOFTWARE DESIGN APPROACHES

 The Institute of Electrical and Electronics Engineers (IEEE) Standard
Dictionary of Electrical and Electronics Terms (IEEE Std 100 – 2000) describes
the term “ design ” as follows: The process of defi ning the architecture, compo-
nents, interfaces, and other characteristics of a system. Hence, during the
software design phase, numerous decisions are made concerning responsibility
assignment and fulfi llment, system architecture and deployment, separation of
concerns, as well as layering and modularization (Bernstein and Yuhas, 2005).
Moreover, the computational algorithms and their numerical precision are
specifi ed in the design document; such important decisions are often supported
by simulations or prototyping. The opportunity of design reuse also should
be carefully considered. In our experience with typical real - time applications,
the software design phase takes roughly the same amount of resources (in
person months) as the requirements - engineering and programming phases
together.

 The desired qualities of real - time software as well as advantageous software
engineering principles will be discussed in Sections 6.1 and 6.2 , respectively.
In addition, a mapping from these principles to qualities is sketched with a
pragmatic discussion. As the procedural and object - oriented approaches exist
in requirements engineering and programming phases, they both are naturally
available in the design phase, as well. Therefore, we discuss the procedural
design approach in Section 6.3 and the alternative object - oriented approach
in Section 6.4 . Both of these design sections are composed on real - world
examples. Section 6.5 gives an evaluative overview on a sample of life cycle
models that are currently used for the development of real - time software. The
preceding sections on software design approaches are summarized in Section
 6.6 with some suggestions. A carefully selected collection of stimulating exer-
cises is provided in Section 6.7 . Lastly, Section 6.8 contains a comprehensive
case study on designing real - time software (the corresponding requirements
document of this traffi c - light control system is available in Section 5.7).

 Some parts of this chapter have been adapted from Laplante (2003) .

 6.1 QUALITIES OF REAL - TIME SOFTWARE

 Software systems and individual components can be characterized by a number
of diverse qualities. External qualities are those that are observable by the
user, such as performance and usability, and are of explicit interest to the end
user. Internal qualities, on the other hand, are not observable by the user, but
aid the software developers to achieve certain improvement in external quali-
ties. For example, although the requirements and design documentation might
never be seen by a typical user, their adequate quality is essential in achieving
satisfactory external qualities. Such an external – internal distinction is a func-
tion of the software itself and the type of user involved.

 While it is benefi cial to know the software qualities and the motivations
behind them, it is equally desirable to measure them objectively. Measuring

www.it-ebooks.info

http://www.it-ebooks.info/

QUALITIES OF REAL-TIME SOFTWARE 269

of these characteristics of software is necessary in enabling end users and
designers to talk succinctly about the product, and for effective software
process control and project management. More importantly, however, it is
these qualities that shall be embodied in the real - time design.

 6.1.1 Eight Qualities from Reliability to Verifi ability

 Reliability is a measure of whether a user can depend on the software (Teng
and Pham, 2006). This quality can be informally defi ned in a number of ways.
For instance, one defi nition might be simply “ a system that a user can depend
on. ” Other common characterizations of a reliable software system include:

 • The system “ stands the test of time. ”
 • There is an absence of known errors that render the system useless.
 • The system recovers “ gracefully ” from errors.
 • The software is robust.

 In particular, for real - time systems, other informal characterizations of reli-
ability might include:

 • Downtime is below a specifi ed threshold.
 • The accuracy of the system remains within a certain tolerance.
 • Real - time performance requirements are met consistently.

 While all of these informal characteristics are certainly desirable in real - time
systems, they are diffi cult to measure or predict. Moreover, they are
not true measures of reliability, but of various attributes of the software
instead.

 There is specialized literature on software reliability that defi nes this quality
in terms of statistical behavior, that is, the probability that the software product
will operate as expected over a specifi ed time interval (Pham, 2000). These
characterizations generally take the following approach. Let S be a software
system, and let T be the time instant of system failure. Then the reliability of
 S at time t , denoted r s (t), or when there can be no confusion with other systems,
 r (t), is the probability that T is greater than t ; that is,

 r t P T t() = >(). (6.1)

 This is the probability that a software system will operate without failure for
a specifi ed period of time. In addition to the actual operating phase, also the
testing phase may be included in the considered period.

 A system with reliability function r (t) = 1 would never fail. However, it is
unrealistic to have such an expectation with any real - world system. Instead,
some reasonable goal, r (t) < 1, should be specifi ed.

www.it-ebooks.info

http://www.it-ebooks.info/

270 SOFTWARE DESIGN APPROACHES

 Example: Failure Probability Increases as a Function of Time

 Consider the monitoring system of a nuclear power plant with the specifi ed
failure probability of no more than 10 − 9 per hour. This represents a reli-
ability function of r (t) = (0.999999999) t , where t is in hours. Note that as
 t → ∞ , r (t) → 0. To illustrate, the failure probability, q (t) = 1 − r (t), for
various values of t is given in Table 6.1 . Moreover, after 35 years of opera-
tion (306,600 hours) — still a reasonable time for nuclear power plants — the
failure probability is approximately 0.0003.

 Another way to characterize software reliability is in terms of a failure
function or model. One failure function uses an exponential distribution
where the abscissa is time and the ordinate represents the expected failure
intensity at that time:

 f t e tt() = ≥λ λ , .0 (6.2)

 Here the failure intensity is initially high, as would be expected in new
software, since failures are detected more frequently during the testing
phase. However, the number of failures would be expected to decrease with
time during the operating phase, presumably as failures are uncovered and
repaired (see Fig. 6.1). The factor λ is a system - dependent parameter that
must be determined empirically.

 TABLE 6.1. Failure probability as a Function of Operating Hours

 t 10 0 10 1 10 2 10 3 10 4 10 5 10 6

 q (t) 10 − 9 ≈ 10 − 8 ≈ 10 − 7 ≈ 10 − 6 ≈ 10 − 5 ≈ 10 − 4 ≈ 10 − 3

 Figure 6.1. A model of failure represented by the exponential failure function
(Laplante, 2003).

λ

Time

F

a
ilu

re
s
 D

e
te

c
te

d

www.it-ebooks.info

http://www.it-ebooks.info/

QUALITIES OF REAL-TIME SOFTWARE 271

 Another common failure model is given by the “ bathtub curve ” shown in
Figure 6.2 . Brooks notes that while this curve is widely used to describe the
failure function of hardware and mechanical components, it might also be
useful in describing the number of errors found in a software product (Brooks,
 1995). This is particularly valid with embedded systems that have a long life-
time (even 10 – 30 years), and the software is updated (repaired/enhanced)
numerous times during the lengthy period.

 The interpretation of this failure function is apparent for hardware and
mechanics: a certain number of product units will fail early due to manufactur-
ing defects. Later, the failure intensity will increase again as the hardware/
mechanics ages and wears out. But software does not wear out. Therefore, if
software systems really seem to fail according to the bathtub curve, then there
has to be some plausible explanation.

 It is understandable that the largest number of errors will be found early
in a software product ’ s life cycle, just as the exponential failure model indi-
cates. But why would the failure intensity increase much later? There are at
least three possible explanations:

 1. The failures are due to the effects of patching the software (making quick
corrections to the code without designing them properly) for various
reasons.

 2. Late software failures are actually due to wearing of the underlying
hardware or possible sensors/actuators.

 3. As users master the basic software functions and begin to expose and
strain advanced features, it is possible that certain inadequately tested
functionality is eventually beginning to be used.

 Figure 6.2. A software failure function represented by the bathtub curve (Laplante,
 2003).

Time

F
a
ilu

re
s
 D

e
te

c
te

d

Late Failures

www.it-ebooks.info

http://www.it-ebooks.info/

272 SOFTWARE DESIGN APPROACHES

 Empirical failure models are used commonly to make rough predictions of
software failures during the entire operating phase. As the operating environ-
ments for the software may vary drastically in embedded applications, the
randomness of a practical environment will affect the failure rate in an unpre-
dictable way (Teng and Pham, 2006). Hence, the λ factor of Equation 6.2
should be a random variable.

 Often, the traditional quality measures of mean time to fi rst failure (MTFF)
or mean time between failure s (MTBF) are used to stipulate reliability in the
software requirements specifi cation. This approach to failure defi nition places
great importance on the effective elicitation and specifi cation of functional
requirements, because the requirements also defi ne the possible software
failures.

 Furthermore, real - time software execution is very sensitive to initial condi-
tions and the external data driving it. What appear to be random failures are
actually repeatable. The problem in fi nding and fi xing these problems before
a design is released, or even if the problem emerges once the embedded soft-
ware is in use, is the diffi culty of doing the detective work needed to discover
fi rst the particular conditions and second the data sequences that triggered the
fault to become a failure. The longer a software system runs, the more likely
it becomes that such a fault will be executed.

Correctness of software (Mills, 1992) is closely related to software reliability,
and the terms may sometimes be used interchangeably. The fundamental dif-
ference is that even a minor deviation from the requirements is strictly con-
sidered a failure and hence means the software is incorrect. However, a system
may still be deemed reliable if only minor deviations from the requirements
are experienced. As widely known, such minor deviations are rather common
in many software products, because typical software can only be tested par-
tially, and often just a small proportion of the actual input space is explored
statistically. In real - time systems, correctness incorporates both correctness of
outputs, as well as deadline satisfaction, as discussed in Chapter 1 .

Performance of software (Caprihan, 2006) is an explicit measure of some
required behavior. A general methodology for measuring algorithmic perfor-
mance is based on computational complexity theory (Goldreich, 2008).
Alternatively, a simulation model of the real - time system might be built with
the actual purpose of estimating performance. The most accurate approach,
though, involves directly timing the behavior of the completed system with a
logic analyzer or specifi c performance analysis tools.

Usability , which is often referred to as ease of use or user friendliness, is a
measure of how easy and comfortable the software is for humans to use
(Nielsen, 1993). This software quality is an elusive one. Properties that make
an application user friendly to novice users are often very different from those
desired by expert users or the software designers themselves. Demonstrative
prototyping can increase the usability of a software system because, for
instance, user interfaces can be evaluated and fi ne - tuned by a group of end
users of the fi nal product.

www.it-ebooks.info

http://www.it-ebooks.info/

QUALITIES OF REAL-TIME SOFTWARE 273

 Usability is often diffi cult to quantify, although it may be easy to argue that
some system is not usable. However, qualitative feedback from users and
individual problem reports can be used in most cases for evaluating usability.
Such general issues as user training time and readability of user documenta-
tion are possible measures of usability (Bernstein and Yuhas, 2005).

Interoperability refers to the ability of the software to coexist and cooperate
with other relevant software. It is especially important in component - based
software development, software reuse, and network - based software systems
(Wileden and Kaplan, 1999). For example, in real - time applications, the soft-
ware must be able to communicate with various devices using standard bus
structures and protocols. Interoperability is usually straightforward to achieve
if the decision to communicate is made before the software is designed — it is
much more laborious to attain afterwards.

 A concept related to interoperability is that of an open system (Dargan,
 2005). An open system is an extensible collection of independently written
applications that cooperate to function as an integrated system. Open systems
differ from open source code, which is source code that is made available to
the global user community for evolutionary improvement, extension, and cor-
rection, provided that the terms of the associated license are honored. An open
system allows the addition of new functionality by independent parties through
the use of standard interfaces whose detailed characteristics are published. Any
applications developer can then take advantage of these interfaces, and thereby
create software that can communicate using the interface. Open systems let
different applications written by different organizations interoperate. For
example, there are open standards for automotive (AUTOSAR, Automotive
Open System Architecture), building automation (BAS , Building Automation
System), and railway vehicle (IEEE Std 1473 - L) systems. Interoperability can
be measured in terms of compliance with relevant open system standards.

Maintainability is related to the anticipation of change that should guide
the software engineer throughout the development project. A software system
in which changes are relatively easy to make has a high level of maintainability;
this is connected directly to the readability and understandability of the
program code and associated documentation (Aggarwal et al., 2002). In the
long run, design for change will signifi cantly lower software life cycle costs and
lead to an enhanced reputation for the software engineer, the software product,
and the corresponding organization. Some embedded software products are
maintained even for a few decades, and, therefore, the issue of maintainability
is of particular importance in such cases.

 Maintainability can be broken down into two contributing properties:
evolvability and repairability. Evolvability is a measure of how easily the
system can be changed to accommodate new features or modifi cation of exist-
ing features. Furthermore, software is repairable if it allows for the fi xing of
all defects with a reasonable effort.

 Measuring these qualities of software is not always easy or even possible,
and often is based on anecdotal observation only. This means that changes and

www.it-ebooks.info

http://www.it-ebooks.info/

274 SOFTWARE DESIGN APPROACHES

the cost of making them should be tracked over time. Collecting such history
data has a twofold purpose. First, the costs of maintenance can be compared
with other similar systems for benchmarking and project management pur-
poses. Second, the information can provide experiential learning that will help
to improve the overall software development process, as well as the skills of
software engineers.

Portability of software is a measure how easily the software can be made
to run in different environments. Here, the term “ environment ” refers to the
hardware platform on which the software runs, the real - time operating system
used, or other system/application software with which the particular software
is expected to interact. Because of the I/O - intensive hardware with which the
software closely interacts, special care must be taken in making embedded
software portable.

 Hardware portability is achieved through a deliberate design strategy in
which hardware - dependent code is confi ned to the fewest code units as pos-
sible (such as device drivers). This strategy can be achieved using either pro-
cedural or object - oriented programming languages and through structured
or object - oriented design approaches. Both of these are discussed throughout
the text.

 On the other hand, portability of real - time operating systems or other
system programs means usually the adoption of some standard application
program interface (API) (Shinjo and Pu, 2005). This is commonly associated
with potential overhead caused by the standards - prescribed interface. In this
sense, portability may degrade the achievable real - time performance.

 Also, portability is diffi cult to measure, other than through anecdotal obser-
vation. Person - months required to move the software to a new environment
is a usual measure of this property. But this cannot be known before the actual
moving effort.

Verifi ability of software qualities refers to the degree to which various quali-
ties, including all of those previously introduced, can be verifi ed. In real - time
systems, verifi ability of deadline satisfaction (a form of performance) is of the
utmost importance. This topic is discussed further in Chapter 7 .

 One common technique for increasing verifi ability is through the insertion
of special program code that is intended to monitor certain qualities, such as
performance or correctness. Rigorous software engineering practices and the
effective use of an appropriate programming language can also contribute to
verifi ability.

 Measurement or prediction of software qualities is essential throughout
the whole software life cycle. Therefore, this activity should be integrated
seamlessly into the software development process. A summary of the
software qualities just discussed and possible ways to measure them is given
in Table 6.2 .

 Today, in the “ embedded systems era, ” the emphasis on desirable software
qualities has shifted gradually from correctness to reliability and maintainabil-
ity (Aggarwal et al., 2002). A further emphasis is on the need to increase the

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE ENGINEERING PRINCIPLES 275

productivity of software developers, due to the growing complexity of software
products and need for shorter time - to - market. The object - oriented design
approach, to be discussed in Section 6.4 , may help address this productivity
challenge (Siok and Tian, 2008).

 6.2 SOFTWARE ENGINEERING PRINCIPLES

 Software engineering has been criticized for not having the same kind of theo-
retical foundation as older engineering disciplines, such as electrical, mechani-
cal, or civil engineering. While it is true that only a few formulaic principles
exist, there are several fundamental rules that form the basis of sound software
engineering practice. The following subsection describes the most general and
prevalent principles that are particularly applicable in the design and imple-
mentation phases of real - time software.

 6.2.1 Seven Principles from Rigor and Formality to Traceability

 Because software development is a creative human activity related to problem
solving, there is an inherent tendency toward using informal ad hoc techniques
in software specifi cation, design, and coding. Nevertheless, a purely informal
approach is contrary to “ best software engineering practices. ” It should be
pointed out, however, that the best practices are actually dependent on the
application size as well as application type (Jones, 2010), and also on the size
of the development organization (Jantunen, 2010).

Rigor in software engineering requires the use of mathematical techniques.
Formality , on the other hand, is a higher form of rigor in which precise and
unambiguous engineering approaches are used. In the case of real - time
systems, strict formality would further require that there be an underlying
algorithmic approach to the specifi cation, design, coding, and documentation
of the software. Due to insuperable diffi culties in creating a pure algorithmic
approach, semiformal and informal approaches are needed to complement

 TABLE 6.2. Software Qualities and Possible Means for Measuring Them

 Software Quality Possible Measurement Approach

 Reliability Probabilistic measures, MTFF, MTBF, heuristic measures
 Correctness Probabilistic measures, MTFF, MTBF
 Performance Algorithmic complexity analysis, simulation, direct measurement
 Usability User feedback from surveys and problem reports
 Interoperability Compliance with relevant open standards
 Maintainability Anecdotal observation of resources spent
 Portability Anecdotal observation of resources spent
 Verifi ability Insertion of special monitoring code

www.it-ebooks.info

http://www.it-ebooks.info/

276 SOFTWARE DESIGN APPROACHES

individual formal approaches. For instance, certain parts of the design docu-
ment can be formal while most others are semiformal.

 Separation of concerns is an effective divide - and - conquer strategy practiced
by software engineers to manage miscellaneous problems related to complex-
ity. There are various ways in which separation of concerns can be achieved.
In terms of software design and coding, it is used in object - oriented design and
in modularization of procedural code. Moreover, there may be separation in
time, for example, developing an appropriate schedule for a collection of peri-
odic computing tasks with different execution periods.

 Yet another way of separating concerns is in dealing with individual soft-
ware qualities. For instance, it may be helpful to address the fault tolerance of
a system only while ignoring other qualities for some time. However, it must
be remembered that many of the software qualities are actually interrelated,
and it is often impossible to improve one without deteriorating another. Hence,
a project - specifi c compromise is typically needed.

 Modularity is commonly achieved by grouping together logically related
elements, such as statements, procedures, variable declarations, and object
attributes, in an increasingly fi ne - grained level of detail (see Fig. 6.3). Modular
design involves the decomposition of software behavior in encapsulated soft-
ware units, and can be achieved with both procedural and object - oriented

 Figure 6.3. Modular decomposition of code units. The arrows represent inputs and
outputs in the procedural paradigm. In the object - oriented paradigm, they represent
associations. The boxes represent encapsulated data and procedures in the procedural
paradigm. In the object - oriented paradigm, they represent classes (Laplante, 2003).

Level 1

Level 2

Level 3

Level 4

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE ENGINEERING PRINCIPLES 277

programming languages. The main goal of modularity is high cohesion and low
coupling of the software structure. With respect to the code units, cohesion
represents intramodule connectivity and coupling represents intermodule con-
nectivity. Cohesion and coupling can be illustrated as in Figure 6.4 , which
depicts software structures with high cohesion and low coupling (left), as well
as low cohesion and high coupling (right). Cohesion relates to the relationship
of the elements within a module. High cohesion implies that each module
represents a single part of the problem solution. Therefore, if the system ever
needs modifi cation, then the part that needs to be modifi ed exists in a single
place, being easier and less error prone to change.

 Constantine and Yourdon identifi ed seven levels of cohesion in the order
of increasing strength (Pressman, 2009):

 1. Coincidental . Parts of a module are not related at all, but simply bundled
into a single module.

 2. Logical . Parts that perform similar tasks are put together in a joint
module.

 3. Temporal . Tasks that execute within the same time span are brought
together.

 4. Procedural . The elements of a module make up a single control sequence.
 5. Communicational . All elements of a module act on the same area of a

data structure.
 6. Sequential . The output of one part in a module serves as input for

another part.
 7. Functional . Each part of a module is necessary for the execution of a

single function.

 Figure 6.4. Software structures with (a) high cohesion and low coupling, and (b) low
cohesion and high coupling. The inside squares represent statements or data; connect-
ing lines indicate functional dependency.

(a) (b)

www.it-ebooks.info

http://www.it-ebooks.info/

278 SOFTWARE DESIGN APPROACHES

 This above list could be used when designing the contents of specifi c software
modules; it brings valuable insight to the heuristic module - creation process.
Modules should not be created solely by “ grouping together logically related
elements ” — as is usually done. But there are multiple reasons to group indi-
vidual elements together.

 Coupling relates to the relationships between the modules themselves.
There is a great benefi t in reducing coupling so that changes made to one code
unit do not propagate to others; they are said to be hidden. This principle of
 “ information hiding, ” also known as Parnas partitioning, is the cornerstone of
all software design and will be discussed in Section 6.3.1 (Parnas, 1979). Low
coupling limits the effects of errors in a specifi c module (lower “ ripple effect ”)
and reduces the likelihood of data - integrity problems. In some cases, however,
high coupling due to time - critical control structures may be necessary. For
example, in most graphical user interfaces, control coupling is unavoidable,
and indeed desirable.

 Coupling has been characterized by six levels in the order of increasing
strength:

 1. None . All modules are completely unrelated.
 2. Data. Every argument is either a simple argument or data structure in

which all elements are used by the called module.
 3. Stamp. When a data structure is passed from one module to another but

that module operates on only some of the data elements of the whole
structure.

 4. Control. One module explicitly controls the logic of the other by passing
an element of control to it.

 5. Common. If two modules both have access to the same global data.
 6. Content. One module directly references the contents of another.

 To further illustrate both coupling and cohesion, consider the class structure
diagram (object - oriented design approach) shown in Figure 6.5 ; the fi gure
illustrates two interesting points. The fi rst is the clear difference between the
same system embodying low coupling and high cohesion versus high coupling
and low cohesion. The second point is that the proper use of visual design
techniques can positively infl uence the eventual design outcome.

Anticipation of change is another important principle in software design.
As has been mentioned, software products are subject to frequent change
either to support new hardware or software requirements or to repair defects.
A high maintainability level of the software product is one of the hallmarks
of outstanding commercial software.

 Developers of embedded software know that their systems are subject to
changes in hardware, algorithms, and even application. Therefore, these systems
must be designed in such a way as to facilitate changes without degrading
considerably the other desirable properties of the software. Anticipation of

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE ENGINEERING PRINCIPLES 279

change can be achieved in the software design through the adoption of an
appropriate software life cycle model and corresponding design methodolo-
gies, as well as through appropriate project - management practices and associ-
ated training efforts.

 In solving a problem, the principle of generality can be stated as the intent
to look for a more general problem that may be hidden behind it. As an
obvious example, designing an elevator control system for a low - end apart-
ment building is less general than designing it to be adaptable to various hotels,
offi ces, shopping centers, and apartment buildings.

 Generality can be achieved through a diverse number of approaches associ-
ated with procedural and object - oriented paradigms. For example, Parnas ’
information hiding can be used with procedural languages. Extensive param-
eterization is another commonly used approach for providing generality to
software. In object - oriented software, generalization is achieved by applying
certain design principles and through the use of architectural and design pat-
terns. Although generalized solutions may be more costly in terms of the
problem at hand, in the long run, the extra costs of a generalized solution may
be worthwhile. Nonetheless, these extra costs might affect real - time perfor-
mance, which is always a diffi cult issue to handle. Moreover, a manager of a

 Figure 6.5. Coupling and cohesion. The right way: low coupling and high cohesion. The
wrong way: high coupling and low cohesion.

Wrong Way

Right Way

www.it-ebooks.info

http://www.it-ebooks.info/

280 SOFTWARE DESIGN APPROACHES

specifi c development project might ask a relevant question: “ Why should this
project pay some costs of possible future projects in advance? ” This is, indeed,
a good question and should be addressed by the steering group of that particu-
lar project; there may be a confl ict between short - term and long - term goals.

Incrementality involves a software - engineering approach in which progres-
sively larger increments of the desired product are developed. Each increment
provides additional functionality, which brings the unfi nished product closer
to the fi nal one. Each increment also offers an opportunity for demonstration
of the product to the customer for the purposes of gathering supplementary
requirements and refi ning the look and feel of the product or its user interface,
for example. In reality, however, some advanced sets of increments have even
been delivered to the customer as “ the product ” due to sizeable delays in the
development project. This usually leads to serious problems and shall be
strictly avoided.

Traceability is concerned with the relationships between requirements, their
sources, and the system design. Regardless of the life cycle model used, docu-
mentation and code traceability are truly important. A high level of traceabil-
ity ensures that the software requirements fl ow down through the design and
program code, and then can be traced back up at every stage of the develop-
ment process. This would ensure, for instance, that a coding decision can be
traced back to a design decision to satisfy a corresponding requirement.

 Traceability is particularly important in embedded systems, because specifi c
design and coding decisions are often made to satisfy rather unique hardware
constraints that may not be directly associated with any higher - level require-
ment. Failure to provide a traceable path from such decisions through the
requirements can lead to substantial diffi culties in extending and maintaining
the system.

 Generally, traceability can be obtained by providing consistent links
between all documentation and the software code. In particular, there should
be links:

 • From requirements to stakeholders who proposed these requirements.
 • Between dependent requirements.
 • From the requirements to the design.
 • From the design to associated code segments.
 • From requirements to the test plan.
 • From the test plan to individual test cases.

 One way to create these links is through the use of an appropriate numbering
system throughout the documentation. For instance, a requirement numbered
3.1.1.2 would be linked to a design element with a similar number (the numbers
do not have to be the same as long as the annotation in the document guar-
antees traceability). In practice, a traceability matrix is constructed to help
cross reference the documentation and associated code elements (Table 6.3).

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE ENGINEERING PRINCIPLES 281

The matrix is constructed by listing the relevant software documents and the
code units as columns, and then each software requirement in the rows.
Traceability to the stakeholders related to certain requirements or to relevant
standards and regulations could also be added as columns in Table 6.3 .

 Constructing the traceability matrix in a spreadsheet software package
allows for providing multiple matrices sorted and cross - referenced by each
column as needed. For example, a matrix sorted by test case numbers would
be an appropriate appendix to the test plan. The traceability matrices are
updated at each step in the software life cycle. For instance, the column for
the code unit names (e.g., procedure names or object classes) would not be
added until after the code is developed. A way to foster traceability between
code units is through the use of data dictionaries, which are described later.

 Finally, a mapping (positive effect) from the individual software - engineering
principles, just discussed, to the desired software qualities of Table 6.2 is
sketched in Table 6.4 . Some of these mappings are explicit, while others are
more implicit. Interestingly, the software quality of maintainability appears to
be improvable by all the seven principles. Of the software engineering prin-
ciples, modularity seems to be a particularly strong one, since it can improve
all the software qualities except “ usability ” and “ verifi ability. ”

 6.2.2 The Design Activity

 The design activity is involved in identifying the components of the software
design and their interfaces from the software requirements specifi cation. The
principal artifact of this activity is the Software Design Description (SDD). In
the same way as the IEEE Std 830 – 1998 (discussed in Section 5.1.2) provides
a sound framework for requirements engineering documents, a recently
revised standard, IEEE Std 1016 – 2009, specifi es requirements on the informa-
tion content and organization for software design descriptions (IEEE, 2009).
According to the standard, “ SDD is a representation of a software design that
is to be used for recording design information, addressing various design con-
cerns, and communicating that information to the design ’ s stakeholders. ”

 TABLE 6.3. A Traceability Matrix Sorted by Requirement Number

 Requirement
Number

 Design Document
Reference
Number(s)

 Test Plan
Reference
Number(s)

 Code Unit
Name(s)

 Test Case
Number(s)

 3.1.1.1 3.1.1 3.1.1.1 Task_A 3.1.1.A
 3.2.4 3.2.4.1 3.1.1.B
 3.2.4.3 3.1.1.C
 3.1.1.2 3.1.1 3.1.1.2 Task_B 3.1.1.A
 3.1.1.D
 3.1.1.3 3.1.1.3 3.1.1.3 Task_C 3.1.1.B
 3.1.1.E

www.it-ebooks.info

http://www.it-ebooks.info/

 TA
B

L
E

 6
.4

.
 A

 M
ap

pi
ng

 M
at

ri
x

fr
om

 S
of

tw
ar

e
E

ng
in

ee
ri

ng
 P

ri
nc

ip
le

s
to

 S
of

tw
ar

e
Q

ua
lit

ie
s

in
 R

ea
l -

 T
im

e
A

pp
lic

at
io

ns

 P
ri

nc
ip

le
s/

Q
ua

lit
ie

s
 R

el
ia

bi
lit

y
 C

or
re

ct
ne

ss

 P
er

fo
rm

an
ce

 U

sa
bi

lit
y

 In
te

ro
pe

ra
bi

lit
y

 M
ai

nt
ai

na
bi

lit
y

 Po
rt

ab
ili

ty

 V
er

ifi
ab

ili
ty

 R
ig

or
 a

nd
 F

or
m

al
it

y
×

 ×

 ×

×

 ×

 ×
 Se

pa
ra

ti
on

 o
f

C
on

ce
rn

s
×

 ×

 ×

 ×

 ×

 ×

 ×

 ×

 M
od

ul
ar

it
y

×

 ×

 ×
×

 ×

 ×

 A
nt

ic
ip

at
io

n
of

 C
ha

ng
e

×

 ×

 ×
 G

en
er

al
it

y

×

 ×

 ×

 In
cr

em
en

ta
lit

y
×

 ×

×
×

 Tr
ac

ea
bi

lit
y

×

 ×

×

 ×

282

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE ENGINEERING PRINCIPLES 283

 During the design phase, a team of real - time systems engineers creates a
detailed software design and acquires a formal acceptance for it. That involves
the following tasks from the initial Architecture Design (Taylor et al., 2010)
to the Final Design Review (Hadar and Hadar, 2007):

 1. Architecture Design
 • Performing hardware/software trade - off analysis leading to hardware –

 software partitioning.
 • Making the determination between centralized or distributed pro-

cessing schemes.
 • Designing interfaces to external components.
 • Designing interfaces between internal components.

 2. Control Design
 • Determining concurrency of execution.
 • Designing principal control strategies.

 3. Data Design
 • Determining storage, maintenance, and allocation strategy for data.
 • Designing database structures and handling routines.

 4. Functional Design
 • Designing the start - up and shutdown processing.
 • Designing algorithms and functional processing.
 • Designing error processing and error - message handling.
 • Conducting performance analyses of critical functions.

 5. Physical Design
 • Determining physical locations of software components and data.

 6. Test Design
 • Designing any test software identifi ed in test planning.

 7. Documentation Design
 • Creating possible support documentation, such as the Operator ’ s

Manual, User ’ s Manual, Programmer ’ s Manual, and Application Notes.
 8. Intermediate Design Reviews (→ internal acceptances)

 • Conducting internal design reviews.
 9. Detailed Design

 • Developing the detailed design for all software components.
 • Developing the test cases and procedures to be used in the formal

acceptance testing.
 10. Final Design Review (→ organizational acceptance)

 • Documenting the software design in the form of the SDD.
 • Presenting the SDD at a formal design review for examination and

criticism.

www.it-ebooks.info

http://www.it-ebooks.info/

284 SOFTWARE DESIGN APPROACHES

 This is an intimidating set of substantial tasks that is further complicated by
the fact that many of them must occur in parallel or be iterated several times.
There is obviously no algorithm, per se, for conducting these tasks. Instead, it
takes many years of practicing, learning from the experience of others, and
good judgment to guide the software engineer heuristically through this maze
of individual design tasks. In such effort, collective knowledge of a matured
development organization would be of signifi cant aid.

 Two alternative methodologies, procedural and object - oriented design,
which are related to structured analysis and object - oriented analysis, respec-
tively, can be used to perform the design activities based on the software
requirements specifi cation. Both methodologies seek to arrive at a physical
software model containing small, detailed components.

 6.3 PROCEDURAL DESIGN APPROACH

 Procedural design methodologies, like structured design, involve top - down
and bottom - up approaches centered on procedural programming languages,
such as the popular C language. The most common of these approaches utilize
effective design decomposition via Parnas partitioning (Parnas, 1979).

 6.3.1 Parnas Partitioning

 Software partitioning into multiple software units with low external coupling
and high internal cohesion can be achieved through the principle of informa-
tion hiding . In this technique, a list of diffi cult design decisions or things that
are likely to change is fi rst prepared. Individual modules are then designated
to hide the eventual implementation of each design decision or a specifi c
feature from the rest of the system. Thus, only the functionality of each module
is visible to other modules, not the method of implementation. Changes in
these modules are therefore not likely to affect the rest of the system.

 This form of functional decomposition is based on the notion that some
aspects of a system are fundamental and remain constant, whereas others are
somewhat arbitrary and likely to change. Moreover, it is those arbitrary aspects
that often contain the most valuable design information. Arbitrary facts are
hard to remember and usually require lengthy descriptions; hence, they are
typical sources of documentation complexity.

 The following fi ve steps can be used to implement a good design that
embodies information hiding:

 1. Begin by characterizing the likely changes (consider different time hori-
zons of the life cycle) and their effects.

 2. Estimate the probabilities of each type of change.
 3. Organize the software to confi ne likely and signifi cant changes to a

minimum amount of code.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL DESIGN APPROACH 285

 4. Provide an “ abstract interface ” that abstracts from the potential
differences.

 5. Implement “ objects, ” that is, abstract data types and modules that hide
changeable data and other structures.

 These steps reduce intermodule coupling and increase intramodule cohesion.
Parnas also indicated that although module design is easy to describe in text-
books, it is diffi cult to achieve in practice. He suggested that extensive real -
 world examples are needed to illustrate the point correctly (Parnas, 1979).

 As an example, consider a portion of the display function of a graphics
subsystem associated with an elevator monitoring system and depicted in
hierarchical form in Figure 6.6 . Such monitoring systems are used in supervi-
sion centers and can also be available in large lobbies for displaying the eleva-
tor traffi c. It consists of color graphics that must be displayed (e.g., a
representation of multiple elevator shafts, animated elevator cars, and regis-
tered calls) and are essentially composed from bars, rectangles, and circles.
Different objects can naturally reside in different display windows. The actual
implementation of bars, rectangles, and circles is based on the composition of
line - drawing calls. Thus, line drawing is the most basic (hardware - dependent)
function in this application. Whether the actual graphics controller is based on
pixel, vector, or even semi - graphics does not matter; only the line - drawing
routine with standard software interfaces needs to be changed. Hence, the
hardware dependencies have been isolated to a single code unit.

 Parnas partitioning hides the implementation details of software features,
design decisions, low - level hardware drivers, and so forth, in order to limit the

 Figure 6.6. Parnas partitioning of graphics rendering software.

Images

Window

Rectangle

Line

Circle

Line

Bar

Line

Pixel, Vector, or

Semi-Graphics

www.it-ebooks.info

http://www.it-ebooks.info/

286 SOFTWARE DESIGN APPROACHES

scope of impact of future changes or corrections. Such a technique is especially
applicable and useful in embedded systems; since they are so directly tied to
hardware, it is important to partition and localize each implementation detail
with a particular hardware interface. This approach allows easier modifi cations
due to possible hardware interface changes, and minimizes the amount of code
affected.

 If in designing the software modules, increasing levels of detail are deferred
until later (subordinate code units), then the software design approach is
called top - down . If, on the other hand, the design detail is dealt with fi rst and
then increasing levels of abstraction are used to encapsulate those details, the
approach is obviously bottom - up .

 In Figure 6.6 , it would be possible to design the software by fi rst describing
the characteristics of various components of the system and the functions
that are to be performed on them, such as opening, sizing, and closing windows.
Then the window functionality could be broken down into its constituent
parts, such as rectangles and text. These could be subdivided even further,
that is, all rectangles consist of lines, and so on. The top - down refi nement
continues until the lowest level of detail needed for code development has
been reached.

 Alternatively, it is possible to begin by encapsulating the details of the
most volatile part of the system, the hardware implementation of a line or
pixel, into a single code unit. Then working upward, increasing levels of
abstraction are created until the system requirements are satisfi ed. This is a
bottom - up approach to software design. In many real - world applications,
however, the software design process contains both top - down and bottom - up
sections.

 6.3.2 Structured Design

 Structured design (SD) is the companion methodology to structured analysis.
It is a systematic approach concerned with the specifi cation of the software
architecture and involves a number of strategies, techniques, and tools. SD
supports a comprehensive but easy - to - learn design process that is intended
to provide high - quality software and minimized life cycle expenses, as well
as to improve reliability, maintainability, portability, and overall performance
of software products. Structured analysis (SA) is related to SD in the
same way as a requirements representation is related to the software archi-
tecture, that is, the former is functional and fl at, but the latter is modular and
hierarchical.

 The transition mechanisms from SA to SD are purely manual and involve
substantial problem - solving effort in the analysis and trade - offs of alternative
approaches. Normally, SD proceeds from SA in the following manner. Once
the context diagram (CD) is fi rst created, a hierarchical set of data fl ow dia-
gram s (DFD s) is developed. DFDs are used to partition system functions and
document that partitioning inside the specifi cation. The fi rst DFD, the level 0

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL DESIGN APPROACH 287

diagram, illustrates the highest level of system abstraction. Subdividing pro-
cesses to lower and lower levels until they are ready for detailed design
renders further DFDs with successive levels of increasing detail. This heuristic
decomposition process is called downward leveling, and it corresponds to the
top - down design approach. Nevertheless, the bottom - up approach is also used
commonly when developing DFDs. In that case, the composition process is
called upward leveling. A problem - driven mixture of downward and upward
leveling is preferred by most software designers (Yourdon, 1989).

 In the CD (see Fig. 5.13), rectangles represent terminators that model the
environment boundary. They are labeled with a noun phrase that describes the
agent, device, or system from which data enters or to which it exits. Each
process (or data transformation) depicted by a circle in CD/DFDs is labeled
as a verb phrase describing the operation to be performed on the data, although
it may be labeled with the name of a system or specifi c operation that manipu-
lates the data as well. Solid arrow lines are used to connect terminators to
processes and between processes to indicate the fl ow of data through the
system. Each arrow line is labeled with a noun phrase that describes the data
it carries. Moreover, parallel lines indicate data stores, which are labeled by a
noun phrase naming the database, fi le, or repository where the system stores
data (either simple data elements or a more complex data structure). A data
store is passed to lower levels of hierarchy by connecting it with the corre-
sponding process.

 Each DFD should preferably have between fi ve and nine processes
(Yourdon, 1989). The descriptions for the lowest level processes are called
process specifi cations, or P - SPECs, and are expressed in either decision tables
or trees, pseudocode, or structured English, and are used to describe the
detailed algorithms and operational logic of the actual program code. Yourdon
stated that the purpose of structured English is “ to strike a reasonable balance
between the precision of a formal programming language and the casual
informality and readability of the English language ” (Yourdon, 1989). Figure
 6.7 illustrates a typical evolution path from the context diagram through data
fl ow diagrams to process specifi cations.

 Example: Highest - Level DFD of the Elevator Control System

 Consider again the elevator control system discussed in Section 3.3.8 and
refer to its context diagram given in Figure 5.13 . The associated level 0 DFD
is shown in Figure 6.8 . It contains fi ve individual processes and three shared
data stores (“ global memory ”). To create such a DFD, a thorough view/
understanding of the elevator control system to be designed is developed
gradually; hence, the resulting DFD is a refi ned outcome of a longish itera-
tive process consisting of both top - down and bottom - up stages.

 It should be noted that this DFD includes also a few control fl ows
(dashed arrow lines), which are used to activate individual processes. These

www.it-ebooks.info

http://www.it-ebooks.info/

288 SOFTWARE DESIGN APPROACHES

 Figure 6.7. Evolution path from the context diagram to level 0 DFD to level 1 DFD,
and fi nally to a P - SPEC.

System

A C

B

X

Y

Z

Part 1

X

Part 2
Part 3

Y
Z

a

b

Part 3.1

a

Part 3.2

Z
R

b

P_SPEC 3.1

R: Data_out;
a: Data_in_and_out;

Body
 . . .

Step 1

Step 2 Step 3

Step 4

CD

DFD 0 DFD 1

activations are related to hardware interrupts and certain internal events,
as outlined below:

 1. Communications . Activated when the group dispatcher sends a
request to communicate.

 2. Update Destination . Periodic activation (75 - ms timer interrupt).
 3. Perform Runs . Activated primarily by Process 2 (also by the door

and door zone interrupts) when there is a need to start a fl oor - to - fl oor
run or to stop at the next possible fl oor (or perform some critical door
control actions).

 4. Supervise Operation . Periodic activation (500 - ms timer interrupt).
 5. Connect to Service Tool . Activated when an elevator technician

presses some key of the service tool.

 Notice that here the hardware interrupts were not included in the context
diagram, but appear, for the fi rst time, in this level 0 DFD.

 To complement the DFDs, entity relationship diagram s (ERD s) are often used
to defi ne explicit relationships between stored data objects in the system.
Hence, the entities of the ERD are modeling information concepts of the
software application.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL DESIGN APPROACH 289

 Figure 6.8. Level 0 DFD for the elevator control system. * This incoming data fl ow is
connected to two processes.

Motion

Status *

Run/Stop
Commands

Door

 Status *

Door
Commands

Run-Specific
Information

Car Calls and
Operational Status

Car Position and
Direction

 Motion

 Status *

Elevator
Status

Assigned
Calls

Special
Commands

Requested
Data

1
Communicate

Received Data

Data to Be Sent

2
Update

Destination

3
Perform

Runs

Commands and
Status

4
Supervise
Operation

5
Connect to
Service Tool

Run or Stop

Communications
Interrupt

Door
Interrupts Door-Zone

Interrupt

75 ms
Interrupt

500 ms
Interrupt

Service Tool
Interrupt

Diagnostics
Data

Door

 Status *

Indicator
Status

 Furthermore, a data dictionary (DD) is an essential component of the
structured design, and includes entries for data fl ows, control fl ows, data stores,
and buffers appearing in DFDs and control fl ow diagrams (to be discussed
shortly). In addition, also the entries of ERDs should be included in the DD.
Each entry is identifi ed typically by its name, entry type, range, resolution, unit,
location, and so forth. The data dictionary is organized alphabetically for ease
of use. Other than that, there is no standard format, but every design element
must have a descriptive entry in it. Most SA/SD CASE tools support the data -
 dictionary feature in addition to the diagrams mentioned above.

www.it-ebooks.info

http://www.it-ebooks.info/

290 SOFTWARE DESIGN APPROACHES

 Additional “ Location ” information will be added as the program code is
developed. In this way, data dictionaries help to provide traceability between
design/code elements.

 There are, however, apparent problems in using the standard structured
analysis and structured design (SA/SD) to model real - time systems, including
diffi culty in modeling time dependencies and events. Consequently, concur-
rency is not adequately depictable using this form of SA/SD.

 Another problem may arise already when creating the context diagram.
Control fl ows are not easily translatable into code because they are hardware
or operating - system dependent. In addition, such a control fl ow does not
really make sense since there is no connectivity between portions of it, a con-
dition known as “ fl oating. ” As a representative example, the DFD of Figure
 6.8 has altogether six fl oating control fl ows associated with hardware
interrupts.

 Details of the underlying hardware need to be known for further modeling
of certain processes. For example, what happens if the communications hard-
ware (interacts with Process 1) is changed? Or if another service tool with a
different kind of keypad or display panel is taken in use (interacts with Process
5)? In such cases, the hardware - originated changes would need to propagate
into the level 1 DFD for the corresponding process, any subsequent levels, and,
ultimately, into the program code.

 Making and tracking changes in structured design is fraught with danger,
and hence requires special attention. Besides, a single change could mean that
signifi cant amounts of code would need to be rewritten, recompiled, and prop-
erly linked with the unchanged code to make the system work.

 As expressed above, the standard SA/SD methodology is not well equipped
for dealing with time, obviously, because it is a data - oriented and not a control -
 oriented approach. In order to address this shortcoming, the SA/SD method
was extended by allowing for the addition of control fl ow analysis . This exten-
sion of SA/SD is called real - time SA/SD (SA/SD/RT). To accomplish this, the

 Example: A Sample Data - Dictionary Entry

 For the elevator control system, one DD entry might appear as follows:

Name: Car call table

Alias: Car_calls

Entry type: Data store

Description: An integer vector containing the car call status for each
possible destination fl oor

Values: “ 1 ” corresponds to “ car call registered ” and “ 0 ” represents
 “ no car call, ” whereas other values are illegal

Location: Level 2.1 DFD

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURAL DESIGN APPROACH 291

following artifacts were added to the standard approach: dashed arrow lines
to indicate the fl ow of control messages and dashed parallel lines indicating
message buffers. More specifi cally, dashed arrow lines can be either triggering
events, such as hardware interrupts, or specifi c control fl ows between pro-
cesses. A control fl ow can carry a single message (such as “ activate ” or “ deac-
tivate ”), or it can form a structure of multiple messages. A message buffer, on
the other hand, is a data store that contains explicit control characteristics,
since it can behave autonomously as a stack or queue. Furthermore, a dashed
circle represents a control transformation in Ward - Mellor SA/SD/RT (Ward
and Mellor, 1985), and it can be used conveniently to sequence data fl ow
diagrams. For that purpose, Mealy - type fi nite state machines are commonly
used to defi ne the encapsulated state sequence and corresponding process
activations.

 The addition of the control artifacts allows, in principle, for the creation of
a diagram containing solely control artifacts called a control fl ow diagram
(CFD). These CFDs can be further decomposed into C - SPECs (control speci-
fi cations), which can then be described by fi nite state machines. However, the
control and data fl ow diagrams are usually combined as shown in Figure 6.8 .
The important relationship between the control and process models is depicted
in Figure 6.9 .

 Figure 6.9. The relationship between control and process models (Laplante, 2003).

Process Model

Control Model

Data Inputs Data Outputs

Control Outputs Control Inputs

Process

Activations

Data

Conditions

DFDs

CFDs

P-SPECs

C-SPECs

www.it-ebooks.info

http://www.it-ebooks.info/

292 SOFTWARE DESIGN APPROACHES

 6.3.3 Design in Procedural Form Using Finite State Machines

 One of the advantages of using fi nite state machines in the software require-
ments specifi cation and later in the software design is that they can be easily
(or even automatically) converted to code and test cases. For instance, consider
the control of the elevator door. The tabular representation of the state transi-
tion function (see Table 5.2), which describes the system ’ s high - level behavior
rigorously, can be easily transformed into a design using the generic pseudo-
code shown in Figure 6.10 . Each procedure associated with the possible door
states (Open, Closing, Closed, Opening, Nudging, Fault C, and Fault O) will
be structured code that can be viewed as executing in one of any number of
possible states at every instant in time. This functionality can be described
conveniently by the pseudocode shown in Figure 6.11 .

 Figure 6.10. A generic pseudocode that can implement the behavior of fi nite state
machines (Laplante, 2003).

typedef states: (state 1,...,state n); {n is # of states}
 alphabet: (input 1,...,input n);
 table_row: array [1..n] of states;

procedure move_forward; {advances FSM one state}

var
 state: states;
 input: alphabet;
 table: array [1..m] of table_row; {m is alphabet’s size}

begin
 repeat
 get(input); {read one token from input stream}
 state := table[ord(input)] [state]; {next state}
 execute_process (state);
 until input = EOF;
end;

 Figure 6.11. Finite - state - machine code for executing a single operational process; each
process can exist in multiple states, allowing partitioning of the program code into
appropriate modules (Laplante, 2003).

procedure execute_process (state: states);

begin

 case state of
 state 1: process 1; {execute process 1}
 state 2: process 2; {execute process 2}
 ...
 state n: process n; {execute process n}

end;

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED DESIGN APPROACH 293

 Moreover, the pseudocodes given in Figures 6.10 and 6.11 can be easily
translated to any procedural language or even to an object - oriented one.
Alternatively, the system behavior can be described with a case statement or
nested if–then statements such that, given the current state and receipt of
a signal, a new state is assigned. The advantage of fi nite - state machine design
over the case statement alternative is, of course, that the former is more fl ex-
ible and compact.

 6.4 OBJECT - ORIENTED DESIGN APPROACH

 As discussed in Chapter 4 , object - oriented programming languages are those
characterized by data abstraction, inheritance, polymorphism, and messaging.
Data abstraction through a variety of objects provides facilities for effective
information hiding, or encapsulation and protected variation. Inheritance
allows the software engineer to defi ne new objects in terms of previously
defi ned ones so that the new objects inherit properties. Function polymor-
phism allows the programmer to defi ne operations that behave differently,
depending on the type of object involved. Moreover, messaging allows objects
to communicate and invoke the methods that they support.

 Object - oriented languages provide a natural environment for information
hiding through encapsulation. The state, data, and behavior of objects are
encapsulated and accessed only via a published interface or certain private
methods. For example, in the inertial measurement system (see Fig. 5.6), it
would be appropriate to design a class called “ accelerometer ” with attributes
describing its physical implementation and methods describing its output,
compensation algorithm, and so forth.

 Object - oriented design is a modern approach to systems design that views
the system components as objects, as well as data processes, control processes,
and data stores that are encapsulated within objects. Early forays into object -
 oriented design were led by aims to reuse some of the better features of
structured methodologies, such as the data fl ow and entity relationship dia-
grams, by reinterpreting them in the context of object - oriented languages. This
can be observed also in the popular unifi ed modeling language (UML), which
became standardized in the late nineties; the latest revision of the standard is
UML 2.3 that was released in May 2010.

 6.4.1 Advantages of Object Orientation

 Over the last decade, the object - oriented framework has gained signifi cant
acceptance within the embedded - software community. The main advantages
of applying object - oriented paradigms in real - time systems are the future
extensibility and reuse that can be attained, and the relative ease of future
changes. Also, the productivity of programmers is potentially improved through
the use of object - oriented techniques. Most software systems are subject to

www.it-ebooks.info

http://www.it-ebooks.info/

294 SOFTWARE DESIGN APPROACHES

near - continuous change: requirements change, merge, emerge, and mutate;
target languages, platforms, and architectures change; and the way the software
is employed in practice changes, too. Larman pointed out that after the initial
release of a typical software product, at least half of the effort and cost is spent
in modifi cation (Larman, 2002a). This calls for fl exibility and places a consider-
able burden on the software design: How can systems that must support
such widespread change be built without compromising quality measures?
There are four basic principles of object - oriented software engineering that
address this question, and they have been recognized collectively as supporting
reuse .

 First recorded by Meyer, the open - closed principle (OCP) states that classes
should be open to extension, but closed to modifi cation (Meyer, 2000). That
is, it should be possible to extend the behavior of a class in response to new
or changing requirements, but modifi cation to the source code is not allowed.
While these expectations may seem at odds (particularly to those whose back-
ground is primarily in procedural languages), the obvious key is abstraction.
In object - oriented systems, a superclass can be created that is fi xed, but can
represent unbounded variation by subclassing. This aspect is clearly superior
to structured approaches in making changes, for instance, in accelerometer
compensation algorithms, which would require new function parameter lists
and wholesale recompilation of all modules calling that code in the structured
design.

 While not a new idea, Beck gave a name to the principle that any aspect of
a software system — be it an algorithm, a set of constants, documentation, or
logic — should exist in one and only one place (Beck, 1999). This so - called
once - and - only - once principle (OAOOP) isolates future changes, makes the
system easier to comprehend and maintain, and through the low coupling and
high cohesion that the principle instills, the reuse potential increases signifi -
cantly (Beck, 1999). The encapsulation of state and behavior in objects, and
the ability to inherit properties between classes, allows for the rigorous appli-
cation of these ideas in an object - oriented system, but is diffi cult to implement
in structured approaches. More importantly, in structured approaches, OAOOP
needs to be breeched frequently for reasons of performance, reliability, avail-
ability, and, often, for security as well.

 Furthermore, the dependency inversion principle (DIP) states that high -
 level modules should not depend upon low - level modules; both should depend
upon abstractions. This can be reformulated: Abstractions should not depend
upon details — details should depend upon abstractions. Martin introduced
this idea as an extension to the OCP with reference to the proliferation of
dependencies that exist between high - and low - level modules (Martin, 1996).
For example, in a structured decomposition approach, the high - level proce-
dures reference the lower - level procedures, but changes often occur at the
lowest levels. This infers that high - level modules or procedures that should be
unaffected by such detailed modifi cations may be affected due to these depen-
dencies. Again, consider the case where the accelerometer characteristics

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED DESIGN APPROACH 295

change and even though perhaps only one routine needs to be rewritten,
the calling module(s) may need to be modifi ed and recompiled, too. A prefer-
able situation would be to reverse these dependencies, as is evident in the
 Liskov substitution principle (LSP). The intent here is to allow dynamic
changes in the preprocessing scheme, which is achieved by ensuring that all
the accelerometer objects conform to the same interface, and are therefore
interchangeable.

 Defi nition: Liskov Substitution Principle

 Liskov expressed the principle of the substitutivity of subclasses for their
base classes as: If for each object o1 of type S , there is an object o2 of type
T such that for all programs P defi ned in terms of T , the behavior of P is
unchanged when o1 is substituted for o2 , then S is a subtype of T (Liskov,
 1988).

 Defi nition: Pattern

 A pattern is a named problem – solution pair that can be applied in different
contexts, with explicit advice on how to apply it in new situations.

 This useful principle has led to the concept of type inheritance and is the basis
of polymorphism in object - oriented systems, where instances of derived classes
can be substituted for each other, provided they fulfi ll the obligations of a
common superclass.

 6.4.2 Design Patterns

 Developing embedded software is hard, and developing truly reusable soft-
ware is even harder. Competitive software designs should be specifi c to the
current problem, but general enough to address potential future problems and
requirements. Hence, there may arise a cost - related confl ict between short -
 term and long - term goals. Experienced designers know not to solve every
problem from fi rst principles, but to reuse solutions encountered previously,
that is, they fi nd recurring patterns and use them as a basis for new designs.
This is simply an embodiment of the principle of generality.

 While object - oriented systems can be designed to be as rigid and resistant
to extension and modifi cation as in any other paradigm, object - orientation has
the ability to include distinct design elements that can cater to future changes
and extensions. These “ design patterns ” were fi rst introduced to the main-
stream of software engineering practice by Gamma, Helm, Johnson, and
Vlissides, and are commonly referred to as the “ Gang of Four ” (GoF) patterns
(Gamma et al., 1994).

 The formal defi nition of a pattern varies throughout the literature. We will
use the following informal defi nition throughout this text.

www.it-ebooks.info

http://www.it-ebooks.info/

296 SOFTWARE DESIGN APPROACHES

 Our presentation is concerned with three pattern types: architectural patterns ,
design patterns , and idioms . An architectural pattern occurs across subsystems;
a design pattern occurs within a subsystem, but is independent of the program-
ming language; and an idiom is a low - level pattern that is language specifi c
(Horstmann, 2006).

 In general, every pattern consists of four essential elements:

 1. A name (such as “ fa ç ade ”)
 2. The problem to be solved (such as “ provide a unifi ed interface to a set

of interfaces in a subsystem ”)
 3. The solution to the problem
 4. The consequences of the solution

 More accurately, the problem describes when to apply the pattern in terms of
specifi c design problems, such as how to represent algorithms as objects. The
problem may describe class structures that are symptomatic of an infl exible
design. Finally, the problem section might include conditions that must be met
before it makes sense to apply the pattern.

 The solution, on the other hand, describes the elements that make up the
design, though it does not describe any concrete design or implementation.
Rather, the solution provides how a general arrangement of objects and classes
solves the problem. Consider, for instance, the previously mentioned GoF
patterns. They describe 23 design patterns, each being either creational , behav-
ioral , or structural in its intent (see Table 6.5). This table is provided for illus-
tration only, and it is not our intention to describe any of these patterns in
detail, since they are well documented elsewhere (Gamma et al., 1994). Some
patterns have evolved specifi cally for real - time systems, and they provide
various approaches to addressing the fundamental real - time scheduling, com-

 TABLE 6.5. The Original Set of Design Patterns Popularized
by the “ Gang of Four ” (Gamma et al., 1994)

 Creational Behavioral Structural

 Abstract factory Chain of responsibility Adapter
 Builder Command Bridge
 Factory method Interpreter Composite
 Prototype Iterator Decorator
 Singleton Mediator Fa ç ade
 Memento Flyweight
 Observer Proxy
 State
 Strategy
 Template method
 Visitor

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED DESIGN APPROACH 297

munications, and synchronization problems, for example, Douglass (2003) and
Schmidt et al. (2000) .

 Let us consider Douglass ’ real - time pattern set. Douglass groups his 48
patterns into six classes (Douglass, 2003):

 1. Subsystem and component architecture
 2. Concurrency
 3. Memory
 4. Resource
 5. Distribution
 6. Safety and reliability

 As it turns out, we have discussed many of these patterns in Chapter 3 (but
without mentioning the term “ pattern ”). The architecture patterns include the
layered architecture that is so common to real - time operating systems (see Fig.
 3.2), and the virtual machine which is the underlying architecture for Java. Of
the concurrency patterns, many are based on solutions that we have already
discussed, for instance, “ round - robin, ” “ static priority, ” “ dynamic priority, ” and
 “ cyclic executive. ” Various solutions for memory allocation, buffering, and
garbage collection, are included in the memory patterns. The resource patterns,
on the other hand, describe solutions to the critical - section problem through
the use of semaphores, and the priority inheritance and priority ceiling proto-
cols, among others. The distribution patterns deal with the problem of a syn-
chronous control over a set of independent processes, and incorporates
solutions found in other sets, such as the GoF ’ s observer and proxy patterns.
Finally, the safety and reliability patterns give solutions to improve fault toler-
ance and reliability through various types of redundancy, watchdog timers, and
the like, many of which we will discuss in Chapter 8 . Moreover, Douglass ’
pattern set includes many other solutions to real - time problems in a format
that is quite accessible to the developer.

 A comprehensive study on available pattern collections is provided by
Henninger and Corr ê a (2007) . They pointed out: “ As the number of patterns
and diversity of pattern types continue to proliferate, pattern users and devel-
opers are faced with diffi culties of understanding what patterns already exist
and when, where, and how to use or reference them properly. ” This relevant
concern is based on a careful survey, where altogether 170 software
development - related pattern entities with more than 2200 patterns were iden-
tifi ed and classifi ed. A majority of those patterns is of architectural or design
type. To avoid overlooking opportunities to utilize design patterns effectively,
Briand et al. proposed a methodology for semiautomating the detection of
areas within UML designs that are suitable candidates for the use of design
patterns (Briand et al., 2006). Such methodologies, if just available in CASE
environments with high usability, could advance the use of design patterns
among practitioners.

www.it-ebooks.info

http://www.it-ebooks.info/

298 SOFTWARE DESIGN APPROACHES

 6.4.3 Design Using the Unifi ed Modeling Language

 Today, the UML is widely accepted as the de facto standard for the specifi ca-
tion and design of software - intensive systems using the object - oriented
approach. By bringing together the “ best - of - breed ” in diverse specifi cation
techniques, the UML has become a sophisticated family of individual lan-
guages or diagram types, and users can choose which members of the family
are suitable for their particular domain. Furthermore, complete UML models
consist of a collection of diagrams, as well as accompanying textual and other
documentation.

 The UML is a graphical language based upon the premise that any system
can be composed of communities of interacting entities. Various aspects of
those entities and their interaction can be described using the original set
of nine diagrams: activity, class, communication, component, deployment,
sequence, state machine, object, and use case. Of these UML diagrams, fi ve
depict behavioral or dynamic views (activity, communication, sequence, state -
 machine, and use - case), while the remaining four are concerned with structural
or static aspects. With respect to real - time systems, it is the behavioral diagrams
that are of particular interest, since they defi ne what must happen in the
system under consideration. Many of those original diagrams are illustrated
in the extensive design case study at the end of this chapter. The principal
artifacts generated when using the UML as well as their relationships are
depicted in Figure 6.12 .

 Figure 6.12. The role of UML in specifi cation and design; adapted from Larman
 (2002b) .

Domain Model

Design Model

Use Case Model

Requirements

Application
Modeling

Design

Use Cases

 Use Case Diagrams

 System Sequence Diagrams

 System Operation

Concepts, Attributes, and
Associations

State Changes in
Domain Concepts,

Attributes, and
Associations

Software Classes in
Domain Layer of

Design from Concepts
in Domain Model

Multiple UML
Diagrams and

Other Documents

Class1 Class2

Class3

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED DESIGN APPROACH 299

 In addition to the nine diagrams mentioned above, the UML 2.2 (released
in 2009) has fi ve other diagrams (OMG Unifi ed Modeling Language ™ [OMG
UML], 2009). Nonetheless, some of the numerous diagrams are partially
redundant and used infrequently. All the 14 UML diagrams are introduced
below in alphabetical order. For each of the diagrams, a suggested Learning
Priority (LP) is given according to Ambler (2004) ; Ambler ’ s LP has three
possible levels: high, medium, and low. Although these suggestions are refer-
ring to the needs of “ a business application developer, ” they give helpful
guidelines also for real - time software developers.

Activity Diagram (Behavioral/General; LP = High) : Activity diagrams
are closely related to the classical fl owchart and are used for the same
purpose, that is, to specify the fl ow of control. However, unlike fl owcharts,
they can model concurrent computational steps and the fl ow of objects
as they move from state to state at different points in the fl ow of control.
In fact, in UML 2.0 and later, the activity diagram was refashioned to be
more similar to the Petri net, which is widely used in digital hardware
design to conduct synchronization analysis and to identify deadlocks,
race conditions, and dead states. Thus, activity diagrams are useful in
modeling dynamic aspects of a real - time system.

Class Diagram (Structural; LP = High) : During system design, the class
diagram defi nes the actual class attributes and methods implemented in
an object - oriented programming language. Design pattern architectures
are explored and physical requirements assessed during design. Design
patterns provide guidance on how the defi ned class attributes, methods,
and responsibilities should be assigned to objects. Physical requirements
require the programmer to revisit the analysis class diagram, where new
classes for the system requirements are defi ned. Figure 6.A10 in Appendix
 1 at the end of this chapter is a design class diagram for the traffi c - light
control system.

Communication Diagram (Behavioral/Interaction; LP = Low) : Communi-
cation diagrams show the messages passed between objects through the
basic associations between classes. In essence, they depict the dynamic
behavior on static class diagrams. Communication diagrams are the most
emphasized of UML interaction diagrams because of their clarity and
expression of more information. The communication diagram contains
classes, associations, and message fl ows between classes. Figures 6.A4 –
 6.A9 in Appendix 1 at the end of the chapter are communication dia-
grams for the traffi c - light control system.

Component Diagram (Structural; LP = Medium) : These diagrams are
made up of components, interfaces, and relationships. Components rep-
resent preexisting entities. Interfaces represent the functionality of com-
ponents that are directly available to the user, and relationships represent
conceptual relationships between components (Holt, 2001).

www.it-ebooks.info

http://www.it-ebooks.info/

300 SOFTWARE DESIGN APPROACHES

Composite Structure Diagram (Structural; LP = Low) : Composite struc-
ture diagrams defi ne the internal structure of a class and also the imme-
diate collaborations that are enabled by this structure.

Deployment Diagram (Structural; LP = Medium) : Deployment diagrams
consist of nodes representing real - world aspects (such as the hardware
platform and execution environment) of a system, and links that show
relationships between individual nodes.

Interaction Overview Diagram (Behavioral/Interaction; LP = Low) : These
diagrams provide an interaction overview, where nodes represent indi-
vidual interaction diagrams (a subset of behavioral diagrams).

Object Diagram (Structural; LP = Low) : Object diagrams realize part of
the static model of a system and are closely related to class diagrams.
They show the insides of things in the class diagrams, as well as their
relationships. Moreover, they represent a model or “ snapshot ” of the
partial or complete run - time system at a given point in time.

Package Diagram (Structural; LP = Low) : These diagrams show how the
software system is partitioned into logical packages by depicting the
interdependencies among these packages.

Profi le Diagram (Structural; LP = low, Though Not Included in Ambler ’ s
Suggestions for UML 2.0) : A special kind of diagram that operates at
the metamodel level (the metamodeling architecture is beyond the scope
of this introduction).

Sequence Diagram (Behavioral/Interaction; LP = high) : sequence dia-
grams are composed of three basic elements: objects, links, and messages,
which are exactly the same as for the communication diagram. However,
the objects shown in a sequence diagram have a lifeline associated
with them, which represents a logical timeline. The timeline is present
whenever the object is active, and is illustrated graphically as a
vertical line with logical time traveling down the line. The objects for
the sequence diagram are shown going horizontally across the page and
are shown staggered down the diagram depending on when they are
created (Holt, 2001). Figure 6.A13 in Appendix 1 at the end of the
chapter illustrates the sequence diagram for the traffi c - light control
system.

State Machine Diagram (Behavioral/General; LP = Medium) : These dia-
grams are versatile statecharts, which defi ne the possible states and the
allowed state transitions of the system.

Timing Diagram (Behavioral/Interaction; LP = Low) : Timing diagrams
describe the critical timing constraints of the system.

Use-Case Diagram (Behavioral/General; LP = Medium) : Use - case dia-
grams represent the specifi c interactions of the software application with
its external environment, as well as possible dependencies between indi-
vidual use cases.

www.it-ebooks.info

http://www.it-ebooks.info/

OBJECT-ORIENTED DESIGN APPROACH 301

 The UML, even in its current form, does not provide complete facilities for
the specifi cation and analysis needs of real - time systems. However, since the
UML is an evolving family of languages, there is no compelling reason for not
adding to the family if a suitable language is found. Unfortunately, the majority
of appropriate candidates are formal methods — specifi cation languages with
a sound mathematical background — and these are traditionally shunned by
practitioners.

 As stated earlier, the domain model (see Fig. 6.12) is created based upon the
use cases, and, through further exploration of system behavior via the interac-
tion diagrams, the domain model evolves systematically into the design class
diagram. The construction of the domain model is, therefore, analogous to the
analysis stage in SA/SD described earlier. In domain modeling, the central
objective is to represent the real - world entities involved in the domain as con-
cepts in the domain model. This is a key aspect of object - oriented systems and
is seen as a signifi cant advantage of the paradigm, since the resultant model is
closer to reality than in alternative modeling approaches, including the SA/SD.

 While most development in object - oriented design was initially done with
little or no provision for real - time requirements, the UML 2.0 (released in
2005) with signifi cant extensions for real - time applications improved the situ-
ation greatly (Miles and Hamilton, 2006).

 6.4.4 Object - Oriented versus Procedural Approaches

 The preceding observations beg the question of whether object - oriented
design is more suitable than structured design for embedded real - time systems.
Structured design and object - oriented design are often compared and con-
trasted, and, indeed, they are similar in certain ways. This is no surprise, since
both have their roots in the pioneering work of Parnas and his predecessors
(Parnas, 1972, 1979). Table 6.6 provides a qualitative comparison of these
methodologies.

 TABLE 6.6. A Side - by - Side Comparison of SA / SD and OOAD (UML) Approaches

 System Components SA/SD Functions OOAD Objects

 Data processes
 Control processes

 Separated through internal
decomposition

 All encapsulated within
objects

 Data stores
 Characteristics Hierarchy of composition Inheritance of properties

 Classifi cation of functions Classifi cation of objects
 Encapsulation of knowledge

within functions
 Encapsulation of

knowledge within objects
 User ’ s viewpoint Rather easy to learn and use Much more diffi cult to

learn and use
 CASE tools Widely available Widely available
 Volume of usage Shrinking Growing

www.it-ebooks.info

http://www.it-ebooks.info/

302 SOFTWARE DESIGN APPROACHES

 Both structured and object - oriented analysis and design (OOAD) are full
life cycle methodologies and use some similar tools and techniques. However,
there are major differences as well. SA/SD describes the system from a func-
tional perspective and separates data fl ows from the functions that transform
them, while OOAD describes the system from the perspective of encapsulated
entities that possess both function and form.

 Additionally, object - oriented models include inheritance, while structured
ones do not have such a useful characteristic. Although SA/SD has a defi nite
hierarchical structure, this is a hierarchy of decomposition rather than hered-
ity. Such a shortcoming leads to diffi culties in maintaining and extending both
the specifi cation and design.

 From the user ’ s viewpoint, UML is more diffi cult to learn and use than SA/
SD methods, although they both are supported by matured CASE tools. On
the other hand, we see the use of UML growing steadily, while the use of SA/
SD is shrinking correspondingly in new products. Notably, these trends are
slower in real - time applications than with other kind of software.

 An experimental rule - based framework for transforming SA/SD artifacts to
UML was proposed by Fries (2006) . It is targeted for evolving legacy software
that was initially designed using the structured approach. The original data fl ow
and entity relationship diagrams of SA/SD are converted semiautomatically to
a use case diagram, sequence diagrams, and a class diagram of UML.

 Consider three distinct viewpoints of a system: data, events, and actions.
Events represent stimuli, such as various measurements in control systems, as
in the case study at the end of this chapter. Actions are precise rules that are
followed in computational algorithms, such as “ compensate ” and “ calibrate ”
in the case of the inertial measurement system. The majority of early computer
systems were focused on one, or at most two, of these complementary view-
points. For instance, nonreal - time image processing systems were certainly
data and action intensive, but did not encounter much in the way of events.

 Real - time systems are usually data intensive, and hence would seem well
suited to structured analysis. Nevertheless, real - time systems also include
control information, which is not particularly well suited to structured design.
It is likely that a real - time system is as much event or action based as it is data
based, which makes it quite suitable for object - oriented techniques, too.

 The purpose of this discussion is not to dismiss SA/SD, or even to conclude
that it is better than OOAD in all cases. An overriding indicator of suitability
of OOAD versus SA/SD to real - time systems is the nature of the application.
A similar conclusion was made — not surprisingly — when procedural and
object - oriented programming languages were compared in Chapter 4 .

 6.5 LIFE CYCLE MODELS

 A systematic engineering approach to the specifi cation, design, programming,
testing, and maintenance of software is essential for maximizing the reliability

www.it-ebooks.info

http://www.it-ebooks.info/

LIFE CYCLE MODELS 303

and maintainability of real - time systems, as well as for minimizing life cycle
expenses. Therefore, software life cycle models form an integral part of any
serious development and maintenance process for real - time systems; such
models describe explicitly what must be done throughout the life cycle. The
life cycle is considered to begin when the requirements engineering activities
are commissioned and end when the particular software is no longer main-
tained by the responsible organization. This time period may vary from one
year or so up to a few decades; and there are several life cycle models, which
are practiced when developing and maintaining real - time software. These
models include the classical waterfall model, the V - model, the spiral model, as
well as a more recent collection of agile methodologies (Ruparelia, 2010).
Nonetheless, most practiced life cycle models are actually hybrids; tailoring is
commonly needed to create an appropriate compromise between strictly
sequential and extensively iterative modeling approaches for a particular
product and development organization.

 Software life cycle models are intended to provide a solid and supportive
framework leading to competitive software products within the available
budget, personnel, and time frame. The word “ competitive ” refers here to
an application - and environment - specifi c mixture of the desired software
qualities discussed in Section 6.1 . By using a well - defi ned life cycle model
with thorough quality assurance procedures, it is possible to prevent the
increasing and expensive late - failures period of the bathtub failure function
(see Fig. 6.2) even in evolving embedded systems with a lengthy life span. In
the following subsections, we will introduce a representative sample of sequen-
tial and iterative life cycle models and comment their strengths and weak-
nesses. All those models include at least a subset of the following fundamental
activities:

 • Requirements engineering
 • Design
 • Programming
 • Testing
 • Transfer to production
 • Maintenance

 6.5.1 Waterfall Model

 The purely sequential waterfall (or cascade) model is the oldest software life
cycle model, having its origins in the construction and manufacturing indus-
tries. It is based on the idealized assumptions that the requirements can be
fi xed on before starting the design phase, that the design can be fi xed on before
starting the programming phase, and so forth (see Fig. 6.13). Furthermore,
there is typically a formal review between each phase, and one is allowed to
advance to the following phase only when the preceding phase is fi nalized and

www.it-ebooks.info

http://www.it-ebooks.info/

304 SOFTWARE DESIGN APPROACHES

approved. No feedback paths are provided for possible iteration in such an
idealized scheme. In principle, it would be desirable to follow a feedforward
model through the whole development process, but as there are multiple
potential reasons why the requirements, design, or program code may need to
be modifi ed during a development project, the basic waterfall model has been
enhanced to contain optional feedback paths (dashed lines in Fig. 6.13). These
relaxing feedbacks make it possible to revisit preceding phases, for instance,
to correct programming errors that were detected during tests. Although the
enhanced waterfall model provides direct mechanisms for iteration, all the
iterations are considered just as exceptions in the “ waterfall philosophy. ”
Moreover, quality assurance may be built seamlessly into the waterfall model;
each phase can contain both the “ do part ” and the corresponding “ validate
part ” (Ruparelia, 2010).

 Since the introduction of the waterfall principles over fi ve decades ago,
various iterative models have appeared — and that seems to be the future
trend, too. In iterative models, the development of all entities can continue
throughout the life cycle. Nevertheless, according to a recent survey, a consid-
erable majority (84%) of software projects were still developed according to
the waterfall model (or one of its enhancements) and not using any of the
modern iterative approaches (Gelbard et al., 2010).

 As an important benefi t, the cascade fl ow of the waterfall model makes
it straightforward to even outsource individual development phases, since the
fi rm documents, such as the approved Software Requirements Specifi cation
and the Software Design Description, are not expected to change later on.
On the other hand, waterfall - type life cycle models do not support effectively

 Figure 6.13. Sequential waterfall model with optional feedback enhancements.

Requirements

Engineering

Design

Programming

Testing

Transfer to

Production

Maintenance

Review

Review

Review

Review

Review

www.it-ebooks.info

http://www.it-ebooks.info/

LIFE CYCLE MODELS 305

such projects that have evolving or changing requirements specifi cations.
This is an increasingly critical issue, for example, when developing a clear but
versatile user interface to navigate through evolving smartphone features and
functions.

 6.5.2 V - Model

 The waterfall model has been enhanced not only by introducing simple feed-
backs between consecutive phases but in other ways, too. One widely used
enhancement is the V - model, where “ V ” describes both the graphical shape
of the development fl ow and the central objectives related to “ validation. ”
Figure 6.14 depicts the V - model for software development; the left fork con-
tains the requirements engineering and design phases in the same way as they
are included in the enhanced waterfall model of Figure 6.13 ; the programming
effort with module testing is at the bottom; and the right fork is devoted to
quality assurance actions. These quality assurance actions form the heart of
V - model, and they are based on close interaction between the symmetrical left
and right forks. This means, for instance, that strategies and plans for system
validation and integration tests are created already during the requirements
engineering and design phases, respectively. Hence, it is ensured that every
requirement as well as the design itself are strictly verifi able (Ruparelia, 2010).
The foremost aim of the V - model is to tackle two obvious risks appearing in
any software development project:

 1. Does the integrated software correspond exactly to the design?
 2. Is the overall system fulfi lling all the requirements?

 In the traditional waterfall model, the testing phase contains similar activities
as the right fork of the V - model, but the V - model emphasizes their role

 Figure 6.14. V - model with quality assurance activities.

Requirements

Engineering

Design

Programming and

Module Testing

Integration and

Testing

System

Validation

Quality Assurance

Actions

Time

www.it-ebooks.info

http://www.it-ebooks.info/

306 SOFTWARE DESIGN APPROACHES

throughout the development life cycle. It is a common practice to fi ne tune
the presented model structure to correspond to the specifi c needs of a particu-
lar project; the fi ve - phase structure of Figure 6.14 is just one example. The
more complex a software system to be developed is, the longer the two forks
become and hence contain more phases. In principle, the use of V - model is not
dependent on the size of the software project. Furthermore, it can be used for
hardware and mechanics development, as well.

 6.5.3 Spiral Model

 A particularly useful modifi cation of the waterfall model, the spiral model
(Boehm, 1986), has its orientation in risk analysis and intermediate prototyp-
ing. These are taking place cyclically until the phase of detailed design, which
is then followed by a typical waterfall sequence (see Fig. 6.15). Each spiral
cycle passes four quadrants, Q1 – Q4, and ends up to a prototype that is vali-
dated, possibly with the stakeholders. The number of completed spiral cycles

 Figure 6.15. Spiral model with early prototyping efforts; adapted from Boehm (1986) .

Concept of
Operation

Risk
Analysis

Risk
Analysis

Risk
Analysis

Prototype Prototype Prototype

Require-
ments

Requirements
Validation

Design
Validation

Transfer to
Production

Development
Plan

Test Plan

Require-
ments
Plan

Product
Design

Detailed
Design

Coding

Integration

Unit
Testing

Q1: Set Objectives Q2: Identify Risks

Q4: Begin Next Iteration Q3: Develop and Test

Direction of
Progress

Cumultive Cost

Integration
Testing

Acceptance
Testing

Start

www.it-ebooks.info

http://www.it-ebooks.info/

LIFE CYCLE MODELS 307

determines the cumulative cost of the development project. While the water-
fall model is entirely specifi cation driven, the spiral model is clearly a risk -
 driven approach.

 Possible risks in a software development project are commonly related to
the adequacy of available features, usability and user interface, real - time per-
formance, externally furnished components (such as reused requirements
specifi cations or partial designs), as well as various development issues (Boehm,
 1991). Some of these risks may grow bigger if the software product is intended
for a global market with signifi cant cultural dynamics. Therefore, the impor-
tance of careful risk analysis is going to increase in the future. It should be
noted, however, that the risk protection benefi t of extensive prototyping can
be costly. Besides, it is not always easy to identify critical risks, and hence
development teams would benefi t of risk identifi cation and analysis training.

 Also in the case of the spiral model, it is possible to adapt the model details
to correspond to the needs of a particular project. Moreover, the use of the
spiral model requires considerable effort by the project management. The
philosophy of the spiral model can be stated as “ start small, think big ”
(Ruparelia, 2010).

 6.5.4 Agile Methodologies

 Agile methodologies belong to a dynamic family of iterative and incremental
software development strategies. While in the enhanced waterfall model of
Figure 6.13 , any iteration is considered as an undesired exception, agile meth-
odologies are based on intentional iterations leading to incremental comple-
tion of the software under development. Hence, the underlying principle is far
from that of the waterfall model, V - model, or spiral model, and it cannot be
depicted with a static workfl ow diagram containing interconnected develop-
ment activities. Figure 6.16 illustrates a fl ow of an imaginary software develop-
ment project using an iterative agile strategy. At any iteration step, there are
multiple merging development activities with varying effort volumes. Besides,
a set of consecutive iterations can form a “ mini project ” that could provide a
partial software release to the customer. Although agile methodologies are
often deployed with a lack of rigid process, they can be, when correctly imple-
mented, rigorous and thus suitable for embedded applications (Laplante,
 2009).

 There are several widely used agile methodologies, such as Crystal,
Dynamic Systems Development Method, eXtreme Programming (XP),
Feature - Driven Development, and Scrum, as well as a large number of ad
hoc methodologies that claim to be agile (Laplante, 2009). Because they are
relatively new, are light on documentation and formal process, and involve
a high degree of experimentation early in the systems development process
(when prototype hardware may be unavailable), agile methodologies are not
frequently used in real - time and embedded systems development. Nevertheless,
in many cases, where the true philosophy of agile development is embraced

www.it-ebooks.info

http://www.it-ebooks.info/

308 SOFTWARE DESIGN APPROACHES

and where the culture and application domain are appropriate, agile develop-
ment can be the right development approach for real - time and embedded
systems, as well.

 It is beyond the scope of this book to describe any one agile methodology
or to undertake a detailed analysis of when and how to use these approaches
in real - time and embedded systems development. It is important, however, to
understand and appreciate the philosophy of agile methodologies in order
to see why they might be suitable for certain real - time applications. And to
understand these approaches, it is essential to look at the Agile Manifesto and
the explicit principles behind it. The following manifesto was introduced by a
group of agility proponents in 2001 (Larman, 2004):

 Figure 6.16. A sample fl ow of a software development project using iterative agile
methodologies; adapted from Larman (2004) .

Requirements

Engineering

Design

Programming

Testing

Iteration

Mini-ProjectEffort

 Defi nition: Agile Manifesto

 We are uncovering better ways of developing software by doing it and
helping others do it. Through this work, we have come to value:

 • Individuals and interactions over processes and tools
 • Working software over comprehensive documentation
 • Customer collaboration over contract negotiation
 • Responding to change over following a plan

 That is, while there is value on the items on the right, we value items on the
left more.

www.it-ebooks.info

http://www.it-ebooks.info/

LIFE CYCLE MODELS 309

 From the noble manifesto, a set of 12 principles were derived (Larman, 2004):

 Defi nition: Agile Principles

P1. Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

 P2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer ’ s competitive advantage.

 P3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter time scale.

P4. Business people and developers must work together daily throughout
the project.

P5. Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done .

P6. The most effi cient and effective method of conveying information to
and within a development team is face - to - face conversation.

 P7. Working software is the primary measure of progress.
P8. Agile processes promote sustainable development. The sponsors, devel-

opers, and users should be able to maintain a constant pace indefi nitely.
P9. Continuous attention to technical excellence and good design enhances

agility.
P10. Simplicity — the art of maximizing the amount of work done — is

essential.
P11. The best architectures, requirements, and designs emerge from self -

 organizing teams.
P12. At regular intervals, the team refl ects on how to become more effec-

tive, then tunes and adjusts its behavior accordingly.

 These principles, if practiced consistently, end up to a fl exible what - to - do plan
for the project, instead of a fi rm one. Moreover, the agile approach is human
oriented as opposed to task orientation. The principle P5 is particularly inter-
esting, because it enables the team members to utilize their “ free will ” (a
powerful characteristic, which distinguishes human intelligence from advanced
machine intelligence [Martinez, 2006]) instead of being controlled merely by
policies, procedures, superiors, and so on.

 Could agile methodologies even offer “ the most suitable strategy ” for all soft-
ware development? We will answer this tempting question by referring synergisti-
cally to the “ no free lunch ” (NFL) theorems that Wolpert and Macready discussed
in the context of optimization algorithms (Wolpert and Macready, 1997). They
proved that improved performance for any optimization algorithm indicates
a match between the structure of the algorithm and the structure of the problem
at hand. Therefore, a general - purpose algorithm is never the most suitable one

www.it-ebooks.info

http://www.it-ebooks.info/

310 SOFTWARE DESIGN APPROACHES

for a specifi c problem, and the most suitable algorithm for a specifi c problem
is not a general - purpose one. Intuitively reasoning, it could be possible to
develop similar NFL theorems for software development strategies, as well;
such an effort is, however, beyond the scope of this text. Nevertheless, if we
apply our intuition freely, we can say that any general - purpose strategy is never
the best one for all software development. For this reason, case - dependent
tuning is advantageous when creating an appropriate life cycle model for a
particular application and development environment. For instance, applying
agile methodologies strictly to large software projects is diffi cult, since they
stress the face - to - face communication and self - organizing teams that may not
be possible to achieve due to large development groups and multiple geo-
graphical locations where the work is carried out (Ruparelia, 2010). Nonetheless,
agile methodologies are undoubtedly usable in smaller - scale applications with
changing or evolving requirements specifi cations.

 Vignette: Are We Witnessing a Second Agile Development Period?

 When examining the Agile Manifesto and the associated principles, we
noticed that they contain numerous similarities to those informal software
development strategies, which were used in the beginning of the embedded
systems era — some three decades ago. At that time, industry was still incon-
sistent in the use of microprocessors; requirements specifi cations changed
frequently; the entire software was not more than a few tens of kilobytes;
development teams consisted typically of 2 – 3 highly motivated software
engineers; and nobody in the team was a “ guru, ” but all members were fairly
inexperienced. Such initial conditions formed a fruitful basis for agile - type
behavior to emerge by itself.

 Based on the authors ’ subjective observations in a few development
organizations — rather than any real survey — it can be argued that the most
successful teams practiced up to 10 of the 12 agile principles: P1, P2, P4 – P7,
and P9 – P12. Furthermore, all items of the manifesto were, more or less,
common practices.

 Is this just a coincidence, or is there truly something similar in the
advanced products of tomorrow and the early embedded systems? No, it is
probably not a coincidence, but the frequently changing requirements and
new technological opportunities form common points of contact, which are
as concrete with the future smartphone user interfaces as they were with
the pioneering forest harvesters, for example. However, most of the agile
principles were put aside for a couple of decades; since embedded software
was growing rapidly in size, development teams became bigger and geo-
graphically distributed, and it was impossible to fi nd an adequate number
of well motivated and self - organizing individuals to support the embedded
systems boom. These and other changes in the operating environment
pushed the development organizations toward rigid life cycle models and
strict project management practices.

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 311

 Lastly, it should be pointed out that there are also other iterative software
development approaches than the popular agile methodologies outlined
above. A comprehensive discussion on agile and iterative development, from
the manager ’ s viewpoint, is available in Larman (2004) .

 6.6 SUMMARY

 The purpose of software design is to create a sound mapping from the require-
ments document to an implementable design document. In general, there exist
an infi nite number of possible mappings. But which one of those is the desired
one? To achieve a desirable mapping, we fi rst need to defi ne the term “ desir-
able, ” which is related directly to a set of weighted software quality measures.
These specifi c qualities (such as performance and maintainability) and usual
ways to achieve them (such as modularity and generality) were discussed in
the beginning of this chapter. In addition to software qualities, the term “ desir-
able ” is related necessarily to the development organization and environment,
as well as the type and market of the software product. Thus, every design
process includes actually a multi - objective optimization problem with consid-
erable uncertainties; for instance, how should the different software qualities
be weighted with respect to each other? The ultimate success of the software
is largely dependent on the experience and skills of the design team to solve
such problems.

 There are two principal approaches to generate and document software
designs: the procedural design approach and the object - oriented approach. It
is useless to debate which approach is better and should hence be preferred
generally. Instead, the selected approach must be justifi ed by the concrete
application needs and future visions of the development organization. Currently,
many industrial companies with a long history of embedded systems develop-
ment either have just switched to object - oriented techniques or are in the
process of such a major transition. In large procedural - oriented organizations,
this transition can be a laborious educational effort, since, for example, the fl uent
use of UML is more demanding than the use of SA/SD methods. The situation
is apparently very different in young and small development organizations.

 Software development and maintenance life cycle models have a central
role in every serious development process. The purpose of strict “ life cycle
thinking ” is to minimize the total expenses during the entire life cycle — not
just the development expenses, as is traditionally done in the fi rst place.
However, while the life cycle thinking makes a lot of sense from the corpora-
tion or company point of view, it may be challenging to put into practice in
large organizations, where the development expenses are often paid from “ a
different pocket ” than the maintenance expenses. The situation is even more
diffi cult when the lifespan of the software product is lengthy. Thus, the adop-
tion of a life cycle model to cover both the development and maintenance
phases is actually an executive - level decision.

www.it-ebooks.info

http://www.it-ebooks.info/

312 SOFTWARE DESIGN APPROACHES

 The classical waterfall model or one of its enhancements have an estab-
lished position in most development organizations. Nevertheless, as there is
no single kind of software or development environment, there is a need to
tune and evolve the existing life cycle models, or even create new life cycle
philosophies. In the past decade, agile methodologies have gained interest and
acceptance in applications where the requirements are changing frequently
during the design and implementation phases. Agile methodologies provide
an iterative and incremental alternative to the primarily sequential and rigid
development life cycles. While these methodologies are shown to be effective
in certain situations, they are no “ silver bullet ” for all. On the other hand, their
position is clearly emerging in smaller - scale real - time systems (or subsystems)
involved with novel technological opportunities.

 In the future, such productivity issues as design reuse and (semi -)automatic
design from requirements will continue to be important but challenging areas
of research and development.

 We want to close this chapter by Norman Maclean ’ s captivating words:
 “ Eventually, all things merge into one, and a river runs through it ” (Maclean,
 2001). These words have an obvious analogy to the design of embedded
software.

 6.7 EXERCISES

6.1. For whom should you, as a designer, prepare the software design
description?

6.2. What are the primary reasons behind the current (and seemingly con-
tinuing) situation that there is no single, universally accepted approach
for software design?

6.3. Why is it that the actual program code, even though it is an exact model
of system behavior, is insuffi cient in serving as either a software require-
ments document or a software design document? In any case, pseudo-
code is used widely for such purposes.

6.4. How would you, as a software project manager, handle the confusing
situation in which the software requirements specifi cation contains
numerous design - level details as well?

6.5. Why is it of utmost importance that the program code be traceable to
the software design specifi cation, and, in turn, to the software require-
ments specifi cation? What are the possible consequences if it is not
traceable?

6.6. A mapping from advantageous software engineering principles to
desired software qualities is sketched in Table 6.4 . Give specifi c explana-
tions why “ Modularity ” is mapping to “ Reliability, ” “ Correctness, ”

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 313

 “ Performance, ” “ Interoperability, ” “ Maintainability, ” and “ Portability. ”
Or, do you disagree on some of those suggested mappings?

6.7. What are the principal differences between procedural design approaches
and object - oriented ones?

6.8. Why are procedural design approaches still practiced with many embed-
ded systems — even with completely new products? What could be hin-
dering the adoption of object - oriented approaches in those cases?

6.9. Using a data fl ow diagram, capture the data and functional requirements
for monitoring the entry, exit, and traversal of aircraft in a busy airspace.
Aircraft entering the space are sensed by the Radar input; the Comm
input identifi es aircraft that leave the space. The current contents of the
space are maintained in the data area AirspaceStatus . A detailed log or
history of the space usage is kept in the AirspaceLog storage. Air - traffi c
control personnel can request the display of the status of a particular
aircraft through the Controller input.

6.10. Take the procedural design approach and create fi rst the context diagram,
and then the highest - level data fl ow and control - fl ow diagrams for an
electronic lock in the laboratory door having the following requirements
specifi cations:

 • The lock has an integrated RFID card reader, and every registered
user has a unique identifi cation code.

 • An accepted card is acknowledged by a green LED and a rejected one
by a red LED.

 • The lock will open when an adequate current is fl owing through its
control solenoid; otherwise, it remains locked.

 • Information about registered users and their permitted entrance times
is stored on a database of a remote workstation that manages all locks
within the whole college building.

 • Every successful and unsuccessful opening attempt is recorded on the
database with the corresponding identifi cation code, date, and time.

 • Embedded controllers of individual locks in the building communicate
with the common workstation through a wireless communications
network.

 You may defi ne additional requirements yourself, if needed.

6.11. Perform a web search and fi nd the reasons why the Unifi ed Modeling
Language (UML) was originally developed. What were the primary
reasons why UML 2.0 appeared?

6.12. UML ’ s use - case diagrams (see Fig. 5.14) are usually complemented by
textual descriptions; what kind of information do they contain?

www.it-ebooks.info

http://www.it-ebooks.info/

314 SOFTWARE DESIGN APPROACHES

 6.8 APPENDIX 1

 CASE STUDY IN DESIGNING REAL - TIME SOFTWARE

 To further illustrate the concepts of design, the Software Requirements
Specifi cation given in the case study of Section 5.7 is used to provide a cor-
responding object - oriented design for the traffi c light control system. Some of
the following fi gures have been referred to in the previous sections. This
appendix serves to further explicate the object - oriented design process, many
of its artifacts, and provides an instructive example of an object - oriented
design document.

 6.8.1 Introduction

 Traffi c controllers currently in use comprise simple timers that follow a fi xed
cycle to allow vehicle/pedestrian passage for a predetermined amount of time
regardless of demand, actuated traffi c controllers that allow passage by means
of vehicle/pedestrian detection, and adaptive traffi c controllers that determine
traffi c conditions in real time by means of vehicle/pedestrian detection and
respond accordingly in order to maintain the highest reasonable level of
effi ciency under varying conditions. The traffi c controller described in this
design document is capable of operating in all three of these modes.

6.8.1.1 Purpose The purpose of this document is to provide a comprehen-
sive set of software design guidelines to be used in the development phase of
the application. This specifi cation is intended for use by software developers.

6.13. Redraw the use - case diagram of the elevator control system in Figure
 5.14 for a maximally simplifi ed single elevator, which is not a part of a
multi - elevator bank.

6.14. Consider the following real - time systems:

(a) Elevator control system for simple home elevators.
(b) Core monitoring system of a nuclear power plant.
(c) Distributed airline reservations system for global use.

 What design approach would you favor with each of them and why?

6.15. Consider the following embedded systems:

(a) Anti - lock braking system for buses.
(b) User interface of an evolving smartphone.
(c) Elevator monitoring system for domestic market.

 What life cycle model would you prefer with each of them and why?

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 315

6.8.1.2 Scope This software package is part of a control system for
pedestrian/vehicular traffi c intersections that allows for (1) a fi xed cycle mode,
(2) an actuated mode, (3) a fully adaptive automatic mode, (4) a locally con-
trolled manual mode, (5) a remotely controlled manual mode, and (6) an
emergency preempt mode. In the fully adaptive automatic mode, a volume
detection feature has been included so that the system is aware of changes
in traffi c patterns. Pushbutton fi xtures are also included so the system can
account for and respond to pedestrian traffi c. The cycle is controlled by an
adaptive algorithm that uses data from many inputs to achieve maximum
throughput and acceptable wait - times for both pedestrians and motorists. A
preempting feature allows emergency vehicles to pass through the intersection
in a safe and timely manner by altering the state of the signals and the cycle
time.

 This document follows the structure provided in the object - oriented SRS
template found in IEEE Std 830 – 1998 and adopted in Section 5.7 rather than
that defi ned in IEEE Std 1016 – 1998 due to the fact that, as acknowledged in
the IEEE standard itself, IEEE Std 1016 is not suitable as a basis for repre-
senting object - oriented designs.

6.8.1.3 Defi nitions and Acronyms In addition to those given in Section 5.7,
the following terms are defi ned here.

 6.8.1.3.1 Accessor A method used to access a private attribute of an
object.

 6.8.1.3.2 Active Object An object that owns a thread and can initiate control
activity. An instance of active class.

 6.8.1.3.3 Collaboration A group of objects and messages between them
that interact to perform a specifi c function.

 6.8.1.3.4 Mutator A method used to modify a private attribute of an object.

6.8.1.4 Documentation Standards

 • IEEE Std 830 – 1998
 • IEEE Std 1016 – 1998

 6.8.2 Overall Description

6.8.2.1 Intersection Overview The intersection class to be controlled is
illustrated in Figure 6.A1 . This fi gure has been repeated from Section 5.7.

 The target class of intersection is described in detail in Section 5.7.

www.it-ebooks.info

http://www.it-ebooks.info/

316 SOFTWARE DESIGN APPROACHES

 6.8.2.2 Intersection Software Architecture The intersection controller
software architecture consists of the major components shown in Figure 6.A2 .

 6.8.2.2.1 Real - Time Operating System (RTOS) The RTOS selected for the
intersection controller is QNX Neutrino 6.2 for the iX86 family of processors.

 6.8.2.2.2 Application Software Application software is written in C + + and
is compiled using QNX Photon tools and the GNU GCC 2.95 compiler.

 6.8.2.2.3 Resource Managers Resource managers are written in C + + using
the QNX Driver Development Kit. Note that these have been developed by
another team and so have not been covered in detail in this document.

6.8.3 Design Decomposition

 This section provides a detailed object - oriented decomposition of the intersec-
tion controller software design. The decomposition is based on the use cases
and preliminary class model described in Section 5.7.

 The decomposition makes use of the unifi ed modeling language (UML),
supplemented by text descriptions, to defi ne the details of the design. This
representation provides the design views described in IEEE Std 1016 within
the framework of object - oriented design, as shown in Table 6.A1 .

 Figure 6.A1. Intersection topography.

WALK

WALK

WALK

WALK

W
A

L
K

W
A

L
K

W
A

L
K

W
A

L
K

REAL TIME ROAD (ARTERIAL)

ID
L

E
 A

V
E

N
U

E
 (S

E
C

O
N

D
A

R
Y

)

OCCUPANCY

LOOP

NEXT INTERSECTION (DOWNSTREAM)

NEXT INTERSECTION (DOWNSTREAM)

SPEED
LIMIT

55

SPEED
LIMIT

30

• All approaches are level,

tangent surfaces.

PREVIOUS INTERSECTION (UPSTREAM)

DIRECT ROUTE

ORTHOGONAL ROUTE

w

N

S

E

APPROACHES:

W-E

E-W
N-S

S-N

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 317

Figure 6.A2. Intersection controller software architecture.

 TABLE 6.A1. IEEE Std 1016 Design Views

 Design View Represented By SDD Reference

 Decomposition view Classes in class diagram Figure 6.A10
 Interrelationship view Associations in class diagram Figure 6.A10
 Interface view Collaboration diagrams Figure 6.A4 through

Figure 6.A9
 Detailed view Attribute and method details;

behavioral diagrams
 For each class

6.8.3.1 Major Software Functions (Collaborations) Based on the use case
diagram provided in Section 5.7, the major functions of the intersection con-
troller have been grouped into UML collaborations as shown in Figure 6.A3 .
Collaboration details are described in the following paragraphs.

 6.8.3.1.1 Collaboration Messages The tables below provide a listing of the
messages (method calls and events) passed between objects in each collabora-
tion defi ned above. Messages with an “ on . . . ” prefi x correspond to events.

www.it-ebooks.info

http://www.it-ebooks.info/

318 SOFTWARE DESIGN APPROACHES

 Figure 6.A3. Intersection controller collaborations.

IntersectionController

Traffic Signal Control

Motor
Vehicle

Pedestrian

Emergency
Vehicle Traffic

Officer

Authorized
DOT

Personnel

Maintainer

Vehicle Traffic Signal Control

Move Through
Intersection Under
 Adaptive Control

Move Through
Intersection Under
Actuated Control

Move Through
Intersection

Under Timed Control

Manual Override

Control Intersection
Signals Using Local

Override Panel

Pedestrian Traffic Signal Control

Press Crossing
Button and Wait
for Walk Signal

Emergency Pre-Empt

Request Priority via
Transponder and

Proceed Under Traffic
Signal Control

Maintenance

Access Controller
for Maintenance

Remote Override

Control Intersection
Signals Using

Remote Override
Panel

DOT Central
Traffic Control

Computer

Coordinated Control

Adjust Intersection
Parameters in Coordination
with Other Intersections in

the Network

Name: IntersectionController- Top-Level Users
Author: Team 2
Version: 1.0
Created: 30-Nov-2002 09:01:19
Updated: 03-Dec-2002 07:35:44

Local

Remote
«actor»

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 319

6.8.3.1.1.1 t raffi c s ignal c ontrol (T able 6.A2)

6.8.3.1.1.2 e mergency p reempt (Table 6.A3)

6.8.3.1.1.3 m anual o verride (T able 6.A4)

6.8.3.1.1.4 r emote o verride (T able 6.A5)

6.8.3.1.1.5 c oordinated c ontrol (T able 6.A6)

6.8.3.1.1.6 m aintenance (T able 6.A7)

 6.8.3.1.2 Collaboration Diagrams The collaborations described above are
depicted in Figures 6.A4 – 6.A9 .

6.8.3.2 Class Model Figure 6.A10 depicts the classes constituting the inter-
section control system software application. The diagram refl ects the prelimi-
nary class structure defi ned in Section 5.7, but with additional detail, and, in
some cases, addition of classes and reallocation of responsibilities.

 Classes corresponding to active objects (i.e., objects with their own thread
of control) are shown in Figure 6.A10 with bold outlines. The active object
instances are summarized in Table 6.A8 .

6.8.3.3 Class Details

 6.8.3.3.1 IntersectionController The IntersectionController class is respon-
sible for managing the following functions:

 1. Initialization.
 2. Instantiation of contained objects.
 3. Overall control of the intersection vehicle traffi c standards.
 4. Overall control of the intersection pedestrian traffi c standards.
 5. Collection and processing of traffi c history from all approaches.
 6. Adaptive control of intersection timings in response to traffi c fl ow.
 7. Actuated control of intersection in response to vehicle presence.
 8. Timed control of intersection in response to a fi xed scheme.
 9. Overall handling of pedestrian crossing requests.

 10. Handling of emergency vehicle pre - emption.
 11. Intersection control in response to manual override commands.
 12. Intersection control in response to remote override commands.
 13. Management of traffi c history and incident log databases.
 14. Handling of maintenance access requests from the maintenance port.
 15. Handling of maintenance access requests from the DOT WAN.

www.it-ebooks.info

http://www.it-ebooks.info/

 TA
B

L
E

 6
.A

2.
 I

nt
er

se
ct

io
n

C
on

tr
ol

le
r —

 Tr
af

fi c
 S

ig
na

l C
on

tr
ol

 C
ol

la
bo

ra
ti

on
 M

es
sa

ge
s

 ID

 M
es

sa
ge

 Fr

om
 O

bj
ec

t
 To

 O
bj

ec
t

 1
 se

tA
sp

ec
t(

A
sp

ec
t)

 m

_I
nt

er
se

ct
io

n
C

on
tr

ol
le

r
 m

_A
pp

ro
ac

h[
0]

 1.

1
 ge

tA
sp

ec
t(

)
 m

_I
nt

er
se

ct
io

n
C

on
tr

ol
le

r
 m

_A
pp

ro
ac

h[
0]

 1.

2
 ge

tC
ou

nt
()

 m

_I
nt

er
se

ct
io

n
C

on
tr

ol
le

r
 m

_A
pp

ro
ac

h[
0]

 2

 ig
no

re
St

at
e(

)
 m

_A
pp

ro
ac

h[
0]

 m

_P
ed

es
tr

ia
nD

et
ec

to
r[

0]

 2.
1

 w
at

ch
St

at
e(

)
 m

_A
pp

ro
ac

h[
0]

 m

_P
ed

es
tr

ia
nD

et
ec

to
r[

0]

 2.
2

 re
se

tS
ta

te
()

 m

_A
pp

ro
ac

h[
0]

 m

_P
ed

es
tr

ia
nD

et
ec

to
r[

0]

 3
 on

E
nt

ry
St

at
eS

et
(v

oi
d)

 m

_V
eh

ic
le

D
et

ec
to

r
 m

_A
pp

ro
ac

h[
0]

 3.

1
 on

E
nt

ry
St

at
eC

le
ar

ed
(v

oi
d)

 m

_V
eh

ic
le

D
et

ec
to

r
 m

_A
pp

ro
ac

h[
0]

 4

 on
P

ed
es

tr
ia

nR
eq

ue
st

()

 m
_P

ed
es

tr
ia

nD
et

ec
to

r[
0]

 m

_A
pp

ro
ac

h[
0]

 5

 on
P

ed
es

tr
ia

nR
eq

ue
st

()

 m
_A

pp
ro

ac
h[

0]

 m
_I

nt
er

se
ct

io
n

C
on

tr
ol

le
r

 5.
1

 on
V

eh
ic

le
E

nt
ry

(i
nt

)
 m

_A
pp

ro
ac

h[
0]

 m

_I
nt

er
se

ct
io

n
C

on
tr

ol
le

r
 6

 se
tI

nd
ic

at
io

n(
In

di
ca

ti
on

)
 m

_A
pp

ro
ac

h[
0]

 m

_P
ed

es
tr

ia
nT

ra
ffi

 c
St

an
da

rd
[0

]
 6.

1
 ge

tI
nd

ic
at

io
n(

)
 m

_A
pp

ro
ac

h[
0]

 m

_P
ed

es
tr

ia
nT

ra
ffi

 c
St

an
da

rd
[0

]
 7

 se
tI

nd
ic

at
io

n(
In

di
ca

ti
on

)
 m

_A
pp

ro
ac

h[
0]

 m

_V
eh

ic
le

Tr
af

fi c
St

an
da

rd
[0

]
 7.

1
 ge

tI
nd

ic
at

io
n(

)
 m

_A
pp

ro
ac

h[
0]

 m

_V
eh

ic
le

Tr
af

fi c
St

an
da

rd
[0

]

320

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 321

 TABLE 6.A3. Intersection Controller — Emergency
Preempt Collaboration Messages

 ID Message From Object To Object

 1 onActivate() Emergency Vehicle
Transponder

 m_EmergencyPreempt

 1.1 onDeactivate() Emergency Vehicle
Transponder

 m_EmergencyPreempt

 2 onPreemptRequest() m_EmergencyPreempt m_Intersection
Controller

 2.1 onPreemptCleared() m_EmergencyPreempt m_Intersection
Controller

 TABLE 6.A4. Intersection Controller — Manual Override Collaboration Messages

 ID Message From Object To Object

 1 onActivate(OT) Manual Control Panel m_ManualOverride
 1.1 onDeactivate() Manual Control Panel m_ManualOverride
 2 onSetPhase() Manual Control Panel m_ManualOverride
 3 onOverrideActivated(OT) m_ManualOverride m_Intersection

Controller
 3.1 onOverrideDeactivated(OT) m_ManualOverride m_Intersection

Controller
 4 setPhase() m_ManualOverride m_Intersection

Controller

 OT: OverrideType

 TABLE 6.A5. Intersection Controller — Remote Override Collaboration Messages

 ID Message From Object To Object

 1 onActivate(OT) m_Network m_RemoteOverride
 1.1 onDeactivate(OT) m_Network m_RemoteOverride
 2 onSetPhase() m_Network m_RemoteOverride
 3 onOverrideActivated(OT) m_RemoteOverride m_Intersection Controller
 3.1 onOverrideDeactivated(OT) m_RemoteOverride m_Intersection Controller
 4 setPhase() m_RemoteOverride m_Intersection Controller
 5 sendPacket(void *) m_RemoteOverride m_Network

 OT: OverrideType

www.it-ebooks.info

http://www.it-ebooks.info/

322 SOFTWARE DESIGN APPROACHES

 TABLE 6.A6. Intersection Controller — Coordinated
Control Collaboration Messages

 ID Message From Object To Object

 1 setMode(Mode) m_RemoteOverride m_Intersection Controller
 2 setParameters() m_RemoteOverride m_Intersection Controller
 3 getStatus() m_RemoteOverride m_Intersection Controller
 4 onSetParameters

(Parameters*)
 m_Network m_RemoteOverride

 5 onGetStatus() m_Network m_RemoteOverride
 6 sendPacket(void *) m_RemoteOverride m_Network

 TABLE 6.A7. Intersection Controller — Maintenance Collaboration Messages

 ID Message From Object To Object

 1 getStatus() m_Maintenance m_Intersection Controller
 2 goFirst() m_Maintenance m_IncidentLog
 2.1 read() m_Maintenance m_IncidentLog
 2.2 goNext() m_Maintenance m_IncidentLog
 2.3 isEOF() m_Maintenance m_IncidentLog
 3 fl ush() m_Maintenance m_IncidentLog
 4 getStatus() m_Network m_Maintenance
 5 readDatabase(int) m_Network m_Maintenance
 6 sendPacket(void *) m_Maintenance m_Network

 Figure 6.A11 illustrates the attributes, methods, and events of the
IntersectionController class.

6.8.3.3.1.1 i ntersection c ontroller r elationships

 • Association link from class Status
 • Association link to class PreEmpt
 • Association link to class Network
 • Association link from class PreEmpt
 • Association link to class Database
 • Association link from class Override
 • Association link to class Mode
 • Association link from class Maintenance
 • Association link to class Database
 • Association link to class Parameters
 • Association link to class RemoteOverride

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
4.

 T
ra

ffi
 c

 s
ig

na
l c

on
tr

ol
.

S
am

e
m

es
sa

ge
s

as
 b

et
w

ee
n

m
_V

eh
ic

le
T

ra
ffi

cS
ta

nd
ar

d[
0]

an

d
m

_A
pp

ro
ac

h[
0]

.

S
am

e
m

es
sa

ge
s

as
 b

et
w

ee
n

m
_P

ed
es

tr
ia

nT
ra

ffi
cS

ta
nd

ar
d[

0]

an
d

m
_A

pp
ro

ac
h[

0]
.

S
am

e
m

es
sa

ge
s

as
 b

et
w

ee
n

m
_P

ed
es

tr
ia

nD
et

ec
to

r[
0]

an

d
m

_A
pp

ro
ac

h[
0]

.

«s
in

gl
et

on
»

m
_I

n
te

rs
ec

ti
o

n
 C

o
n

tr
o

lle
r

:I
n

te
rs

ec
ti

o
n

C
o

n
tr

o
lle

r

m
_A

p
p

ro
ac

h
[0

]
:A

p
p

ro
ac

h

m
_A

p
p

ro
ac

h
[1

]
:A

p
p

ro
ac

h

m
_A

p
p

ro
ac

h
[2

]
:A

p
p

ro
ac

h

m
_A

p
p

ro
ac

h
[3

]
:A

p
p

ro
ac

h

m
_P

ed
es

tr
ia

n
D

et
ec

to
r[

0]

:O
n

O
ff

S
en

so
r

m
_P

ed
es

tr
ia

n
D

et
ec

to
r[

1]

:O
n

O
ff

S
en

so
r

m
_V

eh
ic

le
D

et
ec

to
r

:V
eh

ic
le

D
et

ec
to

r

m
_V

eh
ic

le
T

ra
ff

ic
S

ta
n

d
ar

d
[0

]
:I

n
te

rs
ec

ti
o

n
S

ta
n

d
ar

d

m
_V

eh
ic

le
T

ra
ff

ic
S

ta
n

d
ar

d
[1

]
:I

n
te

rs
ec

ti
o

n
S

ta
n

d
ar

d

m
_P

ed
es

tr
ia

n
T

ra
ff

ic
S

ta
n

d
ar

d
[0

]
:I

n
te

rs
ec

ti
o

n
S

ta
n

d
ar

d

m
_P

ed
es

tr
ia

n
T

ra
ff

ic
S

ta
n

d
ar

d
[1

]
:I

n
te

rs
ec

ti
o

n
S

ta
n

d
ar

d

O
th

er
 A

pp
ro

ac
h

ob
je

ct
s

ha
ve

 th
e

sa
m

e
be

ha
vi

or
as

 m
_A

pp
ro

ac
h[

0]
.

N
am

e:
 In

te
rs

ec
tio

nC
on

tr
ol

le
r-

 T
ra

ffi
c

S
ig

na
l C

on
tr

ol
 C

ol
la

bo
ra

tio
n

A
ut

ho
r:

 T
ea

m
 2

V
er

si
on

: 1
.0

C
re

at
ed

: 3
0-

N
ov

-2
00

2
18

:3
0:

05
U

pd
at

ed
: 0

9-
D

ec
-2

00
2

08
:0

3:
00

1
se

tA
sp

ec
t(

as
pe

ct
)

1.
1

 m
_A

sp
ec

t:=
 g

et
A

sp
ec

t(
)

1.
2

 m
_C

ou
nt

:=
 g

et
C

ou
nt

()

2
ig

no
re

S
ta

te
()

2.
1

w
at

ch
S

ta
te

()

2.
2

re
se

tS
ta

te
()

3
on

E
nt

ry
S

ta
te

S
et

(v
oi

d)

3.
1

on
E

nt
ry

S
ta

te
C

le
ar

ed
(v

oi
d)

4
on

P
ed

es
tr

ia
nR

eq
ue

st
()

5
on

P
ed

es
tr

ia
nR

eq
ue

st
()

5.
1

on
V

eh
ic

le
E

nt
ry

(a
pp

ro
ac

h)
6

se
tIn

di
ca

tio
n(

in
di

ca
tio

n)

6.
1

 m
_I

nd
ic

at
io

n:
=

 g
et

In
di

ca
tio

n(
)

7
se

tIn
di

ca
tio

n(
in

di
ca

tio
n)

7.
1

 m
_I

nd
ic

at
io

n:
=

 g
et

In
di

ca
tio

n(
)

323

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

5.
 E

m
er

ge
nc

y
pr

ee
m

pt
.

324

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

6.
 M

an
ua

l o
ve

rr
id

e.

325

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

7.
 R

em
ot

e
ov

er
ri

de
.

326

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

8.
 C

oo
rd

in
at

ed
 c

on
tr

ol
.

327

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

9.
 M

ai
nt

en
an

ce
.

328

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig

ur
e

6.
A

10
.

 In
te

rs
ec

ti
on

 c
on

tr
ol

le
r

cl
as

s
di

ag
ra

m
.

329

www.it-ebooks.info

http://www.it-ebooks.info/

330 SOFTWARE DESIGN APPROACHES

 TABLE 6.A8. Active Objects

 Level Object Name

 1. m_IntersectionController
 1.1. m_IntersectionController::m_Approach[0]
 1.1.1. m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[0]
 1.1.2. m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[1]
 1.1.3. m_IntersectionController::m_Approach[0]::m_VehicleTraffi cStandard[0]
 1.1.4. m_IntersectionController::m_Approach[0]::m_PedestrianTraffi cStandard[1]
 1.1.5. m_IntersectionController::m_Approach[0]::m_PedestrianDetector[0]
 1.1.6. m_IntersectionController::m_Approach[0]::m_PedestrianDetector[1]
 1.1.7. m_IntersectionController::m_Approach[0]::m_VehicleDetector
 1.2. m_IntersectionController::m_Approach[1]
 1.2.1. m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[0]
 1.2.2. m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[1]
 1.2.3. m_IntersectionController::m_Approach[1]::m_VehicleTraffi cStandard[0]
 1.2.4. m_IntersectionController::m_Approach[1]::m_PedestrianTraffi cStandard[1]
 1.2.5. m_IntersectionController::m_Approach[1]::m_PedestrianDetector[0]
 1.2.6. m_IntersectionController::m_Approach[1]::m_PedestrianDetector[1]
 1.2.7. m_IntersectionController::m_Approach[1]::m_VehicleDetector
 1.3. m_IntersectionController::m_Approach[2]
 1.3.1. m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[0]
 1.3.2. m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[1]
 1.3.3. m_IntersectionController::m_Approach[2]::m_VehicleTraffi cStandard[0]
 1.3.4. m_IntersectionController::m_Approach[2]::m_PedestrianTraffi cStandard[1]
 1.3.5. m_IntersectionController::m_Approach[2]::m_PedestrianDetector[0]
 1.3.6. m_IntersectionController::m_Approach[2]::m_PedestrianDetector[1]
 1.3.7. m_IntersectionController::m_Approach[2]::m_VehicleDetector
 1.4. m_IntersectionController::m_Approach[3]
 1.4.1. m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[0]
 1.4.2. m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[1]
 1.4.3. m_IntersectionController::m_Approach[3]::m_VehicleTraffi cStandard[0]
 1.4.4. m_IntersectionController::m_Approach[3]::m_PedestrianTraffi cStandard[1]
 1.4.5. m_IntersectionController::m_Approach[3]::m_PedestrianDetector[0]
 1.4.6. m_IntersectionController::m_Approach[3]::m_PedestrianDetector[1]
 1.4.7. m_IntersectionController::m_Approach[3]::m_VehicleDetector
 2. m_IntersectionController::m_Network
 3. m_IntersectionController::m_EmergencyPreempt

www.it-ebooks.info

http://www.it-ebooks.info/

 Figure 6.A11. Intersection controller class.

«singleton»

IntersectionController

- NUMAPPROACHES: int = 4

- m_Priority: int

- m_Mode: Mode

- m_CurrentPhase: Phase*

- m_ErrorHandler: ErrorHandler*

- m_Approach: Approach* [4 ordered]

- m_Network: Network*

- m_EmergencyPreempt: PreEmpt*

- m_Parameters: Parameters*

- m_RemoteOverride: RemoteOverride*

- m_ManualOverride: Override*

- m_LocalTimeZone: float

- m_IncidentLog: Database*

- m_TrafficHistory: Database*

- m_Aspect: Aspect*

- m_Count: int*

- m_IntersectionStatus: Status*

+ IntersectionController()

-* ~IntersectionController()

- init() : void

+ run() : void

+ setPhase() : int

+ setPhase(Phase) : int

+ getPhase() : Phase

+ checkPhase(Phase) : boolean

+ setCycle(float) : int

+ getCycle() : float

+ setSplits(Split*) : int

+ getSplits() : Split*

+ setMode(Mode) : int

+ getMode() : Mode

+ checkMode(Mode) : boolean

+ loadTimer(float) : int

+ onPreemptRequest() : int

+ onPreemptCleared() : int

+ onOverrideActivated(OverrideType) : int

+ onOverrideDeactivated(OverrideType) : int

+ toggleGreenSafetyRelay() : int

+ checkGreenSafetyRelay() : boolean

+ calculateParameters() : int

+ calculateTime(float, Split*) : float

+ setParameters() : int

+ getParameters() : Parameters*

+ getStatus() : Status*

+ onPedestrianRequest() : void

+ onVehicleEntry(int) : void

331

www.it-ebooks.info

http://www.it-ebooks.info/

332 SOFTWARE DESIGN APPROACHES

 • Association link to class Phase
 • Association link to class ErrorHandler
 • Association link to class Approach

6.8.3.3.1.2 i ntersection c ontroller a ttributes (T able 6.A9)

6.8.3.3.1.3 i ntersection c ontroller m ethods (T able 6.A10)

6.8.3.3.1.4 i ntersection c ontroller b ehavioral d etails (F igs. 6.A12 – 6.A15)

 6.8.3.3.2 Approach This is the programmatic representation of an individ-
ual entrance into the intersection.

 The Approach class is responsible for managing the following functions:

 1. Instantiation of contained objects.
 2. Control of the traffi c standards associated with the approach.
 3. Handling of pedestrian crossing events.
 4. Handling of loop detector entry and exit events.
 5. Tracking the vehicle count.

 Figure 6.A16 illustrates the attributes, methods, and events of the Approach
class.

6.8.3.3.2.1 a spect r elationships

 • Association link to class IntersectionStandard
 • Association link to class Aspect
 • Association link to class IntersectionStandard
 • Association link to class VehicleDetector
 • Association link to class OnOffSensor
 • Association link from class IntersectionController

6.8.3.3.2.2 a pproach a ttributes (T able 6.A11)

6.8.3.3.2.3 a pproach m ethods (T able 6.A12)

 6.8.3.3.3 IntersectionStandard Class (Pedestrian Traffi c and Vehicle Traffi c
Standard) This is the programmatic representation of a traffi c control signal.

 The IntersectionStandard class is responsible for managing the following
functions:

 1. Displaying the commanded aspect from the Intersection Controller.
 2. Determining the aspect actually displayed.
 3. Checking for discrepancies between commanded and displayed aspects.
 4. Raising an error event if there is an aspect discrepancy.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 333

 TABLE 6.A9. IntersectionController Class — Attributes

 Attribute Type Notes

 NUMAPPROACHES private: int Constant defi ning the number of
approaches in the intersection.

 m_Priority private: int Indicates the relative priority of the
approaches. Values are as follows:
 1. E - W/W - E approach pair has

priority = 1.
 2. N - S/S - N approach pair has

priority = 2.
 3. Both approach pairs have equal

priority = 3.
 This attribute is used to determine

which of the three default states
should be set when the intersection
initializes or is set to operate in
Default mode either by an override
command or by an error condition.

 m_Mode private: Mode The object m_Mode, an instance of the
Mode enumeration class, indicates
the method currently being used to
control the intersection. Valid
values for this attribute are shown
in the class diagram.

 The setPhase() method checks for
changes in this value at the
beginning of each cycle and
changes the control scheme if
required. Changes to Preempt,
Manual, or Remote modes are
handled by specifi c events; these
events cause the control scheme to
change immediately rather than at
the beginning of the next cycle.

 m_CurrentPhase private: Phase This is an enumeration of class Phase
that also serves as an index into
the m_Split array (since C ++
automatically casts enumerated
types as arrays where required)
denoting which portion of the cycle
is currently active.

 The Default phase is used during
initialization and in response to
override commands and critical
system faults. Phases GG_GG_
RR_RR (1) to RR_RR_RR_RR_8
(8) are used in normal operation.

(Continued)

www.it-ebooks.info

http://www.it-ebooks.info/

334 SOFTWARE DESIGN APPROACHES

 Attribute Type Notes

 m_ErrorHandler private:
ErrorHandler

 Pointer to the m_ErrorHandler
object.

 m_Approach private: Approach This is an array of type
Approach and a length of
NUMAPPROACHES. This array
represents each of the four
entrances to an intersection. See
the Approach class for more
details.

 The m_Approach array is declared as
follows:

 Approach m_Approach
[NUMAPPROACHES]

 Where NUMAPPROACHES is a
compile - time constant.

 m_Network private: Network This object is the instance of the
Network class that provides an
abstraction layer between the
network resource manager and the
m_IntersectionController object.

 m_EmergencyPreempt private: PreEmpt This is a pointer to the instance of
the PreEmpt class that provides an
abstraction layer between the
emergency vehicle transponder
resource manager and the m_
IntersectionController object.

 m_Parameters private:
Parameters

 Structure holding the intersection
parameters, which are the cycle
time and the splits array.

 m_RemoteOverride private:
RemoteOverride

 This is the instance of the
RemoteOverride class representing
the Remote Software console. This
object abstracts requests made
from the off - site software control
panel from the main application.

 m_ManualOverride private: Override This is the instance of the Override
class representing the Manual
Override console. The object serves
as a broker, abstracting the main
application from any requests
made from the Manual Override
console, which is located at the site
of the traffi c control system.

TABLE 6.A9. (Continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 335

 Attribute Type Notes

 m_LocalTimeZone private: fl oat Given as an offset in hours to UTC
(GMT).

 m_Traffi cHistory private: Database This is the instance of the Database
class that is used to log statistical
data regarding traffi c levels at the
intersection being controlled. The
data is stored in the system ’ s fl ash
memory store. See Section 5.7 for
more information about the fl ash
memory included in the system.

 m_IncidentLog private: Database This object, which is another instance
of the Database class, logs
abnormal events observed by the
system on the site of the
intersection. Data recorded by this
object will be stored in the
system ’ s fl ash memory store. See
Section 5.7 for more information
about the fl ash memory included in
the system.

 m_Aspect private: Aspect Detected Aspect from each
m_Approach object; Aspect [4].

 m_Count private: int Vehicle count from each
m_Approach object; int [4].

 m_IntersectionStatus private: Status

TABLE 6.A9. (Continued)

 Figure 6.A17 illustrates the attributes, methods, and events of the
IntersectionStandard class.

6.8.3.3.3.1 i ntersection s tandard r elationships

 • Association link from class Approach
 • Association link to class Indication
 • Association link from class Approach

6.8.3.3.3.2 i ntersection s tandard a ttributes (T able 6.A13)

6.8.3.3.3.3 i ntersection s tandard m ethods (T able 6.A14)

6.8.3.3.3.4 c orrespondence between i ndications and a ctual d isplayed
 s ignals Since this class is used for both the Vehicle and Pedestrian Traffi c
Standard objects, it is necessary to defi ne the relationship between the attri-
bute values and the actual displayed signal; this is shown in Table 6.A15 .

www.it-ebooks.info

http://www.it-ebooks.info/

336 SOFTWARE DESIGN APPROACHES

 TABLE 6.A10. Intersection Controller Class — Methods

 Method Type Notes

 IntersectionController () public: Constructor.
∼ IntersectionController () private

abstract:
 Destructor.

 init () private static:
void

 This is the fi rst code unit executed when
the equipment becomes active. This
function performs the following basic
tasks:

 Tests memory and hardware.
 Gathers all environmental information

(initial mode, priority, approach
parameters).

 Sets all the components of the intersection
to their default states.

 Starts the fi rst cycle in normal mode.
 run () public static:

void
 setPhase () public: int Moves the intersection to the next phase in

the cycle.
 This method is invoked in response to the

following events:
 Phase timer reaches 0 (in Actuated, Fixed,

and Adaptive modes).
 Remote Override onSetPhase(void) event

fi red (in Remote mode).
 Manual Override onSetPhase(void) event

fi red (in Manual mode).
 The following tasks are performed by this

method:
 Changes the m_CurrentPhase attribute

according to the assignment operation
m_CurrentPhase = (m_CurrentPhase++)
mod 9 .

 Changes the state of the Green Signal
Safety Relay as required by the new
value of m_CurrentPhase .

 Checks the state of the Green Signal
Safety Relay and raises an error if there
is a discrepancy.

 Manipulates the attributes of the
m_Approach objects as required by the
new Current Phase.

 Calculates the phase time as
calculateTime(m_Cycle, m_Splits
[m_CurrentPhase]) .

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 337

TABLE 6.A10. (Continued)

 Method Type Notes

 Loads the Phase Time Remaining timer
with the calculated phase time by
invoking loadTimer(calculateTime
(m_Cycle, m_Splits[m_CurrentPhase])) .

 Checks that the phase setting is displayed
properly by the approaches and raises
an error if there is a discrepancy.

 setPhase (Phase) public: int param: phase [Phase - in]
 Moves the intersection to the specifi ed

phase.
 getPhase () public: Phase Determines the displayed intersection

phase by querying all Aspect objects and
determining their aspects. Used by the
checkPhase method

 checkPhase (Phase) public:
boolean

 param: phase [Phase - in]
 Returns True if the displayed phase agrees

with the commanded phase (passed as a
parameter), False otherwise.

 setCycle (fl oat) public: int param: time [fl oat - in]
 Mutator for the cycle time attribute.

 getCycle () public: fl oat Accessor for the cycle time attribute.
 setSplits (Split *) public: int param: splits [Split * - inout]

 Mutator for the splits attribute.
 getSplits () public: Split * Accessor for the splits attribute.
 setMode (Mode) public: int param: mode [Mode - in]

 Mutator for the attribute m_Mode.
 getMode () public: Mode Accessor for the attribute m_Mode.
 checkMode (Mode) public:

boolean
 param: mode [Mode - in]

 loadTimer (fl oat) public: int param: time [fl oat - in]
 Loads the phase timer (utilizing OS timer

services) with the phase time, specifi ed
as a parameter.

 onPreemptRequest () public: int Emergency preempt request event from
the m_EmergencyPreempt object. This
method performs the following tasks:
 1. Saves the current value of m_Mode .
 2. Sets the mode to Preempt.
 3. Sets the intersection phase to allow

the emergency vehicle to pass safely
under traffi c signal control.

(Continued)

www.it-ebooks.info

http://www.it-ebooks.info/

338 SOFTWARE DESIGN APPROACHES

 Method Type Notes

 onPreemptCleared () public: int Event that terminates preempted
operation and returns the intersection to
normal operating mode. This method
performs the following tasks:
 1. Restores the previous mode.
 2. Sets the intersection to the default state.
 3. Returns the intersection to normal

operation.
 onOverrideActivated

(OverrideType)
 public: int param: type [OverrideType - in]

 Overrides activation event from either the
m_ManualOverride or m_
RemoteOverride object. The parameter
type indicates which override is involved.
This method performs the following tasks:
 1. Saves the current value of m_Mode .
 2. Sets the mode to Manual or Remote,

depending on the value of parameter
type.

 3. Sets the intersection to the Default
phase.

 onOverrideDeactivated
(OverrideType)

 public: int param: type [OverrideType - in]
 Override cancellation event from either

the m_ManualOverride or m_
RemoteOverride object. The parameter
type indicates which override is involved.
This method performs the following tasks:
 1. Restore the previous value of

m_Mode .
 2. Set the intersection to the Default

phase.
 3. Returns the intersection to normal

operation.
 toggleGreenSafetyRelay () public: int Toggles the state of the Green Safety

Relay.
 checkGreenSafetyRelay () public:

boolean
 Checks that the Green Safety Relay is in

the proper state for the active
intersection phase.

 calculateParameters () public: int Adaptive algorithm for determining
intersection timing parameters for the
next cycle.

 calculateTime (fl oat, Split *) public: fl oat param: cycle [fl oat - in]
 param: split [Split * - in]
 Used to calculate the actual phase time

from the values of m_Parameters.
cycleTime and m_Parameters.splits .

TABLE 6.A10. (Continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 339

Figure 6.A12. Black box representation of adaptive algorithm.

 Method Type Notes

 setParameters () public: int Mutator for the intersection timing
parameters.

 getParameters () public:
Parameters *

 Accessor for the intersection timing
parameters.

 getStatus () public: Status * Method used to access the overall status of
the intersection.

 onPedestrianRequest () public: void Event triggered by a valid pedestrian
crossing request.

 onVehicleEntry (int) public: void param: approach [int - in]
 Event triggered by a vehicle entering the

vehicle detection loop.

TABLE 6.A10. (Continued)

 6.8.3.3.4 On O ffSensor This class represents the pedestrian crossing request
pushbuttons located on opposite sides of the crosswalk associated with an
approach.

 Objects of the OnOffSensor class are responsible for managing the follow-
ing functions:

 1. Filtering of pushbutton service requests.
 2. Generation of Pedestrian Service Request event.

 Figure 6.A18 below illustrates the attributes, methods, and events of the
OnOffSensor class.

6.8.3.3.4.1 o n o ff s ensor r elationships

 • Association link from class Approach
 • Generalization link from class VehicleDetector

6.8.3.3.4.2 o n o ff s ensor a ttributes (T able 6.A16)

6.8.3.3.4.3 o n o ff s ensor m ethods (T able 6.A17)

6.8.3.3.4.4 o n o ff s ensor b ehavioral d etails (F igs. 6.A19 and 6.A20)

www.it-ebooks.info

http://www.it-ebooks.info/

340 SOFTWARE DESIGN APPROACHES

 Figure 6.A13. Traffi c signal control sequence diagram.

{While Running}

«singleton»

m_IntersectionController

:IntersectionController

m_Approach[i]

:Approach

m_PedestrianTrafficStandard[j]

:IntersectionStandard

m_VehicleTrafficStandard[k]

:IntersectionStandard

Name:IntersectionController- Traffic Signal Control

Author:Team 2

Version:1.0

Created:08-Dec-2002 14:25:38

Updated:09-Dec-2002 13:54:53

{t0 = 0}

init()

Approach()

IntersectionStandard()

IntersectionStandard()

m_Status:= setPhase(phase)

init complete

{t0 <= 5 s}
run()

{t1 = 0}
m_Status:= setPhase()

setAspect(aspect)

setIndication(indication)

{t1 <= 100 ms}

*m_CurrentIndication = indication

setIndication(indication)

{t1 <= 100 ms}

m_CurrentIndication = indication

{t1 <= 50 ms}m_Status:= return value

loadTimer(time)

{t1 <= 100 ms}

[m_CurrentPhase == 4 || m_CurrentPhase == 8]:toggleGreenSafetyRelay()

checkPhase(phase)

{t1 <= 120 ms}
getAspect()

m_Indication:= getIndication()

m_Indication:= getIndication()

{t1 <= 220 ms}

m_Aspect:= return value

{t1 <= 230 ms}
m_Status:= return value

{t1 <= 240 ms}

m_Status:= checkGreenSafetyRelay()

{t1 <= 300 ms}

[m_CurrentPhase == 8]:calculateParameters()

*[While Phase Timer > 0]:idle

(Keep-Alive Pseudo-Message)

(Keep-Alive Pseudo-Message)

(Keep-Alive Pseudo-Message)

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
14

.
 St

at
ec

ha
rt

 f
or

 in
te

rs
ec

ti
on

 c
on

tr
ol

le
r

ph
as

e
se

qu
en

ce
.

R
u

n
n

in
g

P
h

as
e

R
R

-R
R

-R
R

-R
R

P
h

as
e

G
G

-G
G

-R
R

-R
R

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 1
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 1
)

P
h

as
e

G
Y

-G
Y

-R
R

-R
R

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 2
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 2
)

P
h

as
e

Y
R

-Y
R

-R
R

-R
R

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 3
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 3
)

P
h

as
e

R
R

-R
R

-G
G

-G
G

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 5
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 5
)

P
h

as
e

R
R

-R
R

-G
Y

-G
Y

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 6
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 6
)

P
h

as
e

R
R

-R
R

-Y
R

-Y
R

+
 D

o
A

ct
io

n
/ s

et
P

ha
se

(v
oi

d)
+

 D
o

A
ct

io
n

/ l
oa

dT
im

er
(P

ha
se

 7
 T

im
e)

+
 D

o
A

ct
io

n
/ c

he
ck

P
ha

se
(P

ha
se

 7
)

S
ee

 d
ia

gr
am

fo

r
th

is
 s

ta
te

N
am

e:
In

te
rs

ec
tio

nC
on

tr
ol

le
r-

 R
un

ni
ng

A
ut

ho
r:

T
ea

m
 2

V
er

si
on

:1
.0

C
re

at
ed

:1
6-

N
ov

-2
00

2
17

:1
2:

04
U

pd
at

ed
:0

5-
D

ec
-2

00
2

19
:4

9:
42

ph
as

eT
im

er
E

xp
ire

d
1

ph
as

eT
im

er
E

xp
ire

d
2

ph
as

eT
im

er
E

xp
ire

d
3

/la
st

P
ha

se
 =

 F
A

LS
E

ph
as

eT
im

er
E

xp
ire

d
4

ph
as

eT
im

er
E

xp
ire

d
5

ph
as

eT
im

er
E

xp
ire

d
6

ph
as

eT
im

er
E

xp
ire

d
7

/la
st

P
ha

se
 =

 T
R

U
E

ph
as

eT
im

er
E

xp
ire

d
8

341

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
15

.
 St

at
ec

ha
rt

 f
or

 p
ha

se
s

4
an

d
8.

P
h

a
s
e
 R

R
-R

R
-R

R
-R

R

S
ta

rt

S
e
tt

in
g

 P
h

a
s
e
 4

+
 D

o
 A

c
ti
o
n
 /
 s

e
tP

h
a
s
e
(P

h
a
s
e
 4

)

+
 D

o
 A

c
ti
o
n
 /
 l
o
a
d
T

im
e
r(

P
h
a
s
e
 4

 T
im

e
)

+
 D

o
 A

c
ti
o
n
 /
 c

h
e
c
k
P

h
a
s
e

S
e
tt

in
g

 P
h

a
s
e
 8

+
 D

o
 A

c
ti
o
n
 /
 s

e
tP

h
a
s
e
(P

h
a
s
e
 8

)

+
 D

o
 A

c
ti
o
n
 /
 l
o
a
d
T

im
e
r(

P
h
a
s
e
 8

 T
im

e
)

+
 D

o
 A

c
ti
o
n
 /
 c

h
e
c
k
P

h
a
s
e

P
re

p
a
ri

n
g

 f
o

r
N

e
x
t

C
y
c
le

+
 D

o
 A

c
ti
o
n
 /
 c

a
lc

u
la

te
P

a
ra

m
e
te

rs

T
o

g
g

li
n

g
 G

re
e
n

 S
a
fe

ty
 R

e
la

y

+
 D

o
 A

c
ti
o
n
 /
 t
o
g
g
le

G
re

e
n
S

a
fe

ty
R

e
la

y

+
 D

o
 A

c
ti
o
n
 /
 c

h
e
c
k
G

re
e
n
S

a
fe

ty
R

e
la

y

N
a
m

e
:I
n
te

rs
e
c
ti
o
n
 C

o
n
tr

o
lle

r-
 P

h
a
s
e
 R

R
-R

R
-R

R
-R

R

A
u
th

o
r:

T
e
a
m

 2

V
e
rs

io
n
:1

.0

C
re

a
te

d
:1

7
-N

o
v
-2

0
0
2
 1

9
:2

2
:3

9

U
p
d
a
te

d
:3

0
-N

o
v
-2

0
0
2
 1

7
:5

6
:1

3

P
e
d
e
s
tr

ia
n
 r

e
q
u
e
s
ts

 a
re

 n
o
t

s
h
o
w

n
 i
n
 t
h
is

 d
ia

g
ra

m
.

P
h
a
s
e
 T

im
e
r

E
x
p
ir
e
d
 H

P
h
a
s
e
 T

im
e
r

E
x
p
ir
e
d
 C

[l
a
s
tP

h
a
s
e
 =

=
 T

R
U

E
]

[l
a
s
tP

h
a
s
e
 =

=
 F

A
L
S

E
]

342

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 343

 Figure 6.A16. Approach class.

Approach

{4}

- m_CurrentAspect: Aspect

- m_PedestrianDetector: OnOffSensor* [2 ordered]

- m_VehicleDetector: VehicleDetector*

- m_VehicleTrafficStandard: IntersectionStandard* [2 ordered]

- m_PedestrianTrafficStandard: IntersectionStandard* [2 ordered]

- m_Indication: Indication* [4 ordered]

- m_Count: int

- m_SpeedLimit: int

+ Approach()

-* ~Approach()

+ setAspect(Aspect) : void

+ getAspect() : Aspect*

+ getCount() : int*

+ bumpCount(void) : void

+ clearCount(void) : void

+ onPedestrianRequest() : void

+ onEntryStateSet(void) : void

+ onEntryStateCleared(void) : void

 6.8.3.3.5 VehicleDetector This class represents the proximity detection loop
located near the stop line associated with an approach. The class is based on
the OnOffSensor class.

 The Vehicle Presence Detector object is responsible for managing the fol-
lowing functions:

 1. Filtering of vehicle service requests (ACTUATED mode).
 2. Generation of Vehicle Service Request event (ACTUATED mode).
 3. Maintenance of the vehicle count statistic (FIXED, ACTUATED and

ADAPTIVE mode).

 Figure 6.A21 illustrates the attributes, methods, and events of the
VehicleDetector class.

 6.8.3.3.5.1 v ehicle d etector r elationships

 • Association link from class Approach
 • Generalization link to class OnOffSensor

 6.8.3.3.5.2 v ehicle d etector a ttributes Inherited from superclass.

 6.8.3.3.5.3 v ehicle d etector m ethods Inherited from superclass. Overridden
methods are described in Table 6.A18 .

www.it-ebooks.info

http://www.it-ebooks.info/

 TA
B

L
E

 6
.A

11
.

 A
pp

ro
ac

h
C

la
ss

 —
 A

tt
ri

bu
te

s

 A
tt

ri
bu

te

 Ty
pe

 N

ot
es

 m
_C

ur
re

nt
A

sp
ec

t
 pr

iv
at

e:
 A

sp
ec

t
 C

ur
re

nt
 A

pp
ro

ac
h

as
pe

ct
 c

or
re

sp
on

di
ng

 t
o

th
e

cu
rr

en
t

in
te

rs
ec

ti
on

ph

as
e.

 m

_P
ed

es
tr

ia
nD

et
ec

to
r

 pr
iv

at
e:

 O
nO

ff
Se

ns
or

 *

 Po
in

te
r

to
 a

n
ar

ra
y

of
 o

bj
ec

ts
 o

f
th

e
 O

nO
ff

Se
ns

or
 c

la
ss

, w
hi

ch
 p

ro
vi

de

an
 a

bs
tr

ac
ti

on
 la

ye
r

fo
r

th
e

pe
de

st
ri

an
 c

ro
ss

in
g

re
qu

es
t

pu
sh

bu
tt

on
s.

 m
_V

eh
ic

le
D

et
ec

to
r

 pr
iv

at
e:

V

eh
ic

le
D

et
ec

to
r *

 Po

in
te

r
to

 a
n

ob
je

ct
 o

f
cl

as
s

 V
eh

ic
le

D
et

ec
to

r
(s

up
er

cl
as

s
of

O

nO
ff

Se
ns

or
),

pr
ov

id
in

g
an

 a
bs

tr
ac

ti
on

 la
ye

r
fo

r
th

e
ve

hi
cl

e
de

te
ct

io
n

lo
op

.
 m

_V
eh

ic
le

Tr
af

fi c
St

an
da

rd

 pr
iv

at
e:

In

te
rs

ec
tio

nS
ta

nd
ar

d
 Po

in
te

r
to

 a
n

ar
ra

y
of

 I
nt

er
se

ct
io

nS
ta

nd
ar

d
ob

je
ct

s
re

pr
es

en
ti

ng
 t

he

ve
hi

cl
e

tr
af

fi c
 s

ta
nd

ar
ds

 a
ss

oc
ia

te
d

w
it

h
th

e
ap

pr
oa

ch
.

 m
_P

ed
es

tr
ia

nT
ra

ffi
 c

St
an

da
rd

 pr

iv
at

e:

In
te

rs
ec

tio
nS

ta
nd

ar
d *

 Po

in
te

r
to

 a
n

ar
ra

y
of

 I
nt

er
se

ct
io

nS
ta

nd
ar

d
ob

je
ct

s
re

pr
es

en
ti

ng
 t

he

pe
de

st
ri

an
 t

ra
ffi

 c
 s

ta
nd

ar
ds

 a
ss

oc
ia

te
d

w
it

h
th

e
ap

pr
oa

ch
.

 m
_I

nd
ic

at
io

n
 pr

iv
at

e:
 I

nd
ic

at
io

n *

 Po
in

te
r

to
 a

n
ar

ra
y

of
 I

nd
ic

at
io

n
ob

je
ct

s;
us

ed
 t

o
st

or
e

th
e

in
di

ca
ti

on

va
lu

es
 o

bt
ai

ne
d

fr
om

 a
ss

oc
ia

te
d

tr
af

fi c
 s

ta
nd

ar
ds

.
 m

_C
ou

nt

 pr
iv

at
e:

 in
t

 U
se

d
to

 c
ou

nt
 t

he
 n

um
be

r
of

 v
eh

ic
le

s
pa

ss
in

g
th

ro
ug

h
th

e
ap

pr
oa

ch
.

 m
_S

pe
ed

L
im

it

 pr
iv

at
e:

 in
t

 Sp
ee

d
lim

it
 (

in
 k

m
/h

)
as

so
ci

at
ed

 w
it

h
th

e
ap

pr
oa

ch
.

344

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 345

 TABLE 6.A12. Approach Class — Methods

 Method Type Notes

 Approach () public: Constructor.
 ∼ Approach () private abstract: Destructor.
 setAspect (Aspect) public: void param: aspect [Aspect - in]

 Mutator for attribute m_
CurrentAspect .

 getAspect () public: Aspect * Accessor used to fetch the aspect
actually being displayed by the
set of approach traffi c standards.

 getCount () public: int * Accessor for the m_Count attribute.
 bumpCount (void) public: void Method called to increment the

attribute m_Count by 1.
 clearCount (void) public: void Method called to set the attribute

 m_Count to 0.
 onPedestrianRequest () public: void Event triggered by a valid

pedestrian crossing request from
one of the pedestrian request
pushbuttons associated with the
approach.

 onEntryStateSet (void) public: void Event triggered when the vehicle
detector attribute m_State is set.

 onEntryStateCleared (void) public: void Event triggered when the vehicle
detector attribute m_State is
cleared.

 Figure 6.A17. IntersectionStandard class.

IntersectionStandard

- m_Stop: boolean

- m_Caution: boolean

- m_Go: boolean

- m_CurrentIndication: Indication*

+ IntersectionStandard()

-* ~IntersectionStandard()

+ setIndication(Indication) : void

+ getIndication() : Indication

www.it-ebooks.info

http://www.it-ebooks.info/

346 SOFTWARE DESIGN APPROACHES

 TABLE 6.A13. Intersection Standard Class — Attributes

 Attribute Type Notes

 m_Stop private: boolean A Boolean value indicating that the
signal is commanded to show a
Stop signal (corresponding to an
Indication value of R).

 m_Caution private: boolean A Boolean value indicating that the
signal is commanded to show a
Caution signal (corresponding to
an Indication value of Y).

 m_Go private: boolean A Boolean value indicating that the
signal is commanded to show a Go
signal (corresponding to an
Indication value of G).

 m_CurrentIndication private: Indication An instance of the Indication
enumerated class indicating the
current traffi c signal to be
displayed.

 TABLE 6.A14. Intersection Standard Class — Methods

 Method Type Notes

 IntersectionStandard () public: Constructor.
∼ IntersectionStandard () private abstract: Destructor.
 setIndication (Indication) public: void param: indication [Indication - in]

 Mutator for the m_CurrentIndication
attribute. The method performs the
following:
 1. Check whether the commanded

aspect is valid. If not, raise an
error.

 2. If the commanded aspect is
valid, display it.

 getIndication () public:
Indication

 Accessor for determining the value of
the indication actually being
displayed.

 TABLE 6.A15. Attribute and Signal Correspondence

 m_CurrerntIndication m_Stop m_Caution m_Go Vehicle
Standard

 Pedestrian
Standard

 R True False False Red DON ’ T WALK
 Y False True False Amber Flashing DON ’ T

WALK
 G False False True Green WALK

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 347

 Figure 6.A18. OnOffSensor class.

OnOffSensor

- m_State: boolean

- m_IgnoreState: boolean

+ OnOffSensor()

+* ~OnOffSensor()

+ setState() : void

+ resetState() : void

+ ignoreState() : void

+ watchState() : void

 TABLE 6.A16. On O ff Sensor Class — Attributes

 Attribute Type Notes

 m_State private: boolean Indicates whether or not a valid pedestrian
service request has been made since the last
time the value was reset.

 m_IgnoreState private: boolean A value that indicates whether subsequent
pedestrian service requests should raise an
event or simply be ignored.

 TABLE 6.A17. On O ff Sensor Class — Methods

 Method Type Notes

 OnOffSensor () public: Constructor.
 ∼ OnOffSensor () public abstract: Destructor.
 setState () public: void Sets the object ’ s m_State attribute to True

indicating that a pedestrian service
request is pending.

 resetState () public: void Sets the object ’ s state attribute to False to
indicate that any previous pedestrian
service requests have been completed.

 ignoreState () public: void Sets the object ’ s m_IgnoreState attribute to
True indicating that subsequent
pedestrian requests are to be ignored.

 watchState () public: void Sets the object ’ s m_IgnoreState attribute to
False indicating that subsequent
pedestrian requests are to be processed.

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
19

.
 O

nO
ff

Se
ns

or
 s

eq
ue

nc
e

di
ag

ra
m

.

«
s
in

g
le

to
n

»

m
_
In

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

m
_
P

e
d

e
s
tr

ia
n

D
e

te
c
to

r[
j]

:O
n

O
ff

S
e

n
s
o

r

m
_
A

p
p

ro
a

c
h

[i
]

:A
p

p
ro

a
c
h

N
a

m
e

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r-

 P
e

d
e

s
tr

ia
n

 R
e

q
u

e
s
t

A
u

th
o

r:
T

e
a

m
 2

V
e

rs
io

n
:1

.0

C
re

a
te

d
:0

9
-D

e
c
-2

0
0

2
 1

2
:1

5
:3

5

U
p

d
a

te
d

:0
9

-D
e

c
-2

0
0

2
 1

4
:0

5
:3

8

{t
0

 =
 0

}
m

_
S

ta
te

 =
 T

ru
e

{t
0

 <
=

 5
0

 m
s
}

o
n

P
e

d
e

s
tr

ia
n

R
e

q
u

e
s
t(

)

{t
0

 <
=

 1
0

0
 m

s
}

o
n

P
e

d
e

s
tr

ia
n

R
e

q
u

e
s
t(

)

{t
1

 =
 0

}

s
e

tP
h

a
s
e

()

s
e

tA
s
p

e
c
t(

a
s
p

e
c
t)

re
s
e

tS
ta

te
()

{t
1

 <
=

 1
0

0
 m

s
}

m
_
S

ta
te

 =
 F

a
ls

e

348

www.it-ebooks.info

http://www.it-ebooks.info/

 Figure 6.A20. OnOffSensor statechart.

Pedestrian Detector- Operation

Processing Request

Waiting for Pedestrian Request

Waiting for

Positive-Going

Transition

Waiting for

Negative-Going

Transition

Receiving Request

Setting Ignore State

+ Do Action / m_IgnoreState = True

Setting Request State

+ Do Action / m_State = True

Clearing Request State

+ Do Action / m_State = False

m_Approach[i]

:Approach

Clearing Ignore State

+ Do Action / m_IgnoreState = False

No Transition No Transition

/watchState()

[m_IgnoreState == False] /setState()

/ignoreState()

/onPedestrianRequest()

/resetState()

Positive-Going Transition

Negative-Going Transition

[m_IgnoreState == True]

349

www.it-ebooks.info

http://www.it-ebooks.info/

350 SOFTWARE DESIGN APPROACHES

 Figure 6.A21. VehicleDetector class.

OnOffSensor

- m_State: boolean

- m_IgnoreState: boolean

+ OnOffSensor()

+*~OnOffSensor()

+ setState() : void

+ resetState() : void

+ ignoreState() : void

+ watchState() : void

VehicleDetector

+ VehicleDetector()

-*~VehicleDetector()

 TABLE 6.A18. Vehicle D etector Class — Attributes

 Method Type Notes

 VehicleDetector () public: Constructor.
 ∼ VehicleDetector () private abstract: Destructor.
 setState () public: void Sets the m_State attribute and

triggers the onVehicleEntry event.
 resetState () public: void Clears the m_State attribute and

triggers the onVehicleExit event.

 6.8.3.3.5.4 v ehicle d etector b ehavioral d etails (F igs. 6.A22 and 6.A23)

 6.8.3.3.6 Override This class represents the set of pushbuttons on the
manual override console (Fig. 6.A24).

 6.8.3.3.6.1 o verride r elationships

 • Dependency link to class OverrideType
 • Association link to class IntersectionController
 • Generalization link from class RemoteOverride

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
22

.
 V

eh
ic

le
D

et
ec

to
r

cl
as

s
se

qu
en

ce
 d

ia
gr

am
.

m
_
A

p
p

ro
a

c
h

[i
].

m
_
V

e
h

ic
le

D
e

te
c
to

r

:V
e

h
ic

le
D

e
te

c
to

r

m
_
A

p
p

ro
a

c
h

[i
]

:A
p

p
ro

a
c
h

«
s
in

g
le

to
n

»

m
_
In

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

N
a

m
e

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r-

 V
e

h
ic

le
 D

e
te

c
to

r

A
u

th
o

r:
T

e
a

m
 2

V
e

rs
io

n
:1

.0

C
re

a
te

d
:0

7
-D

e
c
-2

0
0

2
 2

1
:5

4
:1

9

U
p

d
a

te
d

:0
9

-D
e

c
-2

0
0

2
 1

3
:5

8
:0

6

{t
1

 =
 0

}
*[

W
h

ile
 A

p
p

ro
a

c
h

 A
s
p

e
c
t

=
=

 {
G

,Y
]*

]:
o

n
E

n
tr

y
S

ta
te

S
e

t(
v
o

id
)

{t
1

 <
=

 5
0

 m
s
}

o
n

V
e

h
ic

le
E

n
tr

y
(a

p
p

ro
a

c
h

)

{t
2

 =
 0

}
*[

W
h

ile
 A

p
p

ro
a

c
h

 A
s
p

e
c
t

=
=

 [
G

,Y
]*

]:
o

n
E

n
tr

y
S

ta
te

C
le

a
re

d
(v

o
id

)

{t
2

 <
=

 2
0

 m
s
}

m
_
C

o
u

n
t+

+

{t
3

 =
 0

}

[i
f

(A
p

p
ro

a
c
h

 A
s
p

e
c
t

C
h

a
n

g
e

s
 t

o
 R

R
)]

:c
le

a
rC

o
u

n
t(

v
o

id
)

{t
3

 <
=

 2
0

 m
s
}

m
_
C

o
u

n
t

=
 0

351

www.it-ebooks.info

http://www.it-ebooks.info/

352 SOFTWARE DESIGN APPROACHES

 Figure 6.A23. VehicleDetector class statechart.

Intersection Controller- Operating

m_VehicleDetector[i]

Blocked

Vehicle Over Loop

+ Do Action / setState(void)

+ Do Action / m_Approach[i].onEntryStateSet(void)

Vehicle Has Passed Loop

+ Do Action / resetState(void)

+ Do Action / m_Approach[i].onEntryStateCleared(void)

m_Approach[i]

Updating Count

+ Do Action / m_Count++

Blocked

Triggering Approach

+ Do Action / m_IntersectionController.onVehicleEntry(int)

Clearing Count

+ Do Action / m_Count = 0

Name:IntersectionController- Vehicle Detector

Author:Team 2

Version:1.0

Created:06-Dec-2002 15:21:47

Updated:07-Dec-2002 21:46:52

Vehicle Entry

Vehicle Exit

onEntryStateCleared

onEntryStateSet

clearCount()

 6.8.3.3.6.2 o verride a ttributes (T able 6.A19)

 6.8.3.3.6.3 o verride m ethods (T able 6.A20)

 6.8.3.3.6.4 o verride b ehavioral d etails (F ig. 6.A25)

 6.8.3.3.7 RemoteOverride This class represents the commands available on
the Remote Software console. Additionally, the class provides an interface for

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 353

 Figure 6.A24. Override class.

Override

- m_IntersectionController: IntersectionController*

+ Override()

-*~Override()

+ onActivate(OverrideType) : int

+ onDeactivate(OverrideType) : int

+ onSetPhase() : int

 TABLE 6.A19. Override Class — Attributes

 Attribute Type Notes

 m_
IntersectionController

 private:
 IntersectionController

 Pointer to the
m_IntersectionContoller
object.

 TABLE 6.A20. Override Class — Methods

 Method Type Notes

 Override () public: Constructor.
 ∼ Override () private abstract: Destructor.
 onActivate (OverrideType) public: int param: type [OverrideType - in]

 Event triggered by receipt of an
activation command from the
local override console.

 onDeactivate (OverrideType) public: int param: type [OverrideType - in]
 Event triggered by receipt of a

deactivation command from
the local override console.

 onSetPhase () public: int Event triggered by receipt of an
advance phase command from
the local override console.

remote access to and update of intersection traffi c data and cycle parameters
for coordinated intersection control (option).

 The RemoteOverride class is responsible for managing the following
functions:

 1. Triggering the appropriate mode change.
 2. Generation and handling of events required to control intersection

phase.

www.it-ebooks.info

http://www.it-ebooks.info/

 Figure 6.A25. Override class sequence diagram.

m_ManualOverride

:Override

«singleton»

m_IntersectionController

:IntersectionController

«resource»

:Manual

Control Panel

Name:IntersectionController- Manual Override

Author:Team 2

Version:1.0

Created:04-Dec-2002 08:30:25

Updated:05-Dec-2002 18:52:22

{t0 = 0}
dispatchCommand(command = Activate Manual Override)

{t0 <= 10 ms}
onActivate(type)

{t0 <= 20 ms}
onOverrideActivated(type)

m_PreviousMode = m_Mode

m_Mode =

Manual

setPhase(phase = Default)

checkPhase(phase)

{t0 <= 220 ms}
m_Status:= 0 (OK)

{t0 <= 250 ms}

m_Status:= 0 (OK)

{t1 = 0}
*[While Override Active]:dispatchCommand(command = Advance Phase)

{t1 <= 10 ms} *[While Override Active]:onSetPhase()

{t1 <= 20 ms}
*[While Override Active]:setPhase()

setPhase()

checkPhase(phase)

{t1 <= 220 ms}
*[While Override Active]: m_Status:= 0 (OK)

{t1 <= 250 ms}
*[While Override Active]: m_Status:= 0 (OK)

{t2 = 0} dispatchCommand(command = Deactivate Manual Override)

{t2 <= 10 ms}
onDeactivate(type)

{t2 <= 20 ms}
onOverrideDeactivated(type)

m_Mode = m_PreviousMode

setPhase(phase)

checkPhase(phase)

{t2 <= 220 ms}
m_Status:= 0 (OK)

{t2 <= 250 ms}m_Status:= 0 (OK)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 355

 3. Acting as a substitute for the Calculate Cycle Parameters method of the
Intersection Control object (in coordinated mode, not covered by this
specifi cation).

 Figure 6.A26 illustrates the attributes, methods, and events of the Remote
Override class.

 6.8.3.3.7.1 r emote o verride r elationships

 • Dependency link to class Status
 • Generalization link to class Override
 • Association link from class IntersectionController
 • Association link to class Network

 6.8.3.3.7.2 r emote o verride a ttributes In addition to those inherited from
the superclass Override, RemoteOverride attributes are as follows (T able
6.A21):

 Figure 6.A26. Remote override class.

Override

- m_IntersectionController: IntersectionController*

+ Override()

-* ~Override()

+ onActivate(OverrideType) : int

+ onDeactivate(OverrideType) : int

+ onSetPhase() : int

RemoteOverride

- m_Network: Network*

+ RemoteOverride()

-* ~RemoteOverride()

+ onSetParameters(Parameters*) : int

+ onGetStatus() : Status*

www.it-ebooks.info

http://www.it-ebooks.info/

356 SOFTWARE DESIGN APPROACHES

 TABLE 6.A21. Remote O verride Class — Attributes

 Attribute Type Notes

 m_Network private: Network Pointer to the m_Network object.

 TABLE 6.A22. Remote O verride Class — Methods

 Method Type Notes

 RemoteOverride () public: Constructor.
∼ RemoteOverride () private abstract: Destructor.
 onSetParameters (Parameters *) public: int param: parameters [Parameters *

 - in]
 Event triggered under

coordinated control; used to
set the intersection timing
parameters under remote control.

 Completes within 100 ms.
 onGetStatus () public: Status * Event triggered under

coordinated control; used to
get the intersection timing
parameters under remote control.

 Completes within 100 ms.

6.8.3.3.7.3 r emote o verride m ethods In addition to those inherited from
the superclass Override, RemoteOverride methods are as follows (T able
6.A22):

6.8.3.3.7.4 r emote o verride b ehavioral d etails Behavior of the
RemoteOverride class is identical to that of the Override class for methods
inherited from the superclass.

 6.8.3.3.8 PreEmpt This class manages the wireless transponder interface to
authorized emergency vehicles and accesses the m_IntersectionControl object
in order to display the correct traffi c signals, allowing the emergency vehicle
priority access to the intersection.

 The PreEmpt class is responsible for managing the following functions:

 1. Triggering the appropriate mode change.
 2. Reception of emergency vehicle preemption requests.
 3. Decryption and validation of emergency vehicle preemption requests.
 4. Generation and handling of events required to control intersection

phase.

 Figure 6.A27 illustrates the attributes, methods, and events of the PreEmpt
class.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 357

 Figure 6.A27. PreEmpt class.

«singleton»

PreEmpt

- m_IntersectionController: IntersectionController*

+ PreEmpt()

-* ~PreEmpt()

+ onActivate() : int

+ onDeactivate() : int

+ onTimeout() : void

 TABLE 6.A23. Pre E mpt Class — Attributes

 Attribute Type Notes

 m_IntersectionController private:
 IntersectionController

 Pointer to the m_Intersection
controller object.

 TABLE 6.A24. Pre E mpt Class — Methods

 Method Type Notes

 PreEmpt () public: Constructor.
 ∼ PreEmpt () private abstract: Destructor.
 onActivate () public: int Event triggered by receipt of an activate

signal from the emergency vehicle
transponder.

 onDeactivate () public: int Event triggered by receipt of a deactivate
signal from the emergency vehicle
transponder.

 onTimeout () public: void Event triggered if a deactivate signal is
not received after the timeout interval
has elapsed.

 6.8.3.3.8.1 p re e mpt r elationships

 • Association link from class IntersectionController
 • Association link to class IntersectionController

 6.8.3.3.8.2 p re e mpt a ttributes (T able 6.A23)

 6.8.3.3.8.3 p re e mpt m ethods (T able 6.A24)

 6.8.3.3.8.4 p re e mpt b ehavioral details (F ig. 6.A28)

 6.8.3.3.9 Network This class manages communication via the Ethernet port.

www.it-ebooks.info

http://www.it-ebooks.info/

358 SOFTWARE DESIGN APPROACHES

 Figure 6.A28. PreEmpt sequence diagram.

m_PreEmpt

:PreEmpt

«singleton»

m_IntersectionController

:IntersectionController

Name:IntersectionController- Emergency Preempt

Author:Team 2

Version:1.0

Created:09-Dec-2002 13:39:37

Updated:09-Dec-2002 13:45:09

{t1 = 0}
onPreemptRequest()

m_PreviousMode = m_Mode

m_Mode = Preempt

{t1 <= 100 ms}
m_Status:= 0

{t2 = 0}
onPreemptCleared()

m_Mode = m_PreviousMode

setPhase(phase = Default)

{t2 <= 100 ms}
m_Status:= 0

 Figure 6.A29. Network class.

«singleton»

Network

+ Network()

-* ~Network()

+ receivePacket() : void

+ sendPacket(void*) : int

+ dispatchCommand(int) : void

 Figure 6.A29 illustrates the attributes, methods, and events of the Network
Interface class.

 6.8.3.3.9.1 n etwork r elationships

 • Association link from class IntersectionController
 • Association link from class Maintenance
 • Association link from class RemoteOverride

 6.8.3.3.9.2 n etwork m ethods (T able 6.A25)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 359

 TABLE 6.A25. Network Class — Methods

 Method Type Notes

 Network () public: Constructor.
 ∼ Network () private abstract: Destructor.
 receivePacket () public: void Method responsible for receiving

network SNMP packets.
 sendPacket (void *) public: int param: packet [void * - in]

 Method responsible for sending
network SNMP packets.

 dispatchCommand (int) public: void param: command [int - in]
 Interprets the received SNMP

packet and invokes the
appropriate method in response.

 Figure 6.A30. Maintenance class.

«singleton»

Maintenance

- m_Network: Network*

- m_IntersectionController: IntersectionController*

+ Maintenance()

-* ~Maintenance()

+ readDatabase(int) : void

+ getStatus() : Phase

 6.8.3.3.10 Maintenance This class provides a maintenance interface to the
intersection controller, accessible either from the local maintenance Ethernet
port or the DOT WAN.

 The Maintenance class is responsible for managing the following
functions:

 1. Retrieval of database information.
 2. Retrieval of current intersection controller status. (Fig. 6.A30)

 6.8.3.3.10.1 m aintenance r elationships

 • Association link to class IntersectionController
 • Association link to class Network

 6.8.3.3.10.2 m aintenance a ttributes (T able 6.A26)

 6.8.3.3.10.3 m aintenance m ethods (T able 6.A27)

www.it-ebooks.info

http://www.it-ebooks.info/

360 SOFTWARE DESIGN APPROACHES

 TABLE 6.A26. Maintenance Class — Attributes

 Attribute Type Notes

 m_Network private: Network Pointer to the m_Network
object.

 m_IntersectionController private:
IntersectionController

 Pointer to the
m_IntersectionController
object.

 TABLE 6.A27. Maintenance Class — Methods

 Method Type Notes

 Maintenance () public: Constructor.
∼ Maintenance () private abstract: Destructor.
 readDatabase (int) public: void param: database [int - in]

 Method to read the contents of the database
specifi ed by the parameter database .

 getStatus () public: Phase Method to get the intersection status.

 6.8.3.3.11 Database (Traffi c History; Incident Log) Instances of this class
are used to store the Traffi c History and the Incident Log for the intersection
being controlled.

 The Traffi c History object is responsible for managing the following
functions:

 1. Storage and retrieval of traffi c history database records.
 2. Clearing of traffi c history in response to a command from a remote host.

 Figure 6.A31 illustrates the attributes, methods, and events of the Traffi c
History class.

6.8.3.3.11.1 d atabase r elationships

 • Association link to class Record
 • Association link from class IntersectionController
 • Association link from class IntersectionController

6.8.3.3.11.2 d atabase a ttributes (T able 6.A28)

6.8.3.3.11.3 d atabase m ethods (T able 6.A29)

 6.8.3.3.12 Record This class defi nes the attributes and methods used by
records contained in object instances of the Database class (Fig. 6.A32).

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 361

 Figure 6.A31. Database class.

Database

{2}

- MAXRECORDS: int

- m_Record: Record* [0..* ordered]

- m_CurrentRecord: int

- m_First: int

- m_Last: int

- m_Full: boolean

+ Database()

-* ~Database()

+ goFirst() : int

+ goLast() : int

+ goNext() : int

+ go(int) : int

+ isFull() : boolean

+ isEOF() : boolean

+ read() : Record

+ read(int) : Record

+ write(Record*) : int

+ write(int, Record*) : int

+ flush() : int

 TABLE 6.A28. Database Class — Attributes

 Attribute Type Notes

 MAXRECORDS private: int Constant defi ning the maximum
number of records permitted.

 m_Record private: Record Pointer to database records, which
are of type Record.

 m_CurrentRecord private: int Position (index) of current record.
 m_First private: int Position (index) of fi rst (least

recent) record in FIFO
database structure.

 m_Last private: int Position (index) of last (most
recent) record in FIFO
database structure.

 m_Full private: boolean True if data is being overwritten.

www.it-ebooks.info

http://www.it-ebooks.info/

362 SOFTWARE DESIGN APPROACHES

 TABLE 6.A29. Database Class — Methods

 Method Type Notes

 Database () public: Constructor.
∼ Database () private abstract: Destructor.
 goFirst () public: int Moves cursor to fi rst (least recent) record.

Completes in 40 ms.
 goLast () public: int Moves cursor to last (most recent) record.

Completes in 40 ms.
 goNext () public: int Moves cursor to the next record. Completes

in 40 ms.
 Go (int) public: int param: record [int - in]

 Move cursor to the specifi ed record.
Completes in 40 ms.

 isFull () public: boolean True if the database is full. Subsequent writes
will overwrite oldest data (FIFO).

 isEOF () public: boolean True when the cursor is at the last record.
 Read () public: Record Reads record at current position. Completes

in 10 ms.
 Read (int) public: Record param: position [int - in]

 Reads record at specifi ed position; updates
current record to specifi ed position.
Completes in 50 ms.

 Write (Record *) public: int param: record [Record * - inout]
 Adds new record to end of database. If

isFull() is True, data will be overwritten.
Completes in 50 ms.

 Write (int, Record *) public: int param: position [int - in]
 param: record [Record * - inout]
 Overwrites record at specifi ed position;

updates current record to specifi ed
position. Completes in 50 ms.

 Flush () public: int Clears all records by setting fi rst and last
logical record positions to zero; moves
cursor to fi rst physical record position.
Completes in 200 ms.

6.8.3.3.12.1 r ecord r elationships

 • Association link from class Database

6.8.3.3.12.2 r ecord a ttributes (F ig. 6.A33)

6.8.3.3.12.3 r ecord m ethods (F ig. 6.A34)

 6.8.3.3.13 ErrorHandler This class handles all errors generated by the
application. All errors are generated by the IntersectionController class in
response either to internal errors or error returns from method calls.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 363

 Figure 6.A32. Record class.

Database

{2}

- MAXRECORDS: int = 65536

- m_Record: Record* [0..* ordered]

- m_CurrentRecord: int

- m_First: int

- m_Last: int

- m_Full: boolean

+ Database()

-* ~Database()

+ goFirst() : int

+ goLast() : int

+ goNext() : int

+ go(int) : int

+ isFull() : boolean

+ isEOF() : boolean

+ read() : Record

+ read(int) : Record

+ write(Record*) : int

+ write(int, Record*) : int

+ flush() : int

Record

- timestamp: datetime

- source: int

- data: string

+ Record()

-* ~Record()

+ setTimestamp(datetime*) : void

+ setSource(int) : void

+ setData(string*) : void

+ getTimestamp() : datetime

+ getSource() : int

+ getData() : string

0..* {ordered}+m_Record

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
33

.
 R

ec
or

d
cl

as
s —

 at
tr

ib
ut

es
.

A
tt

ri
b

u
te

T

y
p

e

N
o

te
s

 t
im

e
s
ta

m
p

p
ri
v
a
te

:
d
a
te

ti
m

e

D
a
te

 a
n
d
 t
im

e
 o

f
th

e
 i
n
c
id

e
n
t
o
r

tr
a
ff
ic

 h
is

to
ry

 e
n
tr

y
.

 s
o
u
rc

e

p
ri
v
a
te

:
in

t

In
te

g
e
r

v
a
lu

e
 r

e
p
re

s
e
n
ti
n
g
 t
h
e
 o

b
je

c
t
th

a
t
is

 t
h
e
 s

o
u
rc

e
 o

f
th

e

d
a
ta

b
a
s
e
 r

e
c
o
rd

.

 d
a
ta

p
ri
v
a
te

:
s
tr

in
g

S
tr

in
g
 o

f
b
y
te

s
 c

o
n
ta

in
in

g
 t
h
e
 a

c
tu

a
l
d
a
ta

.

364

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
34

.
 R

ec
or

d
cl

as
s —

 m
et

ho
ds

.

M
e
th

o
d

T

y
p

e

N
o

te
s

 R
e
c
o
rd

 (
)

p
u
b
lic

:

C
o
n
s
tr

u
c
to

r.

 ~
R

e
c
o
rd

 (
)

p
ri
v
a
te

 a
b
s
tr

a
c
t:

D
e
s
tr

u
c
to

r.

 s
e
tT

im
e
s
ta

m
p
 (

d
a
te

ti
m

e
)

p
u
b
lic

:
v
o
id

p
a
ra

m
:
ti
m

e
s
ta

m
p
 [
 d

a
te

ti
m

e
 -

 i
n
o
u
t
]

M
u
ta

to
r

fo
r

m
_
T

im
e
s
ta

m
p
 a

tt
ri
b
u
te

.

 s
e
tS

o
u
rc

e
 (

in
t)

p
u

b
lic

:
v
o
id

p
a
ra

m
:
s
o
u
rc

e
 [
 i
n
t
-

in
]

 s
e
tD

a
ta

 (
s
tr

in
g

)

p
u
b
lic

:
v
o
id

p
a
ra

m
:
d
a
ta

 [
 s

tr
in

g
 -

 i
n
o
u
t
]

M
u
ta

to
r

fo
r

m
_
D

a
ta

 a
tt
ri
b
u
te

.

 g
e
tT

im
e
s
ta

m
p
 (

)

p
u
b
lic

:
d
a
te

ti
m

e

A
c
c
e
s
s
o
r

fo
r

m
_
T

im
e
s
ta

m
p
 a

tt
ri
b
u
te

.

 g
e
tS

o
u
rc

e
 (

)

p
u
b
lic

:
in

t

A
c
c
e
s
s
o
r

fo
r

m
_
S

o
u
rc

e
 a

tt
ri
b
u
te

.

 g
e
tD

a
ta

 (
)

p
u
b
lic

:
s
tr

in
g

A
c
c
e
s
s
o
r

fo
r

m
_
D

a
ta

 a
tt
ri
b
u
te

.

365

www.it-ebooks.info

http://www.it-ebooks.info/

366 SOFTWARE DESIGN APPROACHES

6.8.3.3.13.1 e rror h andler r elationships

 • Association link from class IntersectionController

6.8.3.3.13.2 e rror h andler m ethods (F ig. 6.A35)

6.8.3.3.13.3 e rror h andler b ehavioral d etails (F igs. 6.A36 and 6.A37)

 6.8.3.3.14 Support Classes These comprise the structures and enumerated
classes used to defi ne attributes in the classes detailed above.

6.8.3.3.14.1 s plit (F ig. 6.A38)
 Percentage of cycle time per phase. Comprises the nominal phase time plus
the calculated extension due to traffi c volume.

 The values are determined as follows:

 1. In FIXED mode, the nominal times are used (i.e., the extensions are set
to zero).

 2. In ACTUATED mode, the extensions contain fi xed values at the start of
each cycle. These values are modifi ed in response to Vehicle Entry and
Pedestrian Request events.

 3. In ADAPTIVE mode, the extensions are updated prior to the start of
each cycle as determined by the calculateParameters() method of the
m_IntersectionController object.

6.8.3.3.14.1.1 Split Relationships

 • Association link from class Parameters

6.8.3.3.14.2 p arameters (F ig. 6.A39)

6.8.3.3.14.2.1 Parameters Relationships

 • Association link from class Status
 • Association link to class Split
 • Association link from class IntersectionController

6.8.3.3.14.3 s tatus (F ig. 6.A40)

6.8.3.3.14.3.1 Status Relationships

 • Association link to class Parameters
 • Association link to class IntersectionController
 • Dependency link from class RemoteOverride
 • Association link to class Mode
 • Association link to class Phase

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
35

.
 E

rr
or

H
an

dl
er

 c
la

ss
 —

 m
et

ho
ds

.

M
e
th

o
d

T

y
p

e

N
o

te
s

E
rr

o
rH

a
n
d
le

r
()

p
u
b
lic

:

C
o
n
s
tr

u
c
to

r.

~
E

rr
o
rH

a
n
d
le

r
()

p
ri
v
a
te

 a
b
s
tr

a
c
t:

D
e
s
tr

u
c
to

r.

o
n
N

o
n
C

ri
ti
c
a
lE

rr
o
r

(i
n
t)

p
u
b
lic

:
v
o
id

p
a

ra
m

:
e

rr
o

r
[
in

t
-

in
]

L
o
g
s
 t
h
e
 e

rr
o
r

in
c
id

e
n
t
a
n
d
 r

e
s
u
m

e
s
 n

o
rm

a
l
o
p
e
ra

ti
o
n
.

o
n
C

ri
ti
c
a
lE

rr
o
r

(i
n
t)

p
u
b
lic

:
v
o
id

p
a
ra

m
:
e
rr

o
r

[
in

t
-

in
]

A
tt
e
m

p
ts

 t
o
 s

e
t
th

e
 i
n
te

rs
e
c
ti
o
n
 t
o
 t
h
e
 d

e
fa

u
lt
 p

h
a
s
e
.
 I
f

u
n
s
u
c
c
e
s
s
fu

l,
 a

tt
e
m

p
ts

 a
 r

e
s
e
t.

If
 t
h
is

 f
a
ils

 o
r

th
e
 e

rr
o
r

o
c
c
u
rs

a
g
a
in

 i
m

m
e
d
ia

te
ly

 a
ft
e
r

re
s
e
t,
 t
h
e
 w

a
tc

h
d
o
g
 t
im

e
r

w
ill

 o
v
e
rr

id
e

s
o
ft
w

a
re

 e
rr

o
r

h
a
n
d
lin

g
.

L
o
g
s
 t
h
e
 e

rr
o
r

a
n
d
 s

e
n
d
s
 a

 n
e
tw

o
rk

 m
e
s
s
a
g
e
 t
o
 t
h
e
 D

O
T

 c
e
n
tr

a
l

o
ff
ic

e
 v

ia
 t
h
e
 D

O
T

 W
A

N
.

367

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
36

.
 N

on
cr

it
ic

al
 e

rr
or

 s
eq

ue
nc

e
di

ag
ra

m
.

«
s
in

g
le

to
n

»

m
_
E

rr
o

rH
a

n
d

le
r

:E
rr

o
rH

a
n

d
le

r

«
s
in

g
le

to
n

»

m
_
In

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

m
_
In

c
id

e
n

tL
o

g

:D
a

ta
b

a
s
e

N
a

m
e

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r-

 N
o

n
-C

ri
ti
c
a

l
E

rr
o

r
H

a
n

d
lin

g

A
u

th
o

r:
T

e
a

m
 2

V
e

rs
io

n
:1

.0

C
re

a
te

d
:0

9
-D

e
c
-2

0
0

2
 1

1
:4

6
:4

9

U
p

d
a

te
d

:0
9

-D
e

c
-2

0
0

2
 1

1
:5

3
:0

7

{t
 =

 0
}

o
n

N
o

n
C

ri
ti
c
a

lE
rr

o
r(

e
rr

o
r)

{t
 <

=
 5

0
0

 m
s
}

w
ri
te

(r
e

c
o

rd
)

368

www.it-ebooks.info

http://www.it-ebooks.info/

F

ig
ur

e
6.

A
37

.
 C

ri
ti

ca
l e

rr
or

 s
eq

ue
nc

e
di

ag
ra

m
.

«
s
in

g
le

to
n

»

m
_
In

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r

«
s
in

g
le

to
n

»

m
_
E

rr
o

rH
a

n
d

le
r

:E
rr

o
rH

a
n

d
le

r

m
_
In

c
id

e
n
tL

o
g

:D
a
ta

b
a
s
e

m
_
N

e
tw

o
rk

:N
e
tw

o
rk

N
a

m
e

:I
n

te
rs

e
c
ti
o

n
C

o
n

tr
o

lle
r-

 C
ri
ti
c
a

l
E

rr
o

r
H

a
n

d
lin

g

A
u
th

o
r:

T
e
a
m

 2

V
e

rs
io

n
:1

.0

C
re

a
te

d
:0

9
-D

e
c
-2

0
0
2
 1

1
:5

5
:4

4

U
p

d
a

te
d

:0
9

-D
e

c
-2

0
0

2
 1

2
:0

3
:2

8

{t
 =

 0
}

o
n

C
ri
ti
c
a

lE
rr

o
r(

e
rr

o
r)

{t
 <

=
 5

0
 m

s
}

s
e

tP
h

a
s
e

(p
h

a
s
e

 =
 D

e
fa

u
lt
)

{t
 <

=
 5

0
0

 m
s
}

w
ri
te

(r
e

c
o

rd
)

{t
 <

=
 1

0
0
0
 m

s
}

s
e

n
d

P
a

c
k
e

t(
p

a
c
k
e

t)

{t
 <

=
 5

0
0

0
 m

s
}

re
s
e

tC
o

n
tr

o
lle

r(
)

369

www.it-ebooks.info

http://www.it-ebooks.info/

370 SOFTWARE DESIGN APPROACHES

 Figure 6.A38. Split class.

«struct»

Split
{8}

+ pctNormal: float

+ pctExtension: float

+ MIN_TIME: float = 10

+ MAX_TIME: float = 120

 Figure 6.A39. Parameters class.

«struct»

Parameters

+ cycleTime: float

+ splits: Split* [8 ordered]

 Figure 6.A40. Status class.

«struct»

Status

+ mode: Mode

+ count: int* [4 ordered]

+ parameters: Parameters*

+ phase: Phase

 6.8.3.3.14.4 p hase (F ig. 6.A41)

 6.8.3.3.14.4.1 Phase Relationships

 • Association link from class IntersectionController
 • Association link from class Status

 6.8.3.3.14.5 a spect (F ig. 6.A42)

 6.8.3.3.14.5.1 Aspect Relationships

 • Association link from class Approach

 6.8.3.3.14.6 i ndication (F ig. 6.A43)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 371

 Figure 6.A41. Phase class.

«enumeration»

Phase

+ Default: int

+ GG_GG_RR_RR: int

+ GY_GY_RR_RR: int

+ YR_YR_RR_RR: int

+ RR_RR_RR_RR_4: int

+ RR_RR_GG_GG: int

+ RR_RR_GY_GY: int

+ RR_RR_YR_YR: int

+ RR_RR_RR_RR_8: int

 Figure 6.A42. Aspect class.

«enumeration»

Aspect

+ RR: int

+ GG: int

+ GY: int

+ YR: int

 6.8.3.3.14.6.1 Indication Relationships

 • Association link from class IntersectionStandard

 6.8.3.3.14.7 m ode (F ig. 6.A44)

 6.8.3.3.14.7.1 Mode Relationships

 • Association link from class Status
 • Association link from class IntersectionController

 6.8.3.3.14.8 o verride t ype (F ig. 6.A45)

 6.8.3.3.14.8.1 OverrideType Relationships

 • Dependency link from class Override

 6.8.4 Requirements Traceability

 Tables 6.A30 – 6.A32 illustrate SDD compliance with the SRS requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

372 SOFTWARE DESIGN APPROACHES

 Figure 6.A44. Mode class.

«enumeration»

Mode

+ Adaptive: int

+ Actuated: int

+ Timed: int

+ Preempt: int

+ Manual: int

+ Remote: int

+ Default: int

 Figure 6.A45. OverrideType class.

«enumeration»

OverrideType

+ Manual: int

+ Remote: int

 Figure 6.A43. Indication class.

«enumeration»

Indication

+ R: int

+ Y: int

+ G: int

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1 373

 TABLE 6.A30. Architectural Requirements

 Section Reference
for SRS
Requirement

 SDD Section
Demonstrating

Compliance

 Comments

 .2.5(10) .2.2.2 Application software to be
written in high - order OO
language; C ++ selected

 .2.6(2) .2.2.1 Commercial RTOS
 .2.6(3) .2.2.3 Resource managers

 Note: All the SRS section references have an additional prefi x “ 5.7 ” and all the SDD references
have a prefi x “ 6.8 ” . For ease of reading, these are not shown.

 TABLE 6.A31. Functional Requirements

 Section Reference
for SRS
Requirement

 SDD Section
Demonstrating

Compliance

 Comments

 .2.6(1) .3.3.2.2 SI units; speed limit is in km/h
 .3.1.1, Figure 5.A3 .3.1, Figure 6.A3 Use cases and collaborations
 .3.2, Figure 5.A4 .3.2, Figure 6.A10 Class model
 .3.2.1 .3.1, .3.3.1 Requirements for Intersection Controller

class
 .3.2.2 .3.1, .3.3.2 Requirements for Approach class
 .3.2.3 .3.1, .3.3.3 Requirements for Pedestrian Traffi c

Standard class
 .3.2.4 .3.1, .3.3.3 Requirements for Vehicle Traffi c

Standard class
 .3.2.5 .3.1, .3.3.4 Requirements for Pedestrian Service

Button class
 .3.2.6 .3.1, .3.3.5 Requirements for Vehicle Presence

Detector class
 .3.2.7 .3.1, .3.3.6 Requirements for Manual Override class
 .3.2.8 .3.1, .3.3.7 Requirements for Remote Override class
 .3.2.9 .3.1, .3.3.8 Requirements for Emergency Vehicle

Interface class
 .3.2.10 .3.1, .3.3.9, .3.3.10 Requirements for Network Interface class
 .3.2.11 .3.1, .3.3.11 Requirements for Traffi c History class
 .3.2.12 .3.1, .3.3.11 Requirements for Incident Log class

 Note: All the SRS section references have an additional prefi x “ 5.7 ” and all the SDD references
have a prefi x “ 6.8 ” . For ease of reading, these are not shown.

www.it-ebooks.info

http://www.it-ebooks.info/

374 SOFTWARE DESIGN APPROACHES

 TABLE 6.A32. Timing Requirements

 Section Reference for
SRS Requirement

 SDD Section
Demonstrating

Compliance

 Comments

 .3.3.1.1, Table 5.A14 (1) .3.3.1.4, Figure 6.A13 Initialization
 .3.3.1.1, Table 5.A14 (2) .3.3.1.4, Figure 6.A13 Set default phase
 .3.3.1.1, Table 5.A14 (3) .3.3.1.4, Figure 6.A13 Start normal operation
 .3.3.1.1, Table 5.A14 (4) .3.3.1.4, Figure 6.A13 Advance phase — normal
 .3.3.1.1, Table 5.A14 (5) .3.3.6.4, Figure 6.A25 Advance phase — local
 .3.3.1.1, Table 5.A14 (6) .3.3.6.4, Figure 6.A25 Advance phase — remote
 .3.3.1.1, Table 5.A14 (7) .3.3.1.4, Figure 6.A13 Calculate cycle

parameters— actuated
 .3.3.1.1, Table 5.A14 (8) .3.3.1.4, Figure 6.A13 Calculate cycle

parameters— adaptive
 .3.3.1.1, Table 5.A14 (9) .3.3.13.3, Figure 6.A37 Critical error — display

defaults
 .3.3.1.1, Table 5.A14 (10) .3.3.13.3, Figure 6.A37 Critical error — alarm
 .3.3.1.1, Table 5.A14 (11) .3.3.13.3, Figure 6.A37 Critical error — reset
 .3.3.1.1, Table 5.A14 (12) .3.3.13.3, Figure 6.A36,

Figure 6.A37
 Write error Log

 .3.3.1.1, Table 5.A14 (13) .3.3.1.4, Figure 6.A13 Set phase
 .3.3.1.1, Table 5.A14 (14) .3.3.1.4, Figure 6.A13 Get phase
 .3.3.1.1, Table 5.A14 (15) .3.3.1.4, Figure 6.A13 Check phase
 .3.3.1.1, Table 5.A14 (16) .3.3.4.4, Figure 6.A19 Pedestrian request latching
 .3.3.1.1, Table 5.A14 (17) .3.3.4.4, Figure 6.A19 Pedestrian request reset
 .3.3.1.1, Table 5.A14 (18) .3.3.4.4, Figure 6.A19 Pedestrian request

processing
 .3.3.1.1, Table 5.A14 (19) .3.3.5.4, Figure 6.A22 Vehicle entrance
 .3.3.1.1, Table 5.A14 (20) .3.3.5.4, Figure 6.A22 Vehicle exit
 .3.3.1.1, Table 5.A14 (21) .3.3.5.4, Figure 6.A22 Vehicle request processing
 .3.3.1.1, Table 5.A14 (22) .3.3.5.4, Figure 6.A22 Vehicle reset request state
 .3.3.1.1, Table 5.A14 (23) .3.3.5.4, Figure 6.A22 Vehicle count update
 .3.3.1.1, Table 5.A14 (24) .3.3.1.4, Figure 6.A13 Vehicle count fetch
 .3.3.1.1, Table 5.A14 (25) .3.3.5.4, Figure 6.A22 Vehicle count reset
 .3.3.1.1, Table 5.A14 (26) .3.3.7.3 Get cycle parameters
 .3.3.1.1, Table 5.A14 (27) .3.3.7.3 Update cycle parameters
 .3.3.1.1, Table 5.A14 (28) .3.3.8.4, Figure 6.A28 Process message
 .3.3.1.1, Table 5.A14 (29) .3.3.8.4, Figure 6.A28 Process command
 .3.3.1.1, Table 5.A14 (30) .3.3.8.4, Figure 6.A28 Process message
 .3.3.1.1, Table 5.A14 (31) .3.3.11.3, Table 6.A29 Fetch database
 .3.3.1.1, Table 5.A14 (32) .3.3.11.3, Table 6.A29 Add record
 .3.3.1.1, Table 5.A14 (33) .3.3.11.3, Table 6.A29 Clear database
 .3.3.1.1, Table 5.A14 (34) .3.3.11.3, Table 6.A29 Add record
 .3.3.1.1, Table 5.A14 (35) .3.3.11.3, Table 6.A29 Clear database

 Note: All the SRS section references have an additional prefi x “ 5.7 ” and all the SDD references
have a prefi x “ 6.8 ” . For ease of reading, these are not shown.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 375

 REFERENCES

 K. K. Aggarwal , Y. Singh , and J. K. Chhabra , “ An integrated measure of software main-
tainability , ” Proceedings of the Annual Reliability and Maintainability Symposium ,
 Seattle, WA , 2002 , pp. 235 – 241 .

 S. W. Ambler , The Object Primer: Agile Model - Driven Development with UML 2.0 , 3rd
Edition. New York : Cambridge University Press , 2004 .

 K. Beck , Extreme Programming Explained: Embrace Change . New York : Addison -
 Wesley , 1999 .

 L. Bernstein and C. M. Yuhas , Trustworthy Systems through Quantitative Software
Engineering . Hoboken, NJ : Wiley - Interscience , 2005 .

 B. W. Boehm , “ A spiral model of software development and enhancement , ” ACM
SIGSOFT Software Engineering Notes , 11 (4), pp. 14 – 24 , 1986 .

 B. W. Boehm , “ Software risk management: Principles and practices , ” IEEE Software ,
 8 (1), pp. 32 – 41 , 1991 .

 L. C. Briand , Y. Labiche , and A. Sauve , “ Guiding the application of design patterns
based on UML models , ” Proceedings of the 22nd IEEE International Conference
on Software Maintenance , Philadelphia, PA, 2006 , pp. 234 – 243 .

 F. Brooks , The Mythical Man - Month , 2nd Edition . New York : Addison - Wesley , 1995 .

 G. Caprihan , “ Managing software performance in the globally distributed software
development paradigm , ” Proceedings of the IEEE International Conference on
Global Software Engineering , Florianopolis, Brazil, 2006 , pp. 83 – 91 .

 P. A. Dargan , Open Systems and Standards for Software Product Development . Norwood,
MA : Artech House , 2005 .

 B. P. Douglass , Real - Time Design Patterns: Robust Scalable Architecture for Real - Time
Systems . Boston : Addison - Wesley , 2003 .

 T. P. Fries , “ A framework for transforming structured analysis and design artifacts to
UML, ” Proceedings of the 24th Annual ACM International Conference on Design
of Communication , Myrtle Beach, SC, 2006 , pp. 105 – 112 .

 E. Gamma , R. Helm , R. Johnson , and J. Vlissides , Design Patterns: Elements of Reusable
Object- Oriented Software . New York : Addison - Wesley , 1994 .

 R. Gelbard , D. Te ’ eni , and M. Sadeh , “ Object - oriented analysis — Is it just theory? ”
IEEE Software , 27 (1), pp. 64 – 71 , 2010 .

 O. Goldreich , Computational Complexity: A Conceptual Perspective . New York :
 Cambridge University Press , 2008 .

 E. Hadar and I. Hadar , “ Effective preparation for design review: Using UML arrow
checklist leveraged on the gurus ’ knowledge , ” Proceedings of the ACM Conference
on Object - Oriented Programming, Systems, Languages, and Applications , Montreal,
Canada, 2007 , pp. 955 – 962 .

 S. Henninger and V. Corr ê a , “ Software pattern communities: Current practices and
challenges , ” Proceedings of the 14th Conference on Pattern Languages of Programs ,
Monticello, IL, 2007 , Article no. 14.

 J. Holt , UML for Systems Engineering . London, UK : IEE , 2001 .

 C. Horstmann , Object - Oriented Design and Patterns , 2nd Edition . Hoboken, NJ : John
Wiley & Sons , 2006 .

www.it-ebooks.info

http://www.it-ebooks.info/

376 SOFTWARE DESIGN APPROACHES

 Institute of Electrical and Electronics Engineers , IEEE Std 1016 – 2009, IEEE Standard
for Information Technology — Systems Design — Software Design Descriptions . New
York : IEEE Computer Society , 2009 .

 S . Jantunen , “ Exploring software engineering practices in small and medium - sized
organizations , ” Proceedings of the ICSE Workshop on Cooperative Aspects of
Software Engineering , Cape Town, South Africa, 2010 , pp. 96 – 101 .

 C. Jones , Software Engineering Best Practices: Lessons from Successful Projects in the
Top Companies . New York : McGraw - Hill , 2010 .

 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,
 2003 .

 P. A. Laplante , Requirements Engineering for Software and Systems . Boca Raton, FL :
 CRC Press , 2009 .

 C. Larman , “ Tutorial: Mastering design patterns , ” Proceedings of the 24th International
Conference on Software Engineering , Orlando, FL, 2002a , p. 704 .

 C. Larman , Applying UML and Patterns: An Introduction to Object - Oriented Analysis
and Design and the Unifi ed Process , 2nd Edition . Englewood Cliffs, NJ : Prentice -
 Hall , 2002b .

 C. Larman , Agile and Iterative Development: A Manager ’ s Guide . Boston : Pearson
Education , 2004 .

 B. Liskov , “ Data abstraction and hierarchy , ” SIGPLAN Notices , 23 (5), pp. 17 – 34 , 1988 .
 N. Maclean , A River Runs through It and Other Stories , 25th Anniversary Edition .

 Chicago, IL : The University of Chicago Press , 2001 , p. 104 .
 R. C. Martin , “ The dependency inversion principle , ” C++ Report , 8 (6) pp. 61 – 66 ,

 1996 .
 T. Martinez , “ Computer - based intelligence: Where is it going? ” Opening Talk in Panel

Discussion, IEEE Mountain Workshop on Adaptive and Learning Systems , Logan,
UT, July 26, 2006 .

 B. Meyer , Object- Oriented Software Construction , 2nd Edition . Englewood Cliffs, NJ :
 Prentice - Hall , 2000 .

 R. Miles and K. Hamilton , Learning UML 2.0 . Sebastopol, CA : O ’ Reilly Media , 2006 .
 H. D. Mills , “ Certifying the correctness of software , ” Proceedings of the 25th Hawaii

International Conference on System Science , Kauai, HI, 1992 , vol. 2, pp. 373 – 381 .
 J. Nielsen , Usability Engineering . New York : Academic Press , 1993 .
 OMG Unifi ed Modeling Language ™ (OMG UML) , “ Superstructure, Version 2.2 , ”

 2009 , p. 686 . Available at http://www.omg.org/spec/UML/2.2/, last accessed August
17, 2011.

 D. L. Parnas , “ On the criteria to be used in decomposing systems into modules , ”
Communications of the ACM , 15 (12), pp. 1053 – 1058 , 1972 .

 D. L. Parnas , “ Designing software for ease of extension and contraction , ” IEEE
Transactions on Software Engineering , 5 (2), pp. 128 – 138 , 1979 .

 H. Pham , Software Reliability . New York : Springer , 2000 .
 R. S. Pressman , Software Engineering: A Practitioners Approach , 7th International

Edition. New York : McGraw - Hill , 2009 .
 N. B. Ruparelia , “ Software development lifecycle models , ” ACM SIGSOFT Software

Engineering Notes , 35 (3), pp. 8 – 13 , 2010 .

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 377

 D. C. Schmidt , M. Stal , H. Robert , and F. Bushmann , Pattern - Oriented Software
Architecture: Patterns for Concurrent and Networked Objects . New York : John
Wiley & Sons , 2000 .

 Y. Shinjo and C. Pu , “ Achieving effi ciency and portability in systems software: A case
study on POSIX - compliant multithread programs , ” IEEE Transactions on Software
Engineering , 31 (9), pp. 785 – 800 , 2005 .

 M. F. Siok and J. Tian , “ Empirical study of embedded software quality and productivity , ”
Proceedings of the 10th High Assurance Systems Engineering Symposium , Plano,
TX, 2008 , pp. 313 – 320 .

 R. N. Taylor , N. Medvidovi ć , and E. M. Dashofy , Software Architecture: Foundations,
Theory, and Practice . Hoboken, NJ : John Wiley & Sons , 2010 .

 X. Teng and H. Pham , “ A new methodology for predicting software reliability in the
random fi eld environment , ” IEEE Transactions on Reliability , 55 (3), pp. 458 – 468 ,
 2006 .

 P. Ward and S. Mellor , Structured Development for Real - Time Systems , vols. 1 – 3 . New
York : Yourdon Press , 1985 .

 J. C. Wileden and A. Kaplan , “ Software interoperability: Principles and practice , ”
Proceedings of the International Conference on Software Engineering , Los Angeles,
CA, 1999 , pp. 675 – 676 .

 D. H. Wolpert and W. G. Macready , “ No free lunch theorems for optimization , ” IEEE
Transactions on Evolutionary Computation , 1 (1), pp. 67 – 82 , 1997 .

 E. Yourdon , Modern Structured Analysis . Englewood Cliffs, NJ : Prentice - Hall , 1989 .

www.it-ebooks.info

http://www.it-ebooks.info/

 7
PERFORMANCE ANALYSIS
TECHNIQUES

379

 Performance analysis activities can occur in all phases of the software develop-
ment life cycle (Liu, 2009). While it is natural to analyze performance measures
in the testing phase when the individual software components have been inte-
grated together (and possibly with the embedded hardware platform), indica-
tive predictive performance analysis is often needed already in the design and
programming phases — even in the requirements engineering phase.

 In the testing phase, it is practical to measure the performance either in a
real operating environment or, at least, in some simulated environment.
Extensive measurements provide the most fruitful basis for performance anal-
ysis. However, there are often needs to analyze the performance of critical
algorithms, achievable response times, and task schedulability before the com-
plete real - time system is available for direct measuring. In such cases, specifi c
performance measures are usually predicted or estimated using the existing
collective knowledge related to similar software products, performing system -
 level simulations with selected algorithms, doing some instruction - level analy-
sis for program modules, applying theoretical principles and simple laws for
parts of the real - time system, and so forth. Nonetheless, a precise and reliable
performance analysis of embedded systems is practically impossible without
direct measurements from the completed system. And even then, the measure-
ments should be analyzed carefully using statistical methodologies. For

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

380 PERFORMANCE ANALYSIS TECHNIQUES

instance, a response time might have a non - negligible variance instead of being
strictly deterministic; this characteristic is connected to the real - time punctual-
ity defi ned in Chapter 1 .

 Of all the places where theory and practice seldom coincide, none is prob-
ably more obvious than performance analysis. For all the scientifi c research
on real - time performance analysis, those that have built real - world systems
know that reality has the annoying habit of getting in the way of theoretical
results. Approximate formulas that ignore resource contention, presume
overly simplifi ed hardware, or make the assumption of zero context switch
time are only of limited practical use. This criticism, nevertheless, does not
mean that theoretical analysis is useless or that there are no useful theoretical
results. It only means that there are far less realistic, cookbook - type approaches
than would be desired by practitioners. The same observation also applies to
other approximate methodologies used for predicting or estimating the per-
formance of real - time systems.

 Some system performance optimization may be needed as a consequence
of any performance analysis. Performance optimization aims for improving a
specifi c measurable quality in such a way that it would eventually fulfi ll the
requirements specifi cation. This is an important point: performance optimiza-
tion should be performed solely if there is an explicit demand for it; any
optimization effort for just the sake of optimization (often referred to as “ gold
plating ”) will cause unnecessary expense and possible schedule delays.

 Real - time performance analysis based on simplifying estimation approaches
is introduced in Section 7.1 . These straightforward techniques provide a handy
toolset for limited performance analyses, and the toolset is fully usable even
before it is possible to perform direct measurements. Section 7.2 gives a prag-
matic discussion on the use of classical queuing theory for analyzing real - time
systems. Its applicability to buffer - size calculation and response - time modeling
is illustrated with a few examples. Furthermore, input/output (I/O) perfor-
mance issues are considered in Section 7.3 with an emphasis on buffer - size
calculation. This section highlights the common performance bottleneck pre-
sented by device I/O access. In Section 7.4 , a focused analysis of memory
utilization in real - time systems is presented. The chapter is summarized in
Section 7.5 , with some thoughts on performance optimization, too. Finally, a
set of exercises is provided for both self - study and class usage in Section 7.6.

 Some parts of this chapter have been adapted from Laplante (2003) .

 7.1 REAL - TIME PERFORMANCE ANALYSIS

 7.1.1 Theoretical Preliminaries

 In computational complexity theory (Arora and Barak, 2009), the complexity
class P is the class of problems that can be solved by an algorithm that runs
in polynomial time on a deterministic computing machine. On the other hand,
the complexity class NP (non - polynomial) is the class of all problems that

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 381

cannot be solved in polynomial time by any deterministic machine, although
a candidate solution can be verifi ed to be correct by a polynomial - time algo-
rithm. A particular decision - making or recognition problem is said to be NP -
 complete if it belongs to the class NP and all other problems in NP are
polynomial transformable to it. Moreover, a problem is NP - hard if all prob-
lems in NP are polynomial transformable to that problem, but it has not been
shown that the specifi c problem belongs to the class NP.

 For example, the particular Boolean satisfi ability problem , which arose
during requirements consistency checking in Chapter 5 , is NP - complete. The
general Boolean satisfi ability problem (termed “ N - Sat ”) is NP - complete.
However, the Boolean satisfi ability problem for systems involving two Boolean
variables (termed “ 2 - Sat ”) or three Boolean variables (termed “ 3 - Sat ”) is in
P, and there are tools available for solving such problems. Still, it is easy to
imagine that the most interesting problems are N - Sat type problems. NP -
 complete problems in real - time systems tend to be those relating to resource
allocation, which is exactly the situation that occurs in multitask scheduling.
This unfortunate fact does not bode well for the solution of real - time schedul-
ing problems, as will be discussed shortly.

 The remarkable challenges in fi nding optimal solutions for real - time sched-
uling problems can be seen in nearly four decades of real - time systems research.
Unfortunately, most important problems in real - time scheduling require either
excessive practical constraints to be managed or are NP - complete or even
NP - hard. Below is a representative sampling from the literature as summa-
rized in Stankovic et al. (1995) :

 1. When there are mutual exclusion constraints, it is impossible to fi nd a
totally online optimal run - time scheduler.

 2. The problem of deciding whether it is possible to schedule a set of peri-
odic tasks that use only semaphores to enforce mutual exclusion is
NP - hard.

 3. The multiprocessor scheduling problem with two processors, no resources,
arbitrary partial - order relations, and every task having a 1 - unit computa-
tion time is polynomial. A partial - order relation indicates that any task
can call itself; if task A calls task B, then the reverse is not possible; but
if task A calls task B and task B calls task C, then task A can call task
C.

 4. The multiprocessor scheduling problem with two processors, no resources,
independent tasks, and arbitrary task computation times is NP - complete.

 5. The multiprocessor scheduling problem with two processors, no resources,
independent tasks, arbitrary partial order, and task computation times
of either 1 or 2 units of time is NP - complete.

 6. The multiprocessor scheduling problem with two processors, one
resource, a forest partial order (partial order on each processor), and the
computation time of every task equal to 1 unit is NP - complete.

www.it-ebooks.info

http://www.it-ebooks.info/

382 PERFORMANCE ANALYSIS TECHNIQUES

 7. The multiprocessor scheduling problem with three or more processors,
one resource, all independent tasks, and each computation time of every
task equal to 1 unit is NP - complete.

 8. Earliest deadline scheduling is not optimal in the multiprocessing case.
 9. For two or more processors, no deadline - scheduling algorithm can be

optimal without complete a priori knowledge of deadlines, computation
times, and task start times.

 Hence, it turns out that most multiprocessor scheduling problems are in NP.
However, for deterministic scheduling, this is not a serious problem because
a polynomial scheduling algorithm can be used to develop an optimal schedule
if the specifi c problem is not NP - complete (Stankovic et al., 1995). In such
cases, heuristic search techniques can be applied. These offl ine techniques
typically just need to fi nd competitive schedules, not any optimal ones. And
this is what practicing engineers do when workable theories do not exist —
 engineering judgment must prevail.

 7.1.2 Arguments Related to Parallelization

Amdahl ’ s Law is a classical argument regarding the effectiveness of parallel-
ization that can be achieved by a parallel computer system (Amdahl, 1967).
Today, this fundamental law is somewhat timely even in real - time systems,
because of the growing usage of multi - core processors (or “ chip multiproces-
sors ”) with an increasing number of parallel on - chip cores (Hill and Marty,
 2008). These multi - core platforms are used in signifi cant quantities, for instance,
in cell phone exchanges, which are mostly fi rm real - time systems. Nevertheless,
the current usage of multi - core processors in such applications still resembles
the use of multiple independent uniprocessors, instead of utilizing true paral-
lelization between the available cores.

 Defi nition: Amdahl ’ s Law

 Amdahl stated that for a constant problem size, the incremental speedup
approaches zero as the number of processor elements grows (Amdahl,
 1967). This observation highlights a severe constraint for parallelism in
terms of speedup as merely a software property, not a hardware one.

 Formally, let N be the number of equal processors available for parallel
processing. Let S be the fraction of program code that is of serial nature,
that is, it cannot be parallelized at all (0 ≤ S ≤ 1). A usual reason why a
portion of code cannot be parallelized is a fi rm sequence of operations, each
depending on the result of the previous operation. Thus, (1 − S) is the frac-
tion of code that can be parallelized. The achievable speedup is then deter-
mined as the ratio of the code before allocation to the parallel processors
to the ratio of that afterwards:

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 383

 Amdahl ’ s law is cited as an argument against parallel systems and, in particu-
lar, against massively parallel processors. For example, it can be stated that
 “ there will always be a part of the computation which is inherently sequential,
(and) no matter how much you speed up the remaining 90%, the computation
as a whole will never speed up by more than a factor of 10. The processors
working on the 90% that can be done in parallel will end up waiting for the
single processor to fi nish the sequential 10% of the task ” (Hillis, 1998). But
from the practical point of view, Amdahl ’ s pessimistic argument is actually
fl awed. The key assumption of Amdahl ’ s law is that the problem size remains
 constant ; and then at some point there is a diminishing increment of return
for speeding up the computation. Problem sizes, however, tend to scale
with the size of a parallel system. Therefore, parallel computer systems,
which are bigger in number of processors, are used to solve larger (more
demanding) problems than uniprocessor systems. And this is true both in
scientifi c number crunching as well as in advanced real - time systems with
multi - core processors.

 Amdahl ’ s law stymied the fi eld of parallel and massively parallel computers
for many years, creating an insoluble problem that limited the effi ciency and
application of parallelism to various problems. The skeptics of parallelism took
Amdahl ’ s law as the insurmountable bottleneck to any kind of practical paral-
lelism, which ultimately impacted on real - time systems as well. Fortunately,
later research provided new insights into Amdahl ’ s law and its relation to
large - scale parallelism.

 Two decades after the introduction of Amdahl ’ s law, Gustafson demon-
strated with a 1024 - processor system at Sandia National Laboratories that the
key presumption in Amdahl ’ s Law is clearly inappropriate for massive paral-
lelism (Gustafson, 1988). He found that the problem size scales generally with
the number of processors or with a more powerful processor, instead of
remaining constant as presumed by Amdahl. However, what is remaining
more or less constant is the used (or acceptable) computing time.

 Gustafson ’ s empirical results demonstrated that the parallel or vector part
of a program scales, indeed, with the problem size. Nonetheless, inherent times
for vector start - up, program loading, serial bottlenecks, and I/O that make up

 SpeedupAmdahl = + −()
+ −() =

+ −⎛
⎝

⎞
⎠

S S

S
S

N N N
S

1
1

1
1

1
1

 (7.1)

 Clearly, for S = 0 linear speedup can be obtained as a function of the
number of processors. But for S > 0, perfect speedup is no more possible
due to the disturbing sequential component. In such cases, the speedup is
saturating to a limit value:

 lim
N

S
→∞

=SpeedupAmdahl 1 (7.2)

www.it-ebooks.info

http://www.it-ebooks.info/

384 PERFORMANCE ANALYSIS TECHNIQUES

the serial component of the run do not usually grow with the problem size
(Gustafson, 1988).

 Figure 7.1. Gustafson ’ s unbound speedup compared with Amdahl ’ s saturating speedup
(→ 2) when 50% of code is suitable for parallelization.

0
5

10
15
20
25
30
35

Number of Processors

S
pe

ed
up

Amdahl 1.33 1.60 1.78 1.88 1.94 1.97

Gustafson 1.50 2.50 4.50 8.50 16.50 32.50

2 4 8 16 32 64

 Defi nition: Gustafson ’ s Law

 If the fi rmly serial code fragment, S , and the parallelized fragment, (1 − S),
are processed by a parallel computer system with N equal processors, then
the achievable speedup is given as:

 SpeedupGustafson = − −()N N S1 (7.3)

 Comparing the bar charts of Equations 7.1 and 7.3 in the example case of
 S = 0.5 (see Fig. 7.1), it can be concluded that Gustafson provides a more
optimistic picture of speedup due to parallelism than does Amdahl. In
Gustafson ’ s practical view, it is easier to achieve parallel effi ciency than is
implied by Amdahl ’ s law (Gustafson, 1988). Moreover, the speedup of Equation
 7.3 does not saturate as N approaches infi nity.

 A different take on the fl aw of Amdahl ’ s Law can be observed as “ a more
effi cient way to use a parallel computer is to have each processor perform
similar work, but on a different section of the data . . . where large computa-
tions are concerned this method works surprisingly well ” (Hillis, 1998). Doing
the same task but on a different range of data circumvents an underlying
presumption in Amdahl ’ s law, that is “ the assumption that a fi xed portion of
the computation . . . must be sequential. This estimate sounds plausible, but it
turns out not to be true of most computations ” (Hillis, 1998).

 Lastly, the current “ multi - core era ” could be viewed as a partial conse-
quence of Gustafson ’ s law. Nonetheless, it remains truly challenging to paral-
lelize real - time software effectively and divide the computing load dynamically
to multiple cores.

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 385

 7.1.3 Execution Time Estimation from Program Code

 It is common to analyze real - time systems a priori to see if they will meet their
critical deadlines. Unfortunately, in a practical sense, this is rarely possible
exactly due to the NP - completeness of most scheduling problems and severe
constraints imposed by common synchronization mechanisms. Nevertheless, it
is possible to get a handle on the system ’ s behavior through approximate
analysis. The fi rst step in performing any kind of schedulability analysis is to
predict, estimate, or measure the execution time of essential code units.

 The need to know the execution time of certain program modules and the
overall system time loading before implementation is important from both
engineering and project - management perspectives. Not only are CPU utiliza-
tion requirements expressed as specifi c design goals, but also knowing them
beforehand is important in selecting, for instance, the embedded processor
platform. During the programming and testing phases, estimation of CPU
utilization is needed to recognize those problematic code units that are par-
ticularly slow or whose response times are inadequate. Several methods can
be used to determine module execution times and the CPU utilization factor.

 Most measures of real - time performance require an execution time esti-
mate, ei , for each parallel task. The most accurate method for obtaining the
execution time of completed code is to use a logic analyzer that is described
in Chapter 8 . One advantage of this direct approach is that all hardware laten-
cies, as well as other system delays and uncertainties, are taken into account.
The drawback in using the logic - analyzer approach is that the entire system
or subsystem must be completely programmed and the target hardware avail-
able. Hence, the logic analyzer is usually employed solely in the fi nal stages of
programming, during testing, and especially during system integration.

 When a logic analyzer is not available, the code execution time can be
estimated by examining the compiler output and counting machine language
instructions either manually or using automated tools. This technique also
requires that the code be written, a reasonable sketch of the fi nal code exists,
or highly similar systems are available for indicative analysis. The approach
simply involves tracing the worst - case execution path through the code, iden-
tifying the machine language instructions along the way, and accumulating
their execution times.

 Another possible method for code execution timing uses the system clock
(generated by a timer), which is read before and after executing the particular
program code. The time difference can then be used to determine the actual
time of execution. This straightforward technique, however, is only viable
when the sequence of code to be timed is suffi ciently time - consuming relative
to the consecutive timer calls.

 When it is too early for the logic analyzer, or if one is not available, instruc-
tion counting is a practical method for determining time loading. In this
approximate approach, the actual CPU - specifi c instruction times are needed.
They can be obtained from the manufacturer ’ s datasheets by timing the

www.it-ebooks.info

http://www.it-ebooks.info/

386 PERFORMANCE ANALYSIS TECHNIQUES

specifi c instructions using a simulator, or simply by educated guessing. In addi-
tion, read/write access times and the number of possible wait states for each
memory operation are needed as well.

 Example: Instruction Counting Approach

 Consider the inertial measurement system discussed earlier in this text. A
certain program module converts raw sensor pulses into the actual accelera-
tion components that are later compensated for temperature and other
effects. The module is just to decide if the aircraft is still on the ground, in
which case only a small acceleration reading for each of the XYZ compo-
nents is allowed (represented by the symbolic constant PRE_TAKE). Now,
consider a time - loading analysis for the corresponding C code.

#define SCALE 0.01 /* scaling factor */
#define PRE_TAKE 0.1 / * maximum allowable */
void accelerometer (unsigned x, unsigned y, unsigned
z, float *ax, float *ay, float *az, unsigned on_ground,
unsigned *signal)
{
/* convert pulses to xyz accelerations */
*ax = (float) x *SCALE;
*ay = (float) y *SCALE;
*az = (float) z *SCALE;
if(on_ground)

if(*ax > PRE_TAKE ||
*ay > PRE_TAKE ||
*az > PRE_TAKE)
/* no more on the ground: set a bit */
*signal = *signal | 0x0001;

}

 These C - language instructions with the compiled assembly language instruc-
tions are shown in the following listing for convenient execution - path
tracing. Generic assembly language for a two - address machine is assumed.
The assembler and compiler directives have been omitted (along with some
data - allocation pseudo operations) for clarity and since they do not impact
the time loading.

 The assembly instructions beginning with “ F ” are fl oating - point instruc-
tions that require 5 μ s. And the FLOAT instruction converts an integer to
fl oating - point format. All other instructions are of integer type and require
0.6 μ s.

/* convert pulses to xyz accelerations */
*ax = (float) x *SCALE;

LOAD R1,&x

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 387

FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&ax

*ay = (float) y *SCALE;
LOAD R1,&y
FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&ay

*az = (float) z *SCALE;
LOAD R1,&z
FLOAT R1
FMULT R1,&SCALE
FSTORE R1,&az

if(on_ground)
LOAD R1,&on_ground
CMP R1,0
JE @2

if(*ax > PRE_TAKE ||
*ay > PRE_TAKE ||
*az > PRE_TAKE)

FLOAD R1,&ax
FCMP R1,&PRE_TAKE
JLE @2
FLOAD R1,&ay
FCMP R1,&PRE_TAKE
JLE @2
FLOAD R1,&az
FCMP R1,&PRE_TAKE
JLE @2

@1:
/* no more on the ground: set a bit */
*signal = *signal | 0x0001;

LOAD R1,&signal
OR R1,1
STORE R1,&signal

@2:

 Tracing the worst - case execution path and counting the instructions shows
that there are 12 integer (7.2 μ s) and 15 fl oating - point (75 μ s) instructions
for a total execution time of 82.2 μ s. Since this sequence of code runs in a
5 - ms cycle, the corresponding time - loading is only 82.2/5000 ≈ 1.6%.

 In the previous example, we assumed a nonpipelined CPU architecture for
simplicity. However, in the next example, we calculate the best - and worst - case
execution times (BCET and WCET) for another sequence of assembly code,

www.it-ebooks.info

http://www.it-ebooks.info/

388 PERFORMANCE ANALYSIS TECHNIQUES

fi rst without assuming an instruction pipeline, and then for a three - stage
instruction pipeline.

 Example: Instruction Counting in Nonpipelined and Pipelined
CPU Platforms

 Consider the following assembly - language code with 12 numbered
instructions:

 1. LOAD R1, & a ; load contents of “ a ” to R1
 2. LOAD R2, & a ; load contents of “ a ” to R2
 3. TEST R1,R2 ; compare R1 and R2
 4. JNE @L1 ; go to @L1 if R1 and R2 are not equal
 5. ADD R1,R2 ; R1 = R1 + R2
 6. TEST R1,R2 ; compare R1 and R2
 7. JGE @L2 ; go to @L2 if R1 ≥ R2
 8. JMP @L3 ; go to @L3 unconditionally
 9. @L1 ADD R1,R2 ; R1 = R1 + R2

 10. JMP @L3 ; go to @L3 unconditionally
 11. @L2 ADD R1,R2 ; R1 = R1 + R2
 12. @L3 SUB R2,R3 ; R2 = R2 − R3

 Now, calculate the following estimates:

 1. The best - and worst - case execution times (nonpipelined).
 2. The best - and worst - case execution times (pipelined).

 First, identify all the possible execution paths (A i denotes “ assembly instruc-
tion number i ”):

Path 1 : A1 – A4, A9 – A10, A12

Path 2 : A1 – A7, A11 – A12

Path 3 : A1 – A8, A12

 Hence, Path 1 includes 7 instructions @ 0.6 μ s each → 4.2 μ s. Paths 2 and 3
include both 9 instructions @ 0.6 μ s each → 5.4 μ s. These are the BCET and
WCET for this code sequence, respectively.

 For the second case, assume that a three - stage pipeline consisting of fetch
(F), decode (D), and execute (E) stages is in use and that each stage takes
0.6 μ s/3 = 0.2 μ s. Here, it is necessary to simulate the contents of the instruc-
tion pipeline for each of the three execution paths, fl ushing the pipeline
when required.

 For Path 1, the pipeline execution trace is given in Figure 7.2 . At the
bottom of the trace, time is shown in multiples of 0.2 μ s; this yields a total

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 389

execution time of 2.6 μ s. For Path 2, the pipeline trace looks correspond-
ingly as depicted in Figure 7.3 . This represents a total execution time of
2.6 μ s. Furthermore, for Path 3, the execution trace is shown in Figure 7.4 .
Also this path yields a total execution time of 2.6 μ s. Thus, the BCET and
WCET happen to be equal. This is just a coincidence, and, in general, there
is naturally some difference between them.

 Figure 7.2. Pipeline simulation trace for Path 1.

F1 D1 E1
 F2 D2 E2
 F3 D3 E3
 F4 D4 E4 Flush the Pipeline
 F5 D5
 F9 D9 E9
 F10 D10 E10 Flush the Pipeline
 F11 D11
 F12 D12 E12
.
1 2 3 4 5 6 7 8 9 10 11 12 13

 Figure 7.3. Pipeline simulation trace for Path 2.

F1 D1 E1
 F2 D2 E2
 F3 D3 E3
 F4 D4 E4
 F5 D5 E5
 F6 D6 E6
 F7 D7 E7
 F8 D8 Flush the Pipeline
 F11 D11 E11
 F12 D12 E12
.
1 2 3 4 5 6 7 8 9 10 11 12 13

 Figure 7.4. Pipeline simulation trace for Path 3.

F1 D1 E1
 F2 D2 E2
 F3 D3 E3
 F4 D4 E4
 F5 D5 E5
 F6 D6 E6
 F7 D7 E7
 F8 D8 E8 Flush the Pipeline
 F9 E9
 F12 D12 E12
.
1 2 3 4 5 6 7 8 9 10 11 12 13

www.it-ebooks.info

http://www.it-ebooks.info/

390 PERFORMANCE ANALYSIS TECHNIQUES

 The laborious process of instruction counting could be automated if a
parser is written for the target assembly language that can resolve branching.
Besides, commercial performance analysis software is available for execution
profi ling.

 In addition, the determination of instruction execution times is also depen-
dent on memory access times and wait states, which can vary depending on
the source region of the instruction code or data in memory. Some organiza-
tions that frequently design real - time systems on a variety of CPU platforms
use special simulation software to estimate instruction execution times and
CPU throughput. With these simulators, users can typically input the CPU
type, memory speeds for different address ranges, as well as the instruction
mix, and calculate total instruction times and throughput.

 Moreover, sections of code can be timed conveniently by reading the system
clock before and after the execution of the code. The time difference is then
used to determine the actual execution time. Of course, if the code sequence
under examination takes only a few microseconds or so, it is recommended to
execute the code several thousand times in a loop. This will help to reduce
inaccuracies introduced by the granularity of the system clock. When such
looping is applied, it is necessary to calculate the additional time spent in the
empty loop structure and subtract it from the total.

 Example: Timing Accuracy with a 60 - kHz System Clock

 Suppose 2000 repetitions of the program code under interest take 450 ms
with the clock granularity of 16.67 μ s. Hence, the execution time measure-
ment has a high accuracy as follows:

 Accuracy =
⋅

⋅
⋅ ≈ ±

−

−

16 67 10
450 10

100 0 0037
6

3

.
% . %.

 The following C code can be used to time a single high - level language instruc-
tion or a series of instructions. The number of iterations needed can be varied
depending on how short the code to be timed is; the shorter the code, the more
iterations should naturally be used to get an adequate accuracy. Here,
 current_clock_time() is a system function that returns the current time,
and function_to_be_timed() is where the actual code to be timed should
be placed.

 #include system.h
 unsigned long timer(void)
 {
 unsigned long time0, time1, time2, time3, i, j,
 loop_time, total_time
 iteration = 1000000L;

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 391

 time0 = current_clock_time(); / * read time now * /
 for (j = 1; j < = iteration; j + +); / * run empty loop * /
 time1 = current_clock_time(); / * read time now * /
 loop_time = time1 - time0; / * empty loop time * /
 time2 = current_clock_time(); / * read time now * /
 for (i = 1; i < = iteration; i + +) / * time function * /
 function_to_be_timed();
 time3 = current_clock_time(); / * read time now * /
 total_time = (time3 - time2 - loop_time)/iteration;
 return total_time; / * function ’ s time * /
 }

 7.1.4 Analysis of Polled - Loop and Coroutine Systems

 The response time for a polled - loop system consists of three essential compo-
nents: the cumulative hardware delays involved in setting the software fl ag by
some external device; the time for the polled loop to test the fl ag; and the time
needed to process the event associated with the fl ag (see Fig. 7.5). The fi rst
delay component is typically on the order of nanoseconds and can usually
be ignored. On the other hand, the time to check the fl ag and jump to the
handler routine can be several microseconds. And the time to process the
event related to the fl ag depends on the task involved (anyhow larger than
the two preceding delays). Hence, calculation of a response time for polled
loops is straightforward.

 The above case assumes that suffi cient processing time is available between
consecutive events. However, if events begin to overlap each other, that is, if
a new event is initiated while a previous one is still being processed, then the
response time is becoming worse. In general, if t F is the time needed to check
the fl ag and t P is the time to process the event, including resetting the fl ag (and
ignoring the time needed by the external device to set the fl ag), then the
response time for the N th overlapping event is bounded by

 Bound N t tF P= +(). (7.4)

 In practice, some limit is placed on N , that is, the number of events that are
allowed to overlap. Nonetheless, overlapping events may not be desirable at
all in certain applications.

 Figure 7.5. Delay components of polled - loop response time.

Flag-Setting
Delay

(Nanoseconds)

Flag-Testing
Delay

(Microseconds)

Processing
Delay

(Milliseconds?)

Response Time
Excitation Response

www.it-ebooks.info

http://www.it-ebooks.info/

392 PERFORMANCE ANALYSIS TECHNIQUES

 Furthermore, the absence of interrupts in a coroutine system makes the
determination of response time rather easy, and the time is simply obtained
by tracing the worst - case execution path through all tasks (see Fig. 7.6). In
such case, the execution time of each phase must fi rst be determined using one
of the approaches discussed above.

 7.1.5 Analysis of Round - Robin Systems

 Assume that a round - robin system has n tasks in the ready queue, no new ones
arrive after the scheduling starts, and none terminates prematurely. The task
release times are arbitrary — in other words, although all tasks are ready for
execution at the same time, the order of execution is not specifi cally prede-
signed, but is still fi xed. Further assume that all the tasks have the maximum
end - to - end execution time of c time units. This assumption might fi rst appear
overly unrealistic. Nevertheless, suppose that each task, τ i , has a different
maximum execution time, c i ; then letting c = max{ c 1 , . . . , c n } yields a reason-
able upper bound for the system performance and allows the use of this simple
model.

 Now, let the constant timeslice for each task be q time units. If any task
completes before the end of its time quantum, in practice, that slack time
would be assigned to the next ready task in the queue. However, for simplicity
of the analysis, we assume here that the possible slack times are not utilized
at all. This does not hurt the analysis seriously because only an upper bound
is desired, not an exact response time solution.

 Ideally, each task would get 1/ n of the available CPU time in slices of q time
units, and would wait no longer than (n − 1) q time units until its next time up.
Since each task requires at most ⎡ c / q ⎤ time units to complete (where ⎡ · ⎤ rep-
resents the “ ceiling ” function, which yields the smallest integer greater than
the quantity inside the half brackets), the waiting time will be (n − 1) q ⎡ c / q ⎤.
Thus, the worst - case time from readiness to completion for any task (also

 Figure 7.6. Tracing the execution path in a two - task coroutine system. A central dis-
patcher calls task_1() and task_2() by turns, and a switch statement in each task
(not shown) steps the phase - driven code.

void task_1()
...
task_1a();
return;

task_1b();
return;

task_1c();
return;

void task_2()
...
task_2a();
return;

task_2b();
return;

Repeat the
Sequence

Begin
Here

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 393

known as turnaround time), denoted T , is the waiting time plus the undis-
turbed time to complete, c , or

 T n q c q c= −() ⎡ ⎤ +1 . (7.5)

 Example: Turnaround - Time Calculation with Context Switching Overhead

 First, suppose that there is one task with a maximum execution time of
500 ms. The time quantum is now 40 ms, and the context switch time is 1 ms.
Hence, n = 1, c = 500, q = 40, o = 1. So,

 T = −()⋅ + ⋅[]⎡ ⎤ + =1 1 40 1 1 500 40 500 513 ms,

 which is expected, since the context switch to serve the round - robin clock
interrupt costs 1 ms each time for the 13 times it occurs.

 Example: Turnaround Time Calculation without Context
Switching Overhead

 First, suppose that there is only one task with a maximum execution time
of 500 ms, and that the time quantum is 100 ms. Hence, n = 1, c = 500,
 q = 100, and

 T = −()⋅ ⋅ ⎡ ⎤ + =1 1 100 500 100 500 500 ms,

 which is the duration of fi ve time quanta as expected.
 Next, suppose there are fi ve equally important tasks with a maximum

execution time of 500 ms. The time quantum is still 100 ms. Thus, n = 5,
 c = 500, q = 100, which yields correspondingly

 T = −()⋅ ⋅ ⎡ ⎤ + =5 1 100 500 100 500 2500 ms.

 This result is intuitively agreeable, since it would be expected that fi ve
consecutive tasks of 500 ms each would take altogether 2500 ms end - to - end
to complete.

 Furthermore, assume that there is a non - negligible context switching overhead,
 o , associated with task switching. Each task still waits no longer than (n − 1) q
until its next time quantum, but there is an inherent overhead of n · o time
units each time around for context switching. Again, each task requires at most
⎡ c / q ⎤ time quanta to complete. An additional assumption is that there is an
initial “ context switch ” to load the fi rst time around. Therefore, the worst - case
turnaround time for any task is now at most

 T n q n o c q c= −() + ⋅[]⎡ ⎤ +1 (7.6)

www.it-ebooks.info

http://www.it-ebooks.info/

394 PERFORMANCE ANALYSIS TECHNIQUES

 In terms of the time quantum, it is desirable that q < c to achieve fair behavior
for the round - robin system. On the other hand, if q is very large, the round -
 robin algorithm is in fact the fi rst - come, fi rst - served algorithm, in that each
task will execute to its completion in the order of arrival and within the very
large time quantum.

 The approximate technique just described is also applicable for cooperative
multitasking analysis or any kind of fair cyclic scheduling with non - negligible
context switching costs.

 7.1.6 Analysis of Fixed - Period Systems

 In general, plain utilization - based analysis is not accurate and provides satis-
factory bounds just for a highly simplifi ed task model. Therefore, a necessary
and suffi cient condition for schedulability based on worst - case response - time
calculation is presented below.

 For the highest - priority task, the worst - case response time will evidently be
equal to its own execution time. However, other tasks running on the real - time
system are subjected to interference caused by execution of higher - priority
tasks. For any task τ i with an execution time of e i time units, the response time,
 R i , is given as

 R e Ii i i= + , (7.7)

 where I i is the maximum possible delay in execution (caused by higher priority
tasks) that task τ i is going to experience in any time interval [t , t + R i). At the
most critical time instant, which is the instant when all higher - priority tasks
are released along with task τ i , I i will have its maximum contribution.

 Consider a task τ j of higher priority than τ i . Within the interval [0, R i), the
release time of τ j will be ⎡ R i / p j ⎤, where p j is the execution period of τ j . Each
release of task τ j is going to contribute to the amount of interference τ i is going
to suffer, and is expressed as:

 Maximum interference /= ⎡⎢ ⎤⎥R p ei j j. (7.8)

 Each task of higher priority is interfering with task τ i . Hence,

 Next, suppose there are six equally important tasks, each with a maximum
execution time of 600 ms, the time quantum is 40 ms, and every context
switch costs 2 ms. Thus, n = 6, c = 600, q = 40, o = 2. Then,

 T = −()⋅ + ⋅[]⎡ ⎤ + =6 1 40 6 2 600 40 600 3780 ms,

 which again is agreeable, because one would expect six tasks of 600 ms in
duration to already take 3600 ms without any context switching costs.

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 395

 Example: Response Time Calculation in a Rate - Monotonic Case

 To illustrate the response time analysis for a fi xed - priority scheduling scheme,
consider a task set to be scheduled rate monotonically, as shown below:

 τ1 1 13 9: ,e p= =

 τ2 2 24 12: ,e p= =

 τ3 3 32 18: ,e p= =

 For every task set, it is always a good practice to calculate fi rst the CPU
utilization factor, U of Equation 1.2 , to make sure that the real - time system
is not overloaded. Here,

 U e pi i

i

= = + + ≈
=
∑

1

3 3
9

4
12

2
18

0 72. .

 According to the linguistic classifi cation of Chapter 1 , 72% belongs to the
 “ questionable ” utilization zone of 70 – 82%, which is well below overloading.

 I R p ei i j

j HPR i

= ⎡⎢ ⎤⎥
∈ ()
∑ / (7.9)

 where HPR (i) is the set of higher - priority tasks with respect to τ i . Substituting
this I i into Equation 7.7 yields

 R e R p ei i i j j

j HPR i

= + ⎡⎢ ⎤⎥
∈ ()
∑ / . (7.10)

 Due to the inconvenient ceiling function, it is diffi cult to solve for R i directly.
Without getting into details, a neat recursive solution is provided, where the
equation for calculating R i is evaluated iteratively by rewriting it as a recur-
rence relation

 R e R p ei
n

i i
n

j j

j HPR i

+

∈ ()
= + ⎡⎢ ⎤⎥∑1 / . (7.11)

 where Ri
n is the result of the n th iteration.

 When using the recurrence relation to fi nd response times, it is necessary
to compute consecutive values of Ri

n+1 iteratively until the fi rst value of m is
found such that R Ri

m
i
m+ =1 . This Ri

m is then the desired response time, R i . It is
important to note that if the recursive equation does not have a solution, then
the value of Ri

n+1 will continue to grow, as in the overloaded case when a task
set has a CPU utilization factor greater than 100%.

www.it-ebooks.info

http://www.it-ebooks.info/

396 PERFORMANCE ANALYSIS TECHNIQUES

 7.1.7 Analysis of Nonperiodic Systems

 In practice, a real - time system having one or more aperiodic or sporadic cycles
could be modeled as a rate - monotonic system, but with the nonperiodic tasks
approximated as having a period equal to their worst - case expected inter -
 arrival time. However, if this rough approximation leads to unacceptably high
utilizations, it may be possible to use some heuristic analysis approach instead.
Queuing theory (Gross et al., 2008) could also be helpful in this regard. Certain
important results from queuing theory are discussed later.

 The calculation of response times for interrupt - driven systems is dependent
on a variety of factors, including interrupt latency, scheduling/dispatching
times, and context switch times. Determination of context save/restore times
is carried out similarly as execution time estimation for any application code.
The scheduling time is negligible when the CPU uses an interrupt controller
supporting multiple interrupts. When a single interrupt is supported in con-
junction with an interrupt controller, it can be timed using straightforward
instruction counting.

 Interrupt latency is a component of response time, and is the (varying)
period between when a device requests an interrupt and when the fi rst instruc-
tion for the associated interrupt service routine executes. In the design of a
real - time system, it is necessary to consider what the worst - case interrupt
latency can be. Typically, such an uncommon situation would occur when all
possible interrupts in the system are requested simultaneously. The number of
tasks also contributes to the worst - case latency, because a real - time operating
system needs to disable interrupts while it is processing lists of blocked or
waiting tasks. If the real - time software contains a large number of parallel
tasks, it is necessary to perform some latency analysis to verify that the operat-

 The highest priority task, τ 1 , will naturally have a response time equal to
its execution time, so R 1 = 3. Moreover, the medium priority task, τ 2 , will
have its response time iterated using Equation 7.11 . First, let R2

0 4= , and
then two recursive values following R2

0 are derived as:

 R2
1 4 4 9 3 7= + ⎡ ⎤ ⋅ =

 R2
2 4 7 9 3 7= + ⎡ ⎤ ⋅ =

 The equality R R2
1

2
2= implies that R 2 = 7. Similarly, the response time of the

lowest priority task, τ 3 , is calculated as follows. First, R3
0 2= , and two recur-

sive values are again obtained from Equation 7.11 :

 R3
1 2 2 9 3 2 12 4 9= + ⎡ ⎤ ⋅ + ⎡ ⎤ ⋅ =

 R3
2 2 9 9 3 9 12 4 9= + ⎡ ⎤ ⋅ + ⎡ ⎤ ⋅ =

 As R R3
1

3
2= , the response time R 3 = 9.

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-TIME PERFORMANCE ANALYSIS 397

ing system is not disabling interrupts for an unacceptably long time.
Nevertheless, in hard real - time systems, it is always good to keep the number
of tasks as low as practical.

 Another contributor to interrupt latency is the time needed to complete
execution of the particular machine language instruction that was interrupted.
Hence, it is necessary to fi nd the worst - case execution time of every machine
language instruction by measurement, simulation, or manufacturer ’ s data-
sheets. The instruction with the longest execution time in the program code
will maximize the contribution to interrupt latency if it has just begun execut-
ing when the interrupt request arrives.

 For instance, suppose in a certain 32 - bit microcontroller, all fi xed - point
instructions take 2 μ s, fl oating - point instructions take 10 μ s, and special instruc-
tions, such as trigonometric functions, take 50 μ s. The real - time software under
consideration is known to have only one arc - tangent instruction, but its con-
tribution to interrupt latency can be as high as 50 μ s. Nonetheless, the prob-
ability of executing the specifi c arc - tangent instruction just when an interrupt
occurs is obviously very low. The latency caused by instruction completion is
often overlooked, possibly resulting in unexplained sporadic problems in hard
and fi rm real - time systems.

 Deliberate disabling of interrupts by the real - time software can create
substantial interrupt latency, and hence it must be included in the overall
latency estimation, too. Interrupts are disabled for a number of reasons, includ-
ing protection of critical regions, buffering routines, and context switching. But
it is recommended to avoid interrupt disabling when possible and to minimize
the length of periods when they have to be disabled. As a rule of thumb, no
application software should have the right to disable interrupts, but interrupt
disabling is allowed solely in system software.

 Instruction and data caches, instruction pipelines, and direct memory access
(DMA), all designed to improve average computing performance, destroy
determinism and thus make prediction of real - time performance troublesome.
In the case of an instruction cache, for example, it is uncertain whether the
requested instruction is in the cache. Where it is being fetched from has a
signifi cant effect on the execution time of that instruction. Besides, to bring
the missing instruction into the cache, a time - consuming replacement algo-
rithm must be applied. Therefore, to carry out a strict worst - case performance
analysis, it must be pessimistically assumed that every instruction is not fetched
from cache but from the slower main memory instead. This assumption has a
very deleterious effect on the predicted performance. Similarly, in the case of
pipelines, one must assume that at every possible opportunity, the pipeline
needs to be fl ushed. Finally, when DMA is used in the real - time system, it must
be assumed that cycle stealing is occurring at every opportunity, thus infl ating
instruction fetch times.

 Do these special cases all mean that the widely used architectural enhance-
ments render a computer system effectively unanalyzable for real - time per-
formance? Unfortunately, yes, because the traditional worst - case analysis

www.it-ebooks.info

http://www.it-ebooks.info/

398 PERFORMANCE ANALYSIS TECHNIQUES

leads to impractically pessimistic outcomes due to long - tailed execution time
distributions. There is, indeed, a nonzero probability that an avalanche of cache
misses, pipeline fl ushes, and cycle stealing would occur when executing a par-
ticular code sequence. By making experiential assumptions about the impact
of these statistically appearing effects, however, an indicative estimation of
performance is still possible.

 To cope more effectively with the “ destroyed determinism ” dilemma, it
could be benefi cial to create probabilistic performance models for caches,
pipelines, and DMA for execution time analysis (Liang and Mitra, 2008).
Bernat et al. introduced the notion of probabilistic hard real - time systems
(Bernat et al., 2002). Such systems should defi nitely meet all the required
deadlines, but it is suffi cient to have a probabilistic guarantee very close to
100% instead of an absolute guarantee. This practical relaxation reduces dras-
tically the worst - case execution times to be considered, for instance, in schedu-
lability analysis. Nonetheless, it remains problematic to use the advanced CPU
and memory architectures in hard real - time systems.

 7.2 APPLICATIONS OF QUEUING THEORY

 The classic queuing problem in applied statistics involves one or more pro-
ducer processes called servers and one or more consumer processes called
customers (Gross et al., 2008). Queuing theory has been applied to the analysis
of real - time systems this way since the mid - 1960s (Martin, 1967). However, it
seems to be mostly omitted from the recent real - time literature.

 A standard notation for a queuing system is a three tuple, such as M/M/1
(Gross et al., 2008). The fi rst component describes the probability distribution
for the time between arrivals of customers, the second is the probability dis-
tribution of time needed to service each customer, and the third is the number
of available servers. The letter “ M ” is customarily used to represent exponen-
tially distributed interarrival or service times.

 In a real - time system, the fi rst component of the tuple could represent the
probability distribution of the interarrival time for a certain interrupt request.
The second component would then be the probability distribution of the time
needed to service that interrupt. And the third component would be unity for
a uniprocessor system and an integer > 1 for multiprocessing systems. The well -
 known properties of this queuing model can be used, for instance, to predict
mean service times for tasks in a real - time system.

 7.2.1 Single - Server Queue Model

 The simplest queuing model is the M/M/1 queue, which represents a single -
 server system (see Fig. 7.7) with a Poisson arrival distribution (exponential
interarrival times for the customers or interrupt requests with mean 1/ λ),
exponential service or processing time with mean 1/ μ , and 1/ λ > 1/ μ . Moreover,

www.it-ebooks.info

http://www.it-ebooks.info/

APPLICATIONS OF QUEUING THEORY 399

the queue length and the number of possible customers are assumed infi nite.
As suggested before, this model can be used effectively to model certain
aspects of real - time systems; it is particularly useful because the theory is well
established, and hence several important results are immediately available
(Kleinrock, 1975). For example, let N be the number of customers in the queue.
Letting ρ = λ / μ , then the expected number of customers in the queue in such
a single - server system is

 N =
−
ρ

ρ1
, (7.12)

 with the corresponding variance

 σ ρ
ρ

N
2

21
=

−()
. (7.13)

 The mean time a customer spends in the entire system (a typical performance
measure) can be expressed as

 T =
−

1
1

μ
ρ

. (7.14)

 In addition, a random variable Y for the time spent in the system has the
exponential probability distribution

 s y e y() = −() − −()μ ρ μ ρ1 1 . (7.15)

 with y ≥ 0.
 Finally, it can be shown that the probability that at least k customers are in

the queue simultaneously is

 Pr .≥[] =k k in system ρ (7.16)

 In the M/M/1 model, the probability of exceeding a certain number of custom-
ers in the system decreases geometrically. If interrupt requests are considered
customers in a real - time system, then two such requests in the system at the

 Figure 7.7. A simple single - server queuing model for analyzing real - time systems.

Consumers

Queue

Producer

Served

......

www.it-ebooks.info

http://www.it-ebooks.info/

400 PERFORMANCE ANALYSIS TECHNIQUES

same time (a time - overloaded condition) have a considerably greater proba-
bility of occurrence than three or more simultaneous requests. Thus, building
robust systems that can tolerate a single time overload condition will contrib-
ute signifi cantly to system reliability, while worrying about multiple time over-
load conditions is usually pointless. The following subsections describe how
the M/M/1 queue can be used conveniently in the analysis of real - time systems.

 7.2.2 Arrival and Processing Rates

 Consider an M/M/l queuing system in which the customer represents an inter-
rupt request of a certain type and the server represents the particular process-
ing required for that request. In this uniprocessor model, a waiter in the queue
represents a time - overloaded condition. Because of the nature of the arrival
and processing times, this condition could occur in practice. Suppose, however,
that the arrival or processing times can vary. Varying the arrival rate, which is
represented by the parameter λ , could be accomplished by modifying the
hardware or altering the actual process causing the interrupt. Changing the
processing rate, represented by the parameter μ , could be achieved by code
optimization or changing the CPU. In any case, fi xing one of these two param-
eters, and selecting the second parameter in such a way as to reduce the prob-
ability that more than one interrupt will be in the system simultaneously, will
ensure that time overloading cannot occur within a specifi c confi dence inter-
val. This is illustrated in the following two examples.

 Example: Mean Processing Time Calculation

 Suppose 1/ λ , the mean inter - arrival time between interrupt requests, is
known to be 10 ms. It is desired to fi nd the mean processing time, 1/ μ , nec-
essary to guarantee that the maximum probability of time overloading is
1%.

 By using Equation 7.16 , we obtain:

 Pr .≥[] = ⎛
⎝⎜

⎞
⎠⎟

≤2 0 01
2

 in system
λ
μ

 which can be solved for 1/ μ as follows:

 1 0 01
1

μ λ
≤ ≤.

. ms

 Thus, the mean processing time, 1/ μ , should be no more than 1 ms to guar-
antee with 99% confi dence that time overloading cannot occur.

www.it-ebooks.info

http://www.it-ebooks.info/

APPLICATIONS OF QUEUING THEORY 401

 Obviously, the context switching time and blocking due to possible semaphore
waits are not incorporated in these approximate analyses. Nevertheless, this
straightforward approach can be useful in exploring the feasibility of a real -
 time system with aperiodic or sporadic interrupts, in particular.

 7.2.3 Buffer Size Calculation

 The M/M/1 queue model can also be used for buffer - size calculations by por-
traying the “ customers ” as data being placed in a buffer. The “ service time ” is
the time needed to pick up the buffered data by some server process. In such
case, the basic properties of M/M/1 queues are used to calculate the expected
buffer size needed to hold the data using Equation 7.12 , and the mean time a
datum spends in the system (or datum ’ s age) using Equation 7.14 . This is
shown in the following example.

 Example: Expected Number of Data Items and Their Mean Age

 Assume a process produces data with an interarrival rate given by the
exponential distribution λ = 4 e − 4 t , and data is consumed by a process at
another rate given by the exponential distribution μ = 5 e − 4 t .

 To calculate the expected number of data items in the buffer, we use
Equation 7.12 :

 N =
−

=
−

=
λ μ

λ μ1
4 5

1 4 5
4.

 Example: Mean Inter - Arrival Time Calculation

 Next, presume the service time, 1/ μ , is known to be 5 ms. Here, it is desired
to fi nd the mean interarrival time for interrupts, 1/ λ , to guarantee that the
probability of time - overloading is not more than 1%.

 Again,

 Pr . ,≥[] = ⎛
⎝⎜

⎞
⎠⎟

≤2 0 01
2

 in system
λ
μ

 which is now solved for 1/ λ :

1 1

0 01
50

λ μ
≥ ≥

.
. ms

 Hence, the mean interarrival time between two interrupt requests should
be at least 50 ms to guarantee only a 1% risk of time overloading.

www.it-ebooks.info

http://www.it-ebooks.info/

402 PERFORMANCE ANALYSIS TECHNIQUES

 7.2.4 Response Time Modeling

 The mean response time for a process handling an interrupt request in the
absence of other competing processes can also be computed if an M/M/1
model is assumed. In this case, Equation 7.14 is used to determine the mean
time spent in the system by an interrupt request (the mean response time) as
illustrated below.

 Example: Mean Response Time and Its Probability Distribution

 Suppose a process, which serves a sporadic interrupt that occurs with an
inter - arrival time given by the exponential distribution function with mean
1/ λ = 5 ms. The process handles the interrupt in an amount of time deter-
mined by another exponential function with mean 1/ μ = 3 ms.

 Now, the mean response time for this interrupt request is determined by
Equation 7.14 :

T =

−
=

−
=1

1
3

1
1 5
1 3

7 5
μ
λ μ

. . ms

 A probability distribution for the random variable, Y , determining the mean
response time can be found by using Equation 7.15 :

 s y e
ey

y

() = −() =−() −()
−1

3
1 3 5

2
15

1 3 1 3 5
2 15

.

 Standard deviation gives a useful indication on the statistical confi dence of
the mean value, and it can be calculated by taking a square root of the cor-
responding variance, σN

2 , which is fi rst determined using Equation 7.13 .
Thus,

 σ λ μ
λ μ

N =
−()

=
−

≈
1

4 5
1 4 5

4 52 . .

 This is a notably large standard deviation compared to the mean value, and
leads to the wide margin of 4 ± 4.5 for the number of data elements in the
buffer.

 In addition, the mean age of the data items in the buffer can be found
by using Equation 7.14 :

 T =
−

=
−

=1
1

1 5
1 4 5

1
μ
λ μ

 s.

www.it-ebooks.info

http://www.it-ebooks.info/

APPLICATIONS OF QUEUING THEORY 403

 Note that the expected response time will be deleteriously affected if the mean
interrupt rate is greater than the mean service rate.

 7.2.5 Other Results from Queuing Theory

 The simple M/M/1 queue can be used also in a variety of other ways to model
real - time systems. The only requirements are that the producer be modeled as
a Poisson process and that the consumption time be exponential. Although
the theoretical model assumes an infi nite - length queue, confi dence intervals
can be fi xed appropriately for modeling practical fi nite - length queues.

 Furthermore, consumer – producer systems that can be modeled to match
other queue models can benefi t from the well - known results there. For example,
an M/G/1 queue with Poisson arrival (exponential interarrival) and general
service time probability distributions could be used. Other results cover the
general arrival as well as service densities (Gross et al., 2008). Relationships
involving balking consumers, those that leave the queue, can be used to rep-
resent rejected spurious interrupts or time overloads.

 An important result in queuing theory, Little ’ s law , has also some applica-
tion in performance prediction of real - time systems. This law, which appeared
in 1961, is expressed below (Kleinrock, 1975).

 Defi nition: Little ’ s Law

 The expected number of consumers in a queuing system, Nco, is equal to
the mean arrival rate of the consumers to that system, rar, multiplied by the
mean time spent in the system, tsp:

 N r tco ar sp= . (7.17)

 If altogether n producers are available, then we can generalize Little ’ s
law as

 N r tco i ar i sp

i

n

=
=
∑ , , ,

1

 (7.18)

 where ri ar, is the mean arrival rate for consumers to producer i , and ti sp, is
the corresponding mean service time.

 What makes this law signifi cant is that the outcome is independent of any
defi nite probability distributions related to the underlying scenario. Moreover,
viewing each task as a producer and interrupt arrivals as consumers, Little ’ s
law is, actually, Equation 1.2 for CPU utilization with substitutions e ti i sp= , and
 1 p ri i ar= , .

www.it-ebooks.info

http://www.it-ebooks.info/

404 PERFORMANCE ANALYSIS TECHNIQUES

 Another useful result of queuing theory is the Erlang loss formula (ELF),
which dates back to 1917 (Kleinrock, 1975). Originally, the term “ Erlang ”
refers to a unit used in telephone systems as a statistical measure of service
load on switching equipment. Erlang represents a time - average of the number
of concurrent telephone calls handled by the switching equipment. Nevertheless,
an analogous scenario exists precisely in real - time systems when considering
the service of interrupts by a number of processes.

 Example: The Use of ELF in Analyzing Real - Time Systems

 Applying the ELF of Equation 7.19 to the previous real - time example
(where producer = process and consumer = interrupt) gives m = 4,
 λ = 1/282.5, and μ = 1/16.5; then

 Defi nition: Erlang Loss Formula

 Assume there are m producers and a variable number of consumers. Each
newly arriving consumer is serviced by a producer, unless all producers are
busy (a potential blocking condition). In this case, the consumer is simply
lost. If it is assumed that the average service time of producers is 1/ μ , and
the average interarrival time of consumer is 1/ λ , then the probability that
all producers are busy is given by

 P
m

k

m

k

k

mbusy = ()

()
=

∑
μ λ

μ λ

!

!

.

0

 (7.19)

 This P busy can be seen as an explicit measure of the quality of service , where
 P busy = 0 corresponds to the ideal condition.

 Example: Expected Number of Consumers versus Time Loading

 Presume a real - time system is known to have three periodic interrupts
occurring at 10, 20, and 100 ms and a sporadic interrupt that is known to
occur in average every 1000 ms. The average processing times for these
interrupts are 3, 8, 25, and 30 ms, respectively.

 Then, by Little ’ s law, the expected number of consumers in the queue
(or time - loading) is

 Nco = + + + =3
10

8
20

25
100

30
1000

0 98. .

 This result is equal to the one obtained by using Equation 1.2 for CPU
utilization with the substitutions defi ned above.

www.it-ebooks.info

http://www.it-ebooks.info/

INPUT/OUTPUT PERFORMANCE 405

 7.3 INPUT/OUTPUT PERFORMANCE

 One performance area that varies greatly owing to device dependencies is the
bottleneck presented by hard - disk and device I/O access. In many fi rm and
soft real - time systems, disk I/O is the single greatest contributor to perfor-
mance degradation. Therefore, hard disks are typically avoided in hard real -
 time systems. Or, at least, their usage is limited to certain “ soft ” periods that
are less time critical. Moreover, when analyzing a system ’ s performance
through straightforward instruction counting, it is very diffi cult to account for
disk device access times. In most cases, the recommended approach is to
assume worst - case access times for all device I/O and include them in perfor-
mance estimations.

 Furthermore, when a real - time system participates in some form of a com-
munications network — a fi eldbus network or a local area network — loading
of the network can seriously affect the real - time performance and make esti-
mation of that performance diffi cult. Therefore, it is practical to estimate the
performance of the system assuming fi rst that the communications network is
in the best possible state (i.e., has no other users). Later on, direct measure-
ments of performance can be taken under varying conditions of loading, and
a performance curve can be generated. This empirical analysis should be
complemented with appropriate statistical methodologies.

 7.3.1 Buffer Size Calculation for Time - Invariant Bursts

 A buffer is a set of consecutive memory locations that provide temporary
storage for data that are being input or output or are being passed between
two individual tasks. The use of linear and ring buffers in real - time systems
was discussed in Chapter 3 .

 Assume that the data are being sent for some fi nite time called a burst
period. If the data are produced at a rate of P (t) and can be consumed at a
rate of C (t), where C (t) < P (t), for a burst period of T , what is the size of the

 Pbusy =

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ +

282 5
16 5

24

1
282 5
16 5

282 5
16 5

2
282

4

2

.
.

.
.

.
.

.55
16 5

6
282 5
16 5

24
0 783 4

.
.

.

. .
⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

≈

 Hence, there is a probability of 78% for time overloading due to simultaneous
interrupts. Considering the mean time - loading factor of 98% (“ dangerous ”)
from the previous example, this result seems reasonable. In Chapter 3 , we
learned from the rate - monotonic theory that a time - loading factor below 69%
is suffi cient (but not necessary) to guarantee that no overloads occur with any
number of tasks. Besides, a nominal time - loading factor of 60% (“ safe ”) is
used commonly as a design parameter for cell phone exchanges, for instance.

www.it-ebooks.info

http://www.it-ebooks.info/

406 PERFORMANCE ANALYSIS TECHNIQUES

buffer needed to prevent any data from being lost? In the trivial case when
both P (t) and C (t) are constant, denoted P and C , respectively, and when the
consumption rate C is greater than or equal to the production rate P , then no
buffer is needed since the system can always consume data faster than they
can be produced. However, if C < P , then an overfl ow will eventually occur.
To calculate the buffer size needed to avoid any overfl ow for a burst of period
 T , note that the total data produced is P · T , and the total data consumed
within that period is C · T . Thus, there is an excess of (P − C) T data units. This
is how much data must be stored in the buffer. Hence, the required buffer size,
 B , can be calculated as

 B P C T= −() . (7.20)

 Example: Time - Invariant Bursts

 Suppose a data acquisition unit is providing data to a real - time computer
via DMA at 100 K bytes/s in bursts of 0.1 second duration occurring every
5 seconds. The computer is capable of processing the data at 10 K bytes/s.
What is the minimum buffer size required? Using Equation 7.20 yields:

 B = −() ⋅ =102400 10240 0 1 9216bytes/s s bytes. .

 Handling data that occur in bursts with Equation 7.20 is possible solely if
the buffer can always be emptied before another burst occurs. Emptying
the buffer in the previous case will take only 0.9 second, which provides a
suffi cient time margin before the next expected data burst.

 If data bursts occur too frequently, then buffer overfl ow will necessarily take
place. In such case, the real - time system becomes unstable, and either upgrad-
ing the processor (hardware/software) or slowing down the production process
is necessary to solve the problem.

 7.3.2 Buffer Size Calculation for Time - Variant Bursts

 It is often not adequate to assume that burst periods are fi xed; they may fre-
quently be variable. Suppose that a task produces data at a rate given by the
real - valued function P (t). Further suppose that another task consumes or uses
the data produced by the fi rst task at a rate determined by the real - valued
function C (t). The data are produced during a fi nite burst period T = t 2 − t 1 ,
where t 2 and t 1 (t 2 > t 1) represent the fi nish and start times of the data burst,
respectively. Then the buffer size needed at time t 2 can be expressed as

 B t P t C t dt
t

t

2

1

2

() = () − ()[]∫ . (7.21)

www.it-ebooks.info

http://www.it-ebooks.info/

INPUT/OUTPUT PERFORMANCE 407

 Furthermore, if the burst ending time is determined by a real - valued function
 u (t), where t is the burst starting time, then for a burst starting at t 1 and ending
at t 2 = u (t 1), the necessary buffer size at time t 2 is

 B t P t C t dt
t

u t

2

1

1

() = () − ()[]
()

∫ . (7.22)

 Example: Random Burst Period

 In the previous example, if the data burst ends at a time instant t 2 deter-
mined by the Gaussian bell function, then u (t 1) of Equation 7.22 can be
expressed as

 u t e t
1

2 21

2
1

2() = − −()

π
.

 Example: Time - Variant Bursts

 Assume, a task produces data at a rate (in bytes/s) that is determined by
the function P (t) having a discontinuous derivative:

 P t

t t

t t

t

() =
≤ ≤

−() < ≤
>

⎧
⎨
⎪

⎩⎪

10000 0 1

10000 2 1 2

0 2

,

 with t representing the (non - negative) burst time. In addition, the data are
consumed by a task at a rate determined by another function:

 C t

t t

t t

t

() =
() ≤ ≤
−() < ≤

>

⎧
⎨
⎪

⎩⎪

10000 4 0 2

10000 1 4 2 4

0 4

.

 Now, if the burst period is known to be 1.6 seconds (from t 1 = 0 to t 2 = 1.6),
what is the necessary buffer size? Applying Equation 7.21 yields,

B P t C t dt

t t dt t t

1 6

10000 4 10000 2 4

0

1 6

0

1

.
.

() = () − ()[]

= −() + −() −[]

∫

∫ ddt

t t t

1

1 6

2 1

0

1 6

1

2 1 6

1
10000 3 8 2 5 8 6000

.

. .

.∫
= + −⎛

⎝⎜
⎞
⎠⎟

= bytes

www.it-ebooks.info

http://www.it-ebooks.info/

408 PERFORMANCE ANALYSIS TECHNIQUES

 Determining when the maximum buffer size is needed is easily done by graph-
ing the consumer, C (t), and producer, P (t), function curves, and then inspecting
them to identify when the difference in the areas under the curves is having
its maximum.

 7.4 ANALYSIS OF MEMORY REQUIREMENTS

 With memory becoming continuously denser and cheaper, memory utilization
analysis has become less of a concern also in many real - time applications. Still,
effi cient use of memory is particularly important in small embedded systems,
and, for instance, in aerospace applications where savings in size, power con-
sumption, and cost are highly desirable. In a small embedded system, all the
available memory can reside inside a microcontroller, and, hence, there is no
way to extend it. On the other hand, in larger systems, it may be possible to
enhance the memory by simply changing the memory components, for instance,
from 512 K byte Flash chips to 4 M byte ones.

 7.4.1 Memory Utilization Analysis

 The total memory utilization in a real - time system is the sum of individual
memory utilizations for all memory areas. Suppose that a memory map (see
Fig. 2.7 for a typical memory map) consists of the following four areas:

 1. Program
 2. Stack
 3. Data
 4. Parameters

 Then the total memory utilization, M r ∈ [0, 1], is calculated as

 M M P M P M P M PT PG PG ST ST DT DT PM PM= ⋅ + ⋅ + ⋅ + ⋅ , (7.23)

 Now, presume the burst starts at time t 1 = 0, then it will end at the time
instant u (0) = 0.053991. Recalculation of the buffer size yields

B P t C t dt

t t dt

0 053991

10000 4

0

0 053991

0

0 053991

.
.

.

() = () − ()[]

= −()

∫

∫∫
= () ≈ ⇒10000 3 8 10 9 112 0 053991

0
t

.
.

.

 bytes bytes

www.it-ebooks.info

http://www.it-ebooks.info/

ANALYSIS OF MEMORY REQUIREMENTS 409

 where M PG , M ST , M DT , and M PM represent the memory utilization for the
program, stack, data, and parameters areas, respectively; and P PG , P ST , P DT , and
 P PM are fractions of the total memory allocated for those memory areas,
respectively. Possible memory - mapped I/O and DMA memory are not included
in the following memory - utilization equation, since they are fi xed in hardware.
Thus, memory utilization is calculated by dividing the number of used loca-
tions in a particular memory area by the number of available memory loca-
tions in that area:

 M
U
T

A T PG ST DT PMA
A

A

= ∈{ }, , , , , , (7.24)

 where U A is the number of locations used in memory area A , and T A is the
total number of available memory locations in that area. The limit value for
 T A is obviously determined by the hardware platform, but the actual value of
 U A is provided by the linker/locator program. Nonetheless, in the case of stack,
the value of U ST is dependent on multiple factors, such as the real - time operat-
ing system used, the depth of nested procedure calls, the use of local variables,
and the number of simultaneous interrupts. Therefore, the estimation of ade-
quate T ST must be done with utmost care, and it is recommended to leave
reasonable safety margins between stack and other areas to prevent sporadic
stack overfl ows.

 Although the program instructions may be stored in RAM instead of ROM
for increased fetching speed and possible modifi ability, all global variables are
stored in RAM. While the size of the available RAM area is determined at
system design time, the loading factor for this area is not known until the
application programs have been completed.

 Example: Total Memory Utilization

 Suppose, a soft real - time system has 64 M bytes of program memory that
is loaded at 75%, 16 M bytes of data memory that is loaded at 25%, and
8 M bytes of stack area that is loaded at 50%. All these memory - loading
fi gures represent the corresponding worst - case values. Besides, there is no
separate parameters area in this particular memory confi guration. Thus, the
total memory utilization can be calculated by Equation 7.23

MT = ⋅ + ⋅ + ⋅0 75

64
88

0 25
16
88

0 5
8
88

. . .

Program Stack Data��� �� ��� �� ����

≈ 0 64. .

 Lastly, it should be emphasized that even if the total memory utilization is well
below 100%, if any of the memory areas has utilization greater than 100%,
then the real - time system cannot operate properly.

www.it-ebooks.info

http://www.it-ebooks.info/

410 PERFORMANCE ANALYSIS TECHNIQUES

 In the previous example, the imaginary soft real - time system had totally
88 M bytes of memory. However, the memory needs of embedded control
systems are usually much lower. This is illustrated in Table 7.1 , where two
electric motor drives are considered — a low - cost motor drive (with a 16 - bit
CPU) and a high - performance one (with a 24 - bit CPU). These memory require-
ments are typical for similar embedded systems.

 A survey of memory behavior of embedded software is provided by Wolf
and Kandemir (2003) . That survey is somewhat unique, since it considers the
memory system from the software viewpoint. They point out that “ in many
cases, the memory system is the primary limitation on the performance and
power consumption of the embedded software. ” And what makes the situation
complicated for system designers is the interdependence between perfor-
mance and power consumption. For instance, it is hard to maximize the
performance and simultaneously minimize the power consumption in battery -
 powered embedded systems.

 7.4.2 Optimizing Memory Usage

 In modern computer systems, memory constraints are not as troublesome as
they once were. Nevertheless, in embedded applications or in legacy systems
(those that are being reused), often the real - time systems engineer is faced
with strict restrictions on the amount of memory available for program storage
or for scratch - pad calculations, dynamic allocation, and so forth. Since there
exists commonly a fundamental trade - off between memory usage and CPU
utilization, when it is desired to optimize for memory usage, it is necessary to
trade computing performance to save memory. For example, to calculate a
trigonometric function accurately using a lengthy series expansion is a CPU -
 intensive approach, while a large look - up table would be a memory - intensive
solution. And a medium - size look - up table with linear interpolation could
provide a practical compromise between those two extremes. These implemen-
tation issues are discussed further in Chapter 8 .

 Moreover, it is important to match the real - time processing algorithms to
the underlying computer architecture. For instance, it is necessary to recognize
the effects of such features as cache size (memory hierarchy) and pipeline

 TABLE 7.1. Memory Specifi cations of Low - Cost (LC) and High - Performance (HP)
Motor Drive Products

 Drive Id. Memory Type Memory Size Purpose

 LC ROM 64 K bytes Program
 RAM 2 K bytes Stack and data
 EEPROM “ Tiny ” Parameters

 HP ROM “ Small ” Booting program
 Flash 512 K bytes Program (storage) and parameters
 RAM 384 K bytes Stack, data, and program (execution)

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 411

characteristics (internal parallelism) in hard and fi rm real - time applications.
In the case of cache size, any time - critical algorithm could be tailored to maxi-
mize the cache hit ratio, and hence minimize the effective memory access time.
In the case of pipeline characteristics, on the other hand, increasing the code ’ s
locality of reference can reduce the amount of deleterious pipeline fl ushing.
A pragmatic discussion on the worst - case execution time problem for real -
 time systems with careful considerations on caches and pipelines is provided
by Wilhelm et al. (altogether 15 coauthors) in Wilhelm et al. (2008) .

 As mentioned above, memory utilization is less of a problem today than it
has been in the past, but occasionally a severely constrained system needs to
be designed in which the available main memory is small in relation to the
program size. Besides, it is expected that this situation will arise more fre-
quently in the future, as ubiquitous and mobile computing applications call for
very compact processors with small memories. Most of the approaches devel-
oped to reduce memory utilization date from a time when memory was at a
premium and might violate the principles of good software engineering.

 Memory utilization in one area can be reduced at the expense of another.
For example, all variables that are local to procedures increase the loading in
the stack area of memory, whereas global variables appear in the data area.
By forcing variables to be either local or global, relief can be purchased in one
area of memory at the expense of the other, thus making it possible to balance
the individual memory utilizations.

 In addition, intermediate result calculations that are computed explicitly
require a variable either in the stack or the data area, depending on whether
it is local or global. The intermediate value could be forced into a work register
instead by omitting the intermediate calculation. Nonetheless, such a “ forcing ”
is dependent on the used programming language and the code optimization
abilities of the compiler.

 Memory fragmentation does not impact memory utilization directly, but it
can produce effects resembling memory overloading. In this case, although
suffi cient memory is available, it is not contiguous. Although memory -
 compaction schemes were discussed in Chapter 3 and it was noted that they
are not desirable in real - time systems, they may be necessary in serious cases
of memory overutilization. Nevertheless, this applies to soft real - time systems
only.

 7.5 SUMMARY

 Performance analysis is not a separate stage in the software life cycle, but it is
necessary to analyze the performance of software tasks or even the entire
real - time system in all stages of the life cycle. Every performance analysis
action can be seen as a consequence of the defi nition: “ A real - time system is
one whose logical correctness is based on both the correctness of the outputs
and their timelines ” — particularly the “ timelines ” part of this defi nition. Hence,

www.it-ebooks.info

http://www.it-ebooks.info/

412 PERFORMANCE ANALYSIS TECHNIQUES

performance analysis is often focused on predicting, estimating, or measuring
specifi c execution times, interrupt latencies, response times, and so on. For
these purposes, a collection of approximate as well as more rigorous method-
ologies and tools are needed.

 The approximate techniques include miscellaneous theoretical models,
straightforward instruction - counting approaches with pipeline - and cache -
 related simplifi cations, plain task models for estimating worst - case bounds, etc.
Moreover, the use of queuing theory offers effective means for analyzing the
behavior of buffer structures and real - time systems with aperiodic or sporadic
events, for instance. But all these techniques are more or less approximate,
and the advanced CPU and memory architectures do anyway destroy the
determinism in real - time systems. So, what is the value of such imprecise tools
for the practitioner?

 Well, performance prediction/estimation is the best the practitioner can do
when it is not yet possible to make direct measurements or execution profi ling
from the completed real - time system (followed by a careful statistical analysis)
in a realistic operating environment. Approximate results can provide useful
insight and upper bounds for critical timelines. Such complementary informa-
tion could be utilized when making specifi c design decisions, and, particularly,
for early recognition of problematic areas in real - time software. In addition,
the use of approximate performance analysis tools is helpful when educating
software and systems engineers, since it is easy to illustrate the effects of
system parameters for a certain performance measure by simple quantitative
techniques.

 The I/O performance of embedded systems is of great importance, because
embedded computers typically have intensive time - critical interaction with
their operating environment. In general, communications networks have a
growing role in real - time applications. Nevertheless, fi eldbus and local area
networks can be seen as signifi cant sources of uncertainty due to varying
loading conditions, which affect the achievable response times and their punc-
tuality in distributed systems. To obtain meaningful performance estimates in
a network environment, realistic statistical models for network traffi c should
be used; otherwise, there is a threat to either over - or under - estimate some
response times drastically. Essentially, the best method would be to make
direct performance measurements in a real operating environment with true
traffi c conditions. Furthermore, it might be practical to implement parallel
fi eldbus networks when the nature of transferred data is varying from high -
 priority control commands (short message frames) to low - priority operational
statistics (long message frames), for example. In that case, one lightly loaded
network could be reserved for high - priority messages and another network
for all lower - priority traffi c.

 Memory performance is the other general performance class, and it can be
divided into two subclasses: memory speed and memory size. While the bottle-
neck of memory speed is commonly relieved with hierarchical memory systems,
the potential problem of memory size is usually handled case by case. In

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 413

nonreal - time computing, the problem of memory size is less common; but in
small embedded systems, there is frequently a necessity to perform memory -
 size optimization due to severe constraints set by ubiquitous systems, wireless
sensor networks, and other mobile units. Therefore, the memory size and
power consumption constraints should be addressed in all stages of the soft-
ware development project — they are not merely hardware issues.

 Performance analysis is often followed by performance optimization actions.
Whenever something is “ optimized, ” the (multi - objective) cost function —
 although it may be partly qualitative — should be explicitly defi ned.
Unfortunately, this healthy approach is not always the standard practice;
too often, the implicit cost functions applied are focused on a single
objective leading to disappointing, suboptimal, and sometimes disastrous
results. Practical issues related to performance optimization are discussed in
Chapter 8 .

 7.6 EXERCISES

 7.1. Show that there is no such value �S for the serial code fragment S that
would yield Speedup Amlahl = Speedup Gustafson with 0 1< <�S and N > 1.

 7.2. A polled - loop system checks a binary status signal every 100 μ s. Testing
the signal and vectoring to the corresponding interrupt processing
routine take 15 μ s. If it takes 625 μ s to serve the interrupt, what is the
minimum response time for this polled interrupt? And what is the
maximum response time?

 7.3. Consider a foreground/background system that has three task cycles: 10,
40, and 1000 ms. If the worst - case task completion times have been esti-
mated as 4, 12, and 98 ms, respectively, what is the CPU utilization factor
of the whole system?

 7.4. An intelligent node of a distributed control system has four tasks, τ 1 – τ 4
(rate - monotonic priorities), with the corresponding execution periods
 p 1 = 10 ms, p 2 = 100 ms, p 3 = 500 ms, and p 4 = 1000 ms. The execution
times are e 1 = 2 ms, e 2 = 15 ms, e 3 = 100 ms, and e 4 = 10 ms, respectively.
However, task τ 1 is a critical control loop, whose execution period affects
directly to the achievable control performance. Hence, in principle, that
execution period should be as short as possible. What is the minimum
execution period for τ 1 (= p 1,min), if the maximum allowed CPU utiliza-
tion factor is 0.91 (“ dangerous ”)?

 7.5. What is the worst - case response time for the background task in a
foreground/background system in which the background task requires
100 ms to complete, the single foreground task executes every 50 ms and
requires 25 ms to complete, and context switching takes no more than
100 μ s?

www.it-ebooks.info

http://www.it-ebooks.info/

414 PERFORMANCE ANALYSIS TECHNIQUES

7.6. Consider a preemptive priority system. The three tasks in the system,
time needed to complete, and priority are given below:

 Task Id. Time Needed (ms) Priority (1 is highest)
τ1 40 3
τ2 20 1
τ3 30 2

 Task Id. Task Cycle Time Needed (ms) Priority (1 is highest)
τ1 10 ms 4 1
τ2 20 ms 5 3
τ3 40 ms 10 2
τ4 Background 5 n/a

 If the tasks arrive in the order τ1 , τ2 , τ3 , what is the time needed to com-
plete each task?

7.7. A preemptive foreground/background system has three interrupt - driven
task cycles, described below (with context switch time ignored):

(a) Draw an execution time line for this system.
(b) What is the CPU utilization factor?
(c) Considering the context switch time to be 1 ms, redraw the execu-

tion time line for this system.
(d) What is the CPU utilization factor with the context switch time

included?

7.8. A producer generates data at 1 byte per 200 ns in bursts of 64 K bytes.
A consumer, on the other hand, can read the data in 32 - bit words, but
only at a rate of 1 word every 2 μ s. Calculate the minimum buffer size
required to avoid overfl ow, assuming there is enough time between suc-
cessive data bursts to empty the buffer.

7.9. Show that when the producer and consumer tasks have constant rates,
then Equation 7.21 becomes Equation 7.20 .

7.10. A producer task is known to be able to process data at a rate that is
exponentially distributed with average service time of 3 ms per datum.
What is the maximum allowable average data rate if the probability of
collision is to be no more than 0.1%? Assume that the data arrive at
intervals that are exponentially distributed.

7.11. A computer in a soft real - time system has instructions that require two
bus cycles, one to fetch the instruction and another to fetch the data.
Each bus cycle takes 250 ns and each instruction takes 500 ns (i.e., the
internal processing time is assumed negligible). The computer has a hard
disk with 16,512 byte sectors per track. Disk rotation time is 8.092 ms.
To what percentage of its normal speed is the computer degraded during

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 415

DMA transfer, if each cycle - stealing DMA operation takes one bus
cycle? Consider two cases: 16 - bit bus transfer and 32 - bit bus transfer.

7.12. Which characteristics of reduced instruction set computer (RISC) archi-
tectures tend to reduce the total interrupt latency as compared to
 complex instruction set computer (CISC) architectures (see Chapter 2
for RISC and CISC)?

 REFERENCES

 G. M. Amdahl , “ Validity of the single - processor approach to achieving large - scale
computing capabilities , ” Proceedings of the AFIPS Spring Joint Computer
Conference , Atlantic City, NJ, 1967 , vol. 30, pp. 483 – 485 .

 S. Arora and B. Barak , Computational Complexity: A Modern Approach . New York :
 Cambridge University Press , 2009 .

 G. Bernat , A. Colin , and S. M. Petters , “ WCET analysis of probabilistic hard real - time
systems , ” Proceedings of the 23rd IEEE Real - Time Systems Symposium , Austin, TX,
 2002 , pp. 279 – 288 .

 D. Gross , J. F. Shortle , J. M. Thompson , and C. M. Harris , Fundamentals of Queuing
Theory , 4th Edition . Hoboken, NJ : John Wiley & Sons , 2008 .

 J. L. Gustafson , “ Reevaluating Amdahl ’ s law , ” Communications of the ACM , 31 (5),
pp. 532 – 533 , 1988 .

 M. D. Hill and M. R. Marty , “ Amdahl ’ s law in the multicore era , ” IEEE Computer ,
 41 (7), pp. 33 – 38 , 2008 .

 D. Hillis , The Pattern on the Stone . New York : Basic Books , 1998 .
 L. Kleinrock , Queuing Systems, Volume 1: Theory . New York : John Wiley & Sons , 1975 .
 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,

 2003 .
 Y. Liang and T. Mitra , “ Cache modeling in probabilistic execution time analysis , ”

Proceedings of the 45th ACM/IEEE Design Automation Conference , Anaheim, CA,
 2008 , pp. 319 – 324 .

 H. H. Liu , Software Performance and Scalability: A Quantitative Approach . Hoboken,
NJ : Wiley - Interscience , 2009 .

 J. Martin , Design of Real - Time Computer Systems . Englewood Cliffs, NJ : Prentice - Hall ,
 1967 .

 J. A. Stankovic , M. Spuri , M. Di Natale , and G. Buttazzo , “ Implications of classical
scheduling results for real - time systems , ” IEEE Computer , 28 (6), pp. 16 – 25 , 1995 .

 R. Wilhelm et al., “ The worst - case execution - time problem — overview of methods and
survey of tools , ” ACM Transactions on Embedded Computing Systems , 7 (3),
pp. 1 – 53 , 2008 .

 W. Wolf and M. Kandemir , “ Memory system optimization of embedded software , ”
Proceedings of the IEEE , 91 (1), pp. 165 – 182 , 2003 .

www.it-ebooks.info

http://www.it-ebooks.info/

 8
ADDITIONAL CONSIDERATIONS
FOR THE PRACTITIONER

417

 In addition to the fundamental hardware and software technologies, a variety
of engineering methodologies is needed when developing real - time systems.
While principal real - time system technologies were discussed in Chapters 2 – 4 ,
Chapters 5 – 7 covered essential system development methodologies. Now we
could ask, is that all that the practitioner needs during a software development
project? And the answer is obviously “ no ” — there is, indeed, a heterogeneous
collection of techniques and tools that complement the fundamental technolo-
gies and methodologies in real - time systems engineering. This pragmatic
chapter is devoted to a carefully selected sample of these complementary
considerations.

 Total system cost is an important factor in software development projects;
therefore, it is desirable to have a reliable overall effort estimate available as
early as possible. An accurate effort estimate is critical for managing resource
allocation and scheduling throughout the development life cycle. Various soft-
ware metrics and experiential cost models can be used for predicting the
progress and costs of a project. Any meaningful prediction should rely on the
experience and insight gained in similar software projects (preferably within
the same organization). Thus, the knowledge - driven parameters of general
cost models could evolve in time leading to continuously improving cost
estimates — at least in principle. Sections 8.1 and 8.2 present some commonly
used software metrics and so - called constructive cost models, respectively.

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

418 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Furthermore, identifying and managing uncertainty is a standard part of the
engineering of complex systems. When dealing with real - time systems, however,
special forms of uncertainty create even greater challenges. What are the
reasons behind this phenomenon? Well, the obvious answer is that real - time
systems must add the assurance of temporal correctness to the already demand-
ing tasks of sensor interfacing and actuator control (Laplante, 2004). But the
problem is actually more complicated than that. Hence, it is very important to
be aware of the different forms of multidimensional uncertainty in real - time
systems. The broad uncertainty issue is addressed in Section 8.3 .

 Autonomous embedded systems should remain operational for lengthy
periods without any intervention by maintenance or service personnel. This is
usually achieved by thorough reliability engineering, using high - quality com-
ponents and subsystems, carrying out extensive testing efforts, and so forth.
Testing in different phases of the development project provides effective
means for improving the initial reliability of real - time systems. Nevertheless,
both autonomous and safety - related systems, such as elevators, planetary
rovers, aircraft and nuclear power plants, are commonly also designed to have
certain fault tolerance. Fault tolerance is needed to ensure that the real - time
system remains functional after some critical fault occurs. In such cases, the
initial reliability is not considered adequate without fault tolerance extensions,
which can be implemented, for instance, through hardware redundancy, various
error - correction capabilities, or functional robustness against missed deadlines.
A practical discussion of fault - tolerant embedded systems and a variety of
testing schemes is given in Sections 8.4 and 8.5 , respectively.

 Moreover, there are several performance optimization techniques for time -
 critical program code. Although fl oating - point arithmetic and a complete suite
of mathematical functions are routinely available when writing simulation and
design software, this is not the normal situation when programming embedded
systems. It is sometimes the case that only fi xed - point (integer) arithmetic is
available in the CPU ’ s native instruction set, with special functions computed
using series expansions or look - up tables — even multiplication and division
instructions might be missing. Thus, a considerable portion of the practitioner ’ s
design and programming effort may be needed for “ patching ” the limitations
of the embedded computing platform. Section 8.6 provides an introduction to
some performance optimization techniques used in embedded applications.

 Finally, a contemplative summary of this chapter is given in Section 8.7 . And
Section 8.8 contains an instructive collection of exercises on Additional
Considerations for the Practitioner .

 Some parts of this chapter have been adapted from Laplante (2003) .

 8.1 METRICS IN SOFTWARE ENGINEERING

 Empirical software metrics are utilized for real - time systems development in
several ways. Certain metrics can be used even during requirements engineer-

www.it-ebooks.info

http://www.it-ebooks.info/

METRICS IN SOFTWARE ENGINEERING 419

ing to assist in resource and cost estimation. Another typical application for
software metrics is for benchmarking. For example, if some organization has
a collection of successfully completed real - time systems available, then com-
puting metrics for those systems yields a standard set of measurable charac-
teristics with which to compare future systems. Many metrics can also be used
for testing in the sense of measuring desirable properties of the real - time
software and setting specifi c limits on the bounds of those criteria.

 Of course, metrics can also be used to track project progress. In fact, some
companies reward employees based on the amount of software developed per
day as measured by some of the metrics to be introduced shortly. Furthermore,
software metrics can be used during the testing phase and for debugging pur-
poses to help focus on likely sources of errors. A pragmatic discussion on the
broad fi eld of metrics and measuring in software engineering is available in
Abran et al. (2003) .

 8.1.1 Lines of Source Code

 The most obvious characteristic of software that can be measured is the
number of lines of fi nished source code. Measured as thousands of lines of
code (KLOC), the KLOC metric is often referred to as delivered source
instruction s (DSI) or noncommented source - code statements (NCSS). That is,
a count of executable program instructions, excluding comment clauses, header
fi les, formatting statements, macros, and anything that does not show up as
executable code after compilation or cause allocation of memory. Another
related metric is source lines of code (SLOC), the major difference being that
a single source line of code may span several lines. For instance, an if-then-
else statement would be a single SLOC, but multiple delivered source
instructions.

 While the KLOC metric essentially measures the weight of a printout of
the source code, thinking in these terms makes it likely that the usefulness of
KLOC will be unjustifi ably dismissed as supercilious. But is it not likely that
1000 lines of program code are going to have more errors than 100 lines of
code? And would it not take longer to develop the latter than the former?
Naturally, the answer is dependent on how complex the particular code is.

 One of the main disadvantages of using lines of source code as a metric is
that it can only be measured after the code has been written. While it can be
estimated beforehand and during software development based on knowledge
from similar projects, this is far less accurate than measuring the already avail-
able code. Nevertheless, KLOC is a widely used metric, and in most cases is
better than measuring nothing. Moreover, many other metrics are fundamen-
tally derived from lines of code. For example, a closely related metric is delta
KLOC. The delta KLOC measures how KLOC changes over a fi xed period of
time. Such a difference measure is useful, perhaps, in the sense that as a project
nears the end of code development, delta KLOC would be expected to reduce
correspondingly.

www.it-ebooks.info

http://www.it-ebooks.info/

420 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 8.1.2 Cyclomatic Complexity

 A valid criticism of the KLOC metric is that it does not take into account the
complexity of the software involved. For instance, 1000 lines of printf state-
ments probably have fewer initial defects than 100 lines of a real - time kernel.

 To attempt to measure software complexity, cyclomatic complexity was
introduced by McCabe to measure program fl ow - of - control (McCabe, 1976).
This concept fi ts well with procedural programming, but not necessarily
with object - oriented programming, though there are adaptations for use with
the latter (Coppick and Cheatham, 1992). In any case, this metric has two
primary uses:

 1. To indicate escalating complexity in a module as it is coded, and, there-
fore, assist the programmers in determining the appropriate size of their
modules.

 2. To determine the upper bound on the number of tests that must be
designed and performed.

 The cyclomatic complexity is based on determining the number of linearly
independent paths in a program module, suggesting that the complexity
increases with this number, while reliability decreases likewise.

 To compute the metric, the following procedure is followed. Consider the
fl ow graph of a program where the nodes represent program segments and
 edges represent independent paths. Let e be the number of edges and n be the
number of nodes. Form the cyclomatic complexity, C , as follows:

 C e n= − + 2. (8.1)

 This is the most generally accepted form for cyclomatic complexity.
 To get a sense of the relationship between program fl ow for some basic

code structures and cyclomatic complexity, refer to Figure 8.1 . Here, for
example, a sequence of instructions has one edge, two nodes, and hence a
complexity of C = 1. This is intuitively pleasing, as nothing could be less
complex than a simple sequence. On the other hand, the particular case
structure shown in Figure 8.1 has six edges and fi ve nodes with C = 3. The
higher value for C is consistent with the notion that a case statement with
three alternative paths is somewhat more complex than a simple sequence of
instructions.

 Example: Cyclomatic Complexity of a Hard Real - Time Application

 Consider a segment of program code extracted from the gyro compensation
code for the inertial measurement system. The procedure calls between
modules a , b , c , d , e , and f are depicted in Figure 8.2 . Here e = 9, n = 6, and
thus the cyclomatic complexity of C = 5.

www.it-ebooks.info

http://www.it-ebooks.info/

METRICS IN SOFTWARE ENGINEERING 421

 Computation of cyclomatic complexity could be done straightforwardly
during compilation by analyzing the internal tree structure generated by the
parser. However, commercial tools are available to perform this analysis
conveniently.

 8.1.3 Halstead ’ s Metrics

 One of the drawbacks of cyclomatic complexity is that it measures complexity
as a function of control fl ow. But complexity can also exist internally in the
way the programming language is used. Halstead ’ s metrics (Halstead, 1977)

 Figure 8.1. Correspondence of language statements and fl ow graphs; adapted from
Pressman (2000) .

sequence if-then-else case

untilwhile

 Figure 8.2. Flow graph for gyro compensation code of the inertial measurement system
(Laplante, 2003).

a

c

f

db

e

www.it-ebooks.info

http://www.it-ebooks.info/

422 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

measure the information content, or how intensively the programming lan-
guage is used; and the different metrics are computed as shown below:

 1. Find n 1 ; this is essentially the number of distinct, syntactic begin - end
pairs (or their equivalents), called “ operators. ”

 2. Find n 2 , the number of distinct statements (or “ operands ”). A statement
is determined by the syntax of the programming language; for instance,
a line terminated by a semicolon is a statement in C language.

 3. Count N 1 , the total number of occurrences of n 1 in the program.
 4. Count N 2 , the total number of occurrences of n 2 in the program.

 From these basic statistics, the following metrics can now be computed. The
program vocabulary , n , is defi ned as

 n n n= +1 2. (8.2)

 The program length , N , is defi ned as

 N N N= +1 2. (8.3)

 The program volume , V , is defi ned as

 V N n= log .2 (8.4)

 The potential volume of the program, V * , is defi ned as

 V n n* log .= +() +()2 22 2 2 (8.5)

 The program level , L , is defi ned as

 L V V= * . (8.6)

 where L is a measure of the level of abstraction of the program. It is believed
that increasing this number will increase software reliability. Nonetheless,
there exists no general proof of such a correlation.

 Another Halstead metric measures the amount of mental effort required
in the development of the code. The programming effort , E , is defi ned as

 E V L= . (8.7)

 Again, decreasing the effort level is believed to increase reliability, as well as
ease of implementation. In practice, the program length, N , can be estimated
easily, and hence is useful in cost and resource estimation. This length is also
a measure of the “ complexity ” of the program in terms of language usage, and
thus can be used to estimate defect rates, too.

www.it-ebooks.info

http://www.it-ebooks.info/

METRICS IN SOFTWARE ENGINEERING 423

 Halstead ’ s metrics, though dating back over three decades, are still widely
used, and software tools are available to completely automate their determina-
tion. Besides, Halstead ’ s metrics can be applied both to program code and to
requirements specifi cations, by adapting the defi nitions of “ operator ” and
 “ operand ” accordingly. In this way, comparative statistics can be generated
from the software requirements specifi cation. Halstead ’ s metrics have also
been used for related applications, such as identifying whether two programs
are identical except for naming changes; something that is useful in plagiarism
detection or software patent infringement.

 8.1.4 Function Points

 Function points were introduced in the late 1970s as an alternative to
metrics based on the simple source line count (Seibt, 1987). The basis of
function points is that as more powerful programming languages are devel-
oped, the number of source lines necessary to perform a given function
decreases. Paradoxically, however, the blind cost/KLOC measure indicates
a reduction in productivity, as the fi xed costs of programming remain largely
unchanged.

 One solution is to measure the functionality of software via the number of
interfaces between modules and subsystems in programs or entire systems. A
signifi cant advantage of the function point metric is that it can be calculated
 before any coding occurs based solely on the design description.

 The following fi ve characteristics for each software module, subsystem, or
system represent its function points:

 1. Number of inputs (I)
 2. Number of outputs (O)
 3. Number of user inquiries (Q)
 4. Number of fi les used (F)
 5. Number of external interfaces (X)

 Next, consider empirical weighting factors for each characteristic that refl ect
their relative diffi culty in implementation. For example, one set of weighting
factors for a particular kind of system might yield the function point (FP)
formula:

 FP I O Q F X= + + + +4 4 5 10 7 . (8.8)

 The weights given in Equation 8.8 could be adjusted experientially to take into
account factors, such as the particular application domain and software
developers ’ experience. For instance, if W i are the weighting factors, F j are
the “ complexity adjustment factors, ” and A i are the item counts, then FP is
defi ned as:

www.it-ebooks.info

http://www.it-ebooks.info/

424 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 FP A W Fi i

i

j

j

=
⎛
⎝⎜

⎞
⎠⎟

⋅ +
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑0 65 0 01. . . (8.9)

 Intuitively, the higher FP , the more diffi cult the software system is to
implement.

 The complexity factor adjustments can be further adapted for different
application domains, such as embedded and other real - time systems. To deter-
mine the complexity factor adjustments, a set of 14 standard questions are
answered by the software engineer(s) with numerical responses from a scale
from 0 to 5, where:

 0 = No infl uence
 1 = Incidental
 2 = Moderate
 3 = Average
 4 = Signifi cant
 5 = Essential

 For example, in the inertial measurement system suppose the engineering
team was queried, and the following interrogatory and resulting answers to
the questions were obtained:

 Q1. Does the system require reliable backup and recovery?
 A1. “ Yes, this is a critical system; assign a 4. ”
 Q2. Are data communications required?
 A2. “ Yes, there is communication between various components of the

system over the MIL – STD – 1553 serial data bus; therefore, assign a 5. ”
 Q3. Are there distributed processing functions?
 A3. “ Yes, assign a 5. ”
 Q4. Is performance critical?
 A4. “ Absolutely, this is a hard real - time system; hence, assign a 5. ”
 Q5. Will the system run in an existing, heavily utilized operational

environment?
 A5. “ In this case, yes; assign a 5. ”
 Q6. Does the system require on - line data entry?
 A6. “ Yes, via multiple sensors; thus, assign a 4. ”
 Q7. Does the on - line data entry require the input transactions to be built

over multiple screens or operations?
 A7. “ Yes it does; assign a 4. ”
 Q8. Are the master fi les updated on - line?
 A8. “ Yes they are; therefore, assign a 5. ”

www.it-ebooks.info

http://www.it-ebooks.info/

METRICS IN SOFTWARE ENGINEERING 425

 Q9. Are the inputs, outputs, fi les, or inquiries complex?
 A9. “ Yes, they involve comparatively complex sensor inputs; assign a 4. ”

 Q10. Is the internal processing complex?
 A10. “ Clearly it is, the compensation and other algorithms are nontrivial;

hence, assign a 4. ”
 Q11. Is the code designed to be reusable?
 A11. “ Yes, there are high upfront development costs and multiple applica-

tions have to be supported for this investment to pay off; assign a 4. ”
 Q12. Are the conversion and installation included in the design?
 A12. “ In this case, yes; thus, assign a 5. ”
 Q13. Is the system designed for multiple installations in different

organizations?
 A13. “ Not organizations, but in different applications, and therefore this

must be a highly fl exible system; assign a 5. ”
 Q14. Is the application designed to facilitate change and ease of use by the

user?
 A14. “ Yes, absolutely; hence, assign a 5. ”

 These quantifi ed answers are summarized in Table 8.1 . Then applying Equation
 8.9 yields:

 FP A W A Wi i

i

i i

i

=
⎛
⎝⎜

⎞
⎠⎟

⋅ + ⋅ ⋅ + ⋅[]() =
⎛
⎝⎜

⎞
⎠⎟

⋅∑ ∑0 65 0 01 6 4 8 5 1 29. . . .

 TABLE 8.1. Quantifi ed Answers, A1 – A14, to the
Complexity Factor Questionnaire for the Inertial
Measurement System

 Answer 0 1 2 3 4 5

 A1 ×
 A2 ×
 A3 ×
 A4 ×
 A5 ×
 A6 ×
 A7 ×
 A8 ×
 A9 ×
 A10 ×
 A11 ×
 A12 ×
 A13 ×
 A14 ×
 Total # 0 0 0 0 6 8

www.it-ebooks.info

http://www.it-ebooks.info/

426 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Now, suppose that it was determined from the Software Requirements
Specifi cation that the item counts were as follows:

 A I1 5= =

 A U2 7= =

 A Q3 8= =

 A F4 5= =

 A X5 5= =

 Using the weighting factors from Equation 8.8 and an additional one
for A 5 :

 W1 4=

 W2 4=

 W3 5=

 W4 10=

 W5 7=

 Including these into Equation 8.9 , yields

 FP = ⋅ + ⋅ + ⋅ + ⋅ + ⋅()⋅ ≈5 4 7 4 8 5 5 10 5 7 1 29 223. .

 For the purposes of comparison, and as a project management tool, function
points have been mapped to the relative lines of source code in particular
programming languages (Jones, 1995). Such mappings are shown in Table 8.2 .
For instance, it is intuitively acceptable that it would take many more lines
(+ 150%) of assembly language code to express a certain functionality than it
would take when using a high - level language like C. In the case of the inertial
measurement system, with FP = 223, it is expected that about 28.5 thousand
lines of code would be needed to implement the functionality. In turn, it should
take many less (− 50%) to express that same functionality in a more abstract
language such as C + + . The same observations that apply to programming
might also apply to maintenance, as well as to the reliability of software.

 TABLE 8.2. Programming Language and Lines of Code
per Function Point ; Adapted from (Jones, 1998)

 Programming Language Lines of Code/Function Point

 Assembly 320
 C 128
 C + + 64

www.it-ebooks.info

http://www.it-ebooks.info/

METRICS IN SOFTWARE ENGINEERING 427

 Real - time applications such as the inertial measurement system are
highly complex and hence they have many complexity factors rated at “ 5, ”
whereas in other kinds of systems, such as database applications, these factors
would be much lower. This is an explicit statement about the diffi culty in
developing and maintaining code for embedded real - time systems versus non-
embedded ones.

 The function point metric was developed for use in business information
processing, and not in embedded systems. Nevertheless, a special form of func-
tion points is used widely in real - time systems, especially in large - scale real - time
databases, multimedia applications, and Internet support (see the following
subsection). These systems are data driven and often behave like the large - scale
transaction - based systems for which function points were originally developed.

 The International Function Point Users Group (http://www.ifpug.org/, last
accessed August 23, 2011) maintains a Web database of weighting factors and
function point values for a variety of application domains. These can be used
for comparison.

 8.1.5 Feature Points

 Feature points are an extension of function points developed by Software
Productivity Research Inc., in 1986. Feature points address the fact that the
function point metric was developed for business information systems and
hence is not particularly applicable to real - time systems, such as mobile com-
munications or industrial process control. The motivation is that these systems
exhibit high levels of algorithmic complexity, but relatively sparse inputs and
outputs.

 The feature - point metric is computed in a similar manner to the function
point, except that a new term for the number of algorithms, A 6 with weighting
factor W 6 , is added to Equation 8.9 . Besides, “ A ” for “ algorithms ” is added to
Equation 8.8 .

 For example, suppose that the item counts are the same as in Equation 8.8
with A = 7, and the empirical weightings are correspondingly:

 W1 3=

 W2 4=

 W3 5=

 W4 4=

 W5 7=

 W6 7=

 Then the feature - point metric, FP + , is

www.it-ebooks.info

http://www.it-ebooks.info/

428 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 FP I O Q F X A+ = + + + + +3 4 5 4 7 7 . (8.10)

 As another example, consider the inertial measurement system. Using the
same item counts as computed before, suppose that the item count for algo-
rithms, A = 10. Now using the same complexity adjustment factor, FP + would
be computed as follows:

 FP+ = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅()⋅ ≈5 3 7 4 8 5 10 4 5 7 10 7 1 29 294. .

 If the system were to be written in C language, it could be estimated that
approximately 37.6 thousand lines of code would be needed (use Table 8.2 and
substitute FP + → FP), a clearly more pessimistic estimate than that computed
earlier using the function point metric.

 8.1.6 Metrics for Object - Oriented Software

 While any of the previously discussed metrics can be used with object - oriented
code, particularly with respect to the code within methods, other metrics are
better suited for this setting (Coppick and Cheatham, 1992). For instance, some
of the metrics that have been used include:

 • A weighted count of methods per class
 • The depth of inheritance tree
 • The number of children in the inheritance tree
 • The coupling between object classes
 • The lack of cohesion in methods

 As with any metrics, the key to obtaining benefi ts is consistency.

 8.1.7 Criticism against Software Metrics

 Many software engineers object to the use of empirical metrics in one or all
of the ways that have been described. Several counterarguments to the use of
metrics have been stated, for example, that they can be misused or that they
are a costly and an unnecessary distraction. For instance, metrics related to
the raw number of code lines imply that the more powerful the language, the
less productive the programmer appears. Hence, obsessing with code produc-
tion based on lines of code can be seen as a meaningless endeavor.

 Metrics can also be misused through carelessness, which can lead to bad
decision making. Finally, metrics can be misused in the sense that they are
abused to “ prove a point. ” For example, if a project manager wishes to assert
that a particular member of the software team is “ incompetent, ” he could
frivolously base his assertion on the lines of code produced per day without
accounting for other factors at all.

www.it-ebooks.info

http://www.it-ebooks.info/

PREDICTIVE COST MODELING 429

 Another objection is that measuring the correlation effects of a single
metric without clearly understanding the causality is dangerous. For instance,
while there are numerous studies suggesting that lowering the cyclomatic
complexity leads to more reliable software, there just is no objective way to
know why. Obviously, the arguments about the complexity of well - written code
versus “ spaghetti code ” apply, but there is just no way to show the causal
relationship. Therefore, the opponents of metrics might argue that if in a study
of several companies, it was shown that software written by engineers who
always wore blue shirts had statistically signifi cant fewer defects in their code,
companies should start requiring a dress code of blue shirts! This illustration
is a hyperbole, but the point of correlation versus causality is made clear. While
it is possible that in many cases these objections may be valid, software metrics
can be either useful or harmful, depending on how they are used (or abused).

 The objections raised about software metrics, however, suggest that best
practices need to be used in conjunction with metrics. These include establish-
ing the purpose, scope, and scale of the metrics. In addition, any serious metrics
program needs to be incorporated into the project management plan by setting
solid measurement objectives, defi ning appropriate procedures, and perform-
ing measurements throughout the software life cycle. Besides, it is important
to create a positive team culture where honest measurement and collection of
data is encouraged and rewarded.

 8.2 PREDICTIVE COST MODELING

 Resource and cost estimation are imperative issues in any software develop-
ment project. One of the most widely used and appreciated resource estima-
tion tools is Boehm ’ s algorithmic COCOMO, fi rst introduced in 1981 (Boehm,
 1981). COCOMO is an acronym for Constructive Cost Model , and it is a pre-
dictive model. This predictive nature makes it possible to obtain meaningful
resource estimates already early in the software development life cycle. There
are three forms of the original COCOMO 81: basic , intermediate , and detailed ,
as well as the more recently released COCOMO II (Boehm et al., 2000).

 8.2.1 Basic COCOMO 81

 The basic COCOMO 81 is based on the simple KLOC metric (thousands of
lines of code). In short, for a given piece of software, the development effort
applied (in person months), PM , to complete the software is a nonlinear func-
tion of L , the KLOC measure, and two empirical parameters, a and b , which
will be explained shortly. The effort equation for the basic COCOMO 81 can
thus be expressed as:

 PM a Lb= ⋅ , (8.11)

www.it-ebooks.info

http://www.it-ebooks.info/

430 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 where the parameters a and b are empirical functions of the type of software
system to be developed, and they are determined from extensive data col-
lected from representative projects. For example, if the software system is
 organic , that is, one that is not heavily embedded in the hardware, then the
following parameter values are used: a = 2.4 and b = 1.05. On the other hand,
if the system is considered semidetached , that is, partially embedded, then these
values should be used instead: a = 3.0 and b = 1.12. Finally, if the system is truly
 embedded , that is, intimately tied to the underlying hardware (like the inertial
measurement system), then the following parameters are used: a = 3.6 and
 b = 1.20. Note that the exponent b for the embedded alternative is the highest
(b = 1.20 > 1.12 > 1.05), leading to the largest effort to complete for an equal
number of lines of code. The remarkable effect of software type on the person -
 month estimates for a few KLOC values is depicted in Figure 8.3 .

 Recall that for the inertial measurement system, using feature points, 37.6
thousand lines of C code were estimated. Nonetheless, if we use this estimate
in Equation 8.11 , the technical complexity becomes actually double counted as
the exponent 1.20 is based on essentially the same parameter set as the techni-
cal complexity factor 1.29 that was used earlier for calculating the feature
points. Therefore, we have to scale down the feature points, 294/1.29 = 228, and
use the corresponding estimate of 29.2 thousand lines of C code (see Table
 8.2). Finally, an effort estimate is obtained using Equation 8.11 :

 PM = ⋅() ≈3 6 29 2 206 41 20. person months

 The basic COCOMO 81 also provides a formula for estimating the calendar
time (in months) to develop the whole software, DT , when having the corre-
sponding PM available. For this purpose, two other empirical parameters, c
and d , are introduced. The parameter c = 2.5 is independent of the type of the
software, while d has values 0.38, 0.35, and 0.32 for organic, semidetached, and

0

5.0 13.0 26.9 55.8 115.4

186.8

301.1131.1

86.039.5

57.124.8

18.26.5

8.3

50

100

150

200

250

300

KLOC

P
er

so
n

M
on

th
s

Organic

Semidetached

Embedded

2 5 10 20 40

 Figure 8.3. Person - month, PM , estimates for different types of software as a function
of the KLOC measure, L ∈ {2, 5, 10, 20, 40}.

www.it-ebooks.info

http://www.it-ebooks.info/

PREDICTIVE COST MODELING 431

embedded software, respectively. Now, the development time can be deter-
mined as:

 DT c PMd= ⋅ . (8.12)

 By continuing with the inertial measurement system example, we can next
calculate the estimated number of months the project would take using
Equation 8.12 :

 DT = ⋅() ≈2 5 206 4 13 80 32. months

 From the estimated PM and DT values, the number of software engineers
required, SE , can now be determined as follows:

 SE PM DT= . (8.13)

 Equation 8.13 gives for the inertial measurement system: SE = 206.4/13.8 ≈ 15
persons. Hence, 15 software engineers are needed to complete this demanding
software project in about 14 calendar months (assuming 152 effective working
hours per month). It should be emphasized, however, that the basic COCOMO
is solely intended for making rough initial estimations of project costs and
resources. Miyazaki and Mori evaluated COCOMO 81 with a set of real - world
project data and concluded that the original COCOMO clearly overestimated
the efforts required to develop software in their environment (Miyazaki and
Mori, 1985).

 8.2.2 Intermediate and Detailed COCOMO 81

 The intermediate and detailed COCOMO 81 dictates the kinds of adjustments
used to improve the modeling accuracy. Consider the intermediate model, for
instance. Once the effort estimate for the basic model is computed based on
the appropriate parameters and number of lines of code, further adjustments
can be made based on additional factors. In this case, for example, if the lines
of code to be produced consist of design - modifi ed code, code - modifi ed code,
and integration - modifi ed code rather than completely new code, a linear com-
bination of these relative percentages is used to create an adaptation -
 adjustment factor, as will be discussed below.

 Adjustments are then made to PM based on two sets of factors, the adapta-
tion adjustment factor and the effort adjustment factor. The former is a
measure of the kind and proportion of program code that is to be used in the
system, namely, design modifi ed, code modifi ed, or integration modifi ed. And
the adaptation - adjustment factor, A , is given correspondingly:

A = − ⋅() − ⋅() −

⋅
100 0 4 0 3

0 3

. .

.

% design modified % code modified

% iintegration modified().
 (8.14)

www.it-ebooks.info

http://www.it-ebooks.info/

432 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 For totally new software components, A = 100, since there is no reused code.
On the other hand, if all of the code is reused as design modifi ed , then A = 60.
The percentages of design - , code - , and integration - modifi ed code reused do
not have to add up to 100 unless all of the code has been reused in some
manner. For example, if 10% of the code is reused as design modifi ed, 15% is
reused as code modifi ed and 20% as integration modifi ed, then A = 100 −
0.4 · 10 − 0.3 · 15 − 0.3 · 20 = 85.5.

 Next, an adjusted value for the number of code lines, L ′ , is obtained as:

 ′ = ⋅L L A 100. (8.15)

 You can see how as A varies, it refl ects the advantages of reuse in the effective
adjusted lines of code count, for instance, if A = 90 in Equation 8.15 , then
 L ′ = L · 0.9. This L ′ is now used in Equation 8.11 in place of the original L .

 A tuned version of the effort - adjustment factor can be made to the prior
adjusted number of code lines, L ′ , based on a variety of case - dependent attri-
butes, including:

 • Hardware attributes, such as performance constraints
 • Personnel attributes, such as applications experience
 • Product attributes, such as the required reliability
 • Project attributes, such as the CASE tools used

 Each of these attributes is assigned a number (typical values from 0.8 to 1.5)
depending on an assessment that rates the attributes on a relative scale. Then,
a straightforward linear combination of the attribute numbers is formed based
on the particular software type. This provides another adjustment factor, call
it E . Hence, the second adjustment leading to the effort - adjusted number of
code lines, L ″ , is made based on the formula:

 ′′ = ⋅ ′L E L . (8.16)

 This fi nally yields to the enhanced effort equation:

 PM a L b′′ = ⋅ ′′() . (8.17)

 Furthermore, the detailed model differs from the intermediate model in that
tailored effort - adjustment factors are used for each phase of the software life
cycle.

 COCOMO is widely recognized and respected as a project management
tool. It is useful even if the background of the empirical model is not really
understood. COCOMO software is commercially available, and easy - to - use
resource/cost calculators can be found on the Web for free usage.

 One drawback to COCOMO 81, however, is that it does not take into
account the leveraging effect of various productivity tools. Moreover, the cost

www.it-ebooks.info

http://www.it-ebooks.info/

UNCERTAINTY IN REAL-TIME SYSTEMS 433

model bases its estimation almost entirely on the number of lines of code, not
on actual program attributes, which is something that feature points do. Feature
points and function points, however, can be converted easily to lines of code
using standard conversion tables, such as Table 8.2 .

 8.2.3 COCOMO II

 COCOMO II is a major revision of COCOMO 81 that was introduced in 2000
to deal with some of the original version ’ s obvious shortcomings (Boehm et
al., 2000). The newer model helps to accommodate more expressive program-
ming languages, as well as advanced software generation tools that tend to
produce more code with essentially the same human effort.

 In addition, in COCOMO II, some of the more important factors that con-
tribute to a project ’ s expected duration and cost are included as new scale
drivers. These scale drivers are used to modify the exponent b in the funda-
mental effort equation:

 • Architectural/risk resolution
 • Development fl exibility
 • Process maturity
 • Project novelty
 • Team cohesion

 The scale drivers of project novelty and development fl exibility, for instance,
describe many of the same attributes found in the adjustment factors of the
original COCOMO 81.

 It is beyond the scope of this real - time systems text to discuss COCOMO
or its use in more detail. As with any metric or model, it must be used carefully
and be based on insight and experience. Nevertheless, using such a well - proven
cost model is certainly better than using none at all.

 A recent overview of the main contributions on software cost and resource
estimation over the past four decades is available in Boehm and Valerdi
 (2008) . That article provides an insightful discussion on the evolution of
COCOMO and other signifi cant models.

 8.3 UNCERTAINTY IN REAL - TIME SYSTEMS

 Over the past three decades, the focus of embedded systems engineering has
evolved from simply meeting the performance goals to design for uncertainty .
In this section, the diverse nature of uncertainty in real - time systems is exam-
ined. Our emphasis is on the identifi cation of uncertainty in software through
 “ tell - tale ” behaviors and “ code smells. ” Besides, practical techniques for man-
aging, mitigating, or even eliminating the uncertainty are given.

www.it-ebooks.info

http://www.it-ebooks.info/

434 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Figure 8.4. A real - time system with uncertainty can be viewed as having dimensions
of time, space, and behavior, and some uncertainty margin in all these dimensions.

Space

Behavior

Time

Real-Time
System

Uncertainty

Margin

 This section is adapted from Laplante (2004) .

 8.3.1 The Three Dimensions of Uncertainty

 Uncertainty exists in real - time systems along three principal dimensions: time ,
 space , and behavior as illustrated in Figure 8.4 . If we try to reduce uncertainty
in any one of these dimensions, at least one of the other two will suffer
increased uncertainty. This empirical observation is analogous to the well -
 known Heisenberg Uncertainty Principle in quantum mechanics.

 Defi nition: Heisenberg Uncertainty Principle

 The precise position and momentum of a particle cannot be known simul-
taneously; trying to be more certain about one comes at the expense of
increased uncertainty in the other.

 By defi nition, real - time systems have a requirement of timeliness, and it is
largely the unpredictability of response times that makes real - time systems so
challenging to design and analyze. Quantifying the uncertainty of time is the
focus of mainstream real - time systems research and is epitomized by the
primary useful result of such research, the rate - monotonic (RM) theorem
(discussed in Chapter 3). The RM theorem states that the optimal scheduling
algorithm for a set of periodic preemptive priority tasks on a single processor
is to assign the task priorities so that the higher the rate of execution, the
higher the priority. Nonetheless, this theorem holds only when aperiodic/
sporadic tasks, mutual exclusion, and resource contention are excluded. When
those realistic elements are included, the RM theorem breaks down and uncer-
tainty in response times begins to grow.

www.it-ebooks.info

http://www.it-ebooks.info/

UNCERTAINTY IN REAL-TIME SYSTEMS 435

 Returning to Figure 8.4 , the space dimension deals with the physical
resources that the real - time system manages, including its memory. Like
Heisenberg uncertainty, trying to improve the certainty in one dimension
comes at the cost of uncertainty in another. For example, trying to bring uncer-
tain behavior under control costs space (more memory or hardware) or com-
putation time. On the other hand, occasional “ cheating ” on timeliness perhaps
by prematurely terminating some iterative calculation can lead to uncertain
behavior.

 8.3.2 Sources of Uncertainty

 Let us look more closely at the illustration of Figure 8.4 and examine the
potential sources of uncertainty, particularly along the axis of behavior. To do
this, we view the real - time system as a state - based transformation of a set of
inputs and current state into a new state and corresponding set of outputs.
Each of these essential elements can incorporate uncertainty. For instance,
uncertainty can be found in any of the inputs to the system. Similarly, the state
of the system might be uncertain at any time, resulting in loss of control (but
every control system must be stable all of the time). The transition from one
state to another can also be nondeterministic, that is, uncertain. Moreover, the
outputs to the operating environment are not always predictable in poorly
designed or misused real - time systems. Finally, the real - time system must
usually interact with an uncertain environment.

 Environmental uncertainty can stem from many sources. For example, it
can be caused by a chaotic system under control (SUC). Chaotic systems are
those in which small changes in inputs lead to radically changed state behavior
and outputs. Hence, chaotic systems present signifi cant challenges to the real -
 time systems engineer. Complicating the situation is the fact that corrupted
outputs from the real - time system to the SUC can even cause a stable SUC
to appear to be chaotic. The classic inverted pendulum or cart - and - pole control
problems create environmental uncertainty through their inherent instability,
for instance.

 Another form of environmental uncertainty arises from carelessly defi ned,
incomplete, or inconsistent software requirements. If such uncertainties are
left unattended, they will lead to insidious uncertainty in the realized system.

 In addition, a further kind of uncertainty arises from the physical environ-
ment, for example, due to single event upsets in space or various peculiarities
of military battlefi eld conditions. Of course, controlling the physical environ-
ment is generally impossible. Therefore, any real - time system must be con-
structed to be suffi ciently tolerant (or robust) to environmental infl uences.

 A kind of environmental uncertainty results also from the testing process.
Testing should be used to try to control all sources of uncertainty and verify
the coping mechanisms. However, testing itself is inherently uncertain. For
instance, is the test coverage adequate, or is the test strategy applied the
correct one? There is no way to know the answers for certain. In fact, just

www.it-ebooks.info

http://www.it-ebooks.info/

436 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

because a real - time system has passed some test suite does not mean that the
system would be 100% defect free.

 Uncertainty of the data input into the real - time system is often due to
malfunctioning devices, disturbances, noise, data acquisition errors, and so on.
Some of the bad inputs, however, might be the result of problems with the
operating environment and not the system under control. In any case, the
real - time systems engineer must never trust the external inputs to the system —
 they need to be sanity checked, verifi ed, or fi ltered before use.

 The outputs of the real - time system can also be corrupted by device mal-
functioning and data conversion errors, presenting uncertainty to the system
under control. Besides, the real - time system could then receive corrupted
inputs from the system under control, and this corruption is actually based on
its own corrupted outputs.

 At any time for a given set of inputs and current state, we should be able
to predict the next state of the real - time system correctly. In uncertain situa-
tions, this is not always possible. For example, undesired jumping of the
program counter due to such causes as single event upsets, pointer misuse, or
 “ phantom ” interrupts can lead to uncertainty of state. Since we cannot open
up the “ black box ” and look inside, we can never be certain of the integrity of
any state.

 Behavioral uncertainty as a whole is a wide class of uncertainty that incor-
porates timing and scheduling problems, the uncertainty of component behav-
ior, and the uncertainty of the programming language being used.

 Uncertainty in time arises from the fact that the time it takes for the system
to make a transition from an input set and current state to the output set and
new state is not necessarily deterministic. Here, we are faced with a dilemma:
most task - scheduling problems are NP - complete or NP - hard, and thus not
yielding to straightforward solutions.

 Moreover, uncertainty of component behavior in off - the - shelf or legacy
hardware/software is a reality that must frequently be addressed. There are
techniques, however, that can help to reduce this form of uncertainty. For
instance, if the source code is available, fault - injection could be used to examine
the software component. In this experimental technique, deliberate faults are
created in the software at critical points to see how the faults propagate
throughout the code (Voas and McGraw, 1998). Other approaches would
incorporate rigorous testing of the off - the - shelf or legacy components and not
rely on the possibly available second - hand information.

 Another form of behavioral uncertainty is caused by the use of program-
ming languages and their compilers. For example, in object - oriented languages,
composition is preferred to inheritance. Yet the former yields more uncertain
behavior and is diffi cult to test. In both the object - oriented and procedural
conventions of programming, unbounded recursion, dead and unreachable
code, unbounded while loops, and left - in debug statements, can all lead to
uncertain behavior. Clearly, knowing how compiler and run - time support code
behave is critical in controlling such uncertainty.

www.it-ebooks.info

http://www.it-ebooks.info/

UNCERTAINTY IN REAL-TIME SYSTEMS 437

 8.3.3 Identifying Uncertainty

 The nondeterministic behavior of real - time systems may be painfully visible.
Bizarre outputs, hung systems, missed interrupts, and sporadic deadlocks are
all symptoms of uncertainty. The problem is that it is not always clear if the
uncertainty lies in the environment, input, output, state, or system behavior.
One potential technique for identifying the source of the uncertainty is through
code smells. A code smell is a term that refers to a somewhat subjective indica-
tor of poor design or coding style (M ä ntyl ä et al., 2004). More specifi cally, the
term relates to observable signs that suggest the need for refactoring — a
behavior preserving code transformation enacted to improve some feature of
the software, which is evidenced by the code smell.

 A traditional code smell that hints at behavioral uncertainty involves timing
delays implemented as while or other loops. These software delays rely on
the computational cost of the loop construct plus the execution time of the
body code to achieve a specifi c delay. Here, the problem is that if the underly-
ing computer architecture or characteristics of instruction execution change,
then the delay length is inadvertently altered, leading to timing uncertainty.
The obvious solution would be to use some reliable timing mechanism pro-
vided by the real - time operating system (RTOS).

 Another sign of uncertainty is a dubious constraint . This particular code
smell involves response time constraints that have a questionable or nonat-
tributable origin. In some cases, real - time systems have specifi c deadlines that
are based on nothing more than guessing or on some forgotten and since
eliminated requirement. The refactoring is to discover the true reason for such
a constraint. If the origin can be determined, then the constraint may be
relaxable.

 The speculative generality code smell relates to hooks and special cases,
which are built into the code to handle things that are not currently required
(it is uncertain that they are needed). Real - time systems should not contain
any “ what – if ” code, since it can lead to testing anomalies and possibly unreach-
able code.

 Furthermore, the tell - tale comment code smell involves comments that are
excessive or tend to explicate the code beyond a reasonable level. Explicating
comments are often an indicator of a serious problem. Comments that explic-
itly acknowledge uncertainty, such as “ do not remove this piece of code, ” or
 “ if you remove this statement the code does not work, I do not know why ”
(and we have seen these in real, “ industrial - strength ” code) are natural alarms
for concern. These kinds of nonprofessional comments indicate that there are
probably hidden timing problems. In any case, the refactoring involves rewrit-
ing the code so that such vague comments become unnecessary.

 In addition to the above code smells, three typical smell indicators for
object - oriented programming, that is, large class , long parameter list , and
duplicate code , were suggested for automatic code analysis in M ä ntyl ä et al.
 (2004) .

www.it-ebooks.info

http://www.it-ebooks.info/

438 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 8.3.4 Dealing with Uncertainty

 Uncertainty in real - time software, if properly managed, can be reduced over
time, but if left unattended will most likely grow. We have already explored
the reduction of uncertainty through refactoring of code indicated by bad
smells. There are other useful techniques, too.

 Environmental uncertainty due to poor requirements could be managed by
consistency checking and goals - based requirements analysis. In this context,
goals are high - level objectives of business, organization, or system; and a
requirement specifi es how a goal should be accomplished by the proposed
real - time system. Other formal methods could be helpful, as well for the same
purpose (Hinchey and Bowen, 1999).

 For uncertain inputs, typical solutions include the use of averaging, median
fi lters, Kalman fi lters, data fusion, as well as roll backing and use of recovery
blocks. These general techniques can also be used to control the uncertainty
of outputs.

 In the case of state - based uncertainty, in addition to the refactorings already
mentioned, model checking and black - box recorders can be helpful. Model
checking is a formal method that uses fi nite state machines to verify the state
behavior (Chandra et al., 2002). A software black box, on the other hand, is a
run - time tool that uses checkpointing to record functional transitions (Elbaum
and Munson, 2000). The recorded transitions are used for postmission analysis
to determine the likeliest sequence of execution that led to a particular failure.

 Another form of execution time uncertainty may arise due to gradual build
up of various truncation and round - off errors (the running software ages).
These can be managed by stopping and restarting the system regularly. Such
a blunt technique is called rejuvenation (Bernstein and Yuhas, 2005); however,
it should be used cautiously.

 Uncertainty is a pervasive and persistent quality of real - time systems. The
total elimination of uncertainty is practically impossible, because of the
complex nature of the systems under control as well as the uncertain operating
environments (Littlewood, 1994). But rather than admit defeat, a proactive
approach to mitigating uncertainty is needed. Such an approach starts with
acknowledging uncertainty ’ s existence and then identifying its primary causes
so that an effective mitigation strategy can be designed. Each mitigation strat-
egy should preferably be a custom - designed solution. Table 8.3 summarizes
the different kinds of uncertainty in real - time systems, their typical signs, pos-
sible causes, as well as potential solutions to the underlying problem.

 8.4 DESIGN FOR FAULT TOLERANCE

 Fault tolerance in real - time systems is the tendency to continue functioning in
the presence of hardware or software failures (Koren and Krishna, 2007).
Sometimes, it may be necessary to reduce the quality of functioning to a
minimum acceptable level due to a sensor failure, for instance. In real - time

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN FOR FAULT TOLERANCE 439

 TABLE 8.3. Summary of Kinds of Uncertainty in Real - Time Systems with Typical
Signs, Possible Causes, and Potential Solutions (Laplante, 2004)

 Kinds of
Uncertainty

 Typical Sign(s) Possible Cause(s) Potential
Solution(s)

 Environmental
 System under

control
 Bizarre inputs or

outputs
 Nature of

application; faulty
hardware

 Use fault - tolerant
design

 Operating
environment

 Bizarre inputs or
outputs

 Humidity,
temperature, or
electromagnetic
interferences

 Use fault - tolerant
design and
implementation
approaches

 Requirements Sparse
requirements;
numerous “ to be
determined”

 Inconsistent or
incomplete
requirements

 Goal - based
requirements
analysis; formal
consistency
checking

 Testing System that passes
tests fails in the
fi eld

 Poor testing regimen
or incomplete
coverage

 Improve testing
process

 Input Strange behavior;
explicating
comments

 Unstable input
sources; defective
hardware

 Averaging, median
fi lter, Kalman
fi lter, data fusion,
rollback and
recovery blocks

 Output Strange behavior;
explicating
comments

 Defective hardware;
corrupted inputs
from system
under control

 Averaging, median
fi lter, Kalman
fi lter, data fusion,
rollback and
recovery blocks

 State Strange behavior;
explicating
comments

 Program counter
jumping, pointer
errors, phantom
interrupts

 Model checking,
software black
boxes, interrupt
service routines
for all interrupts

 Behavioral
 Timing and

schedulability
 Dubious

constraints;
missed deadlines;
explicating
comments

 Speculative
generality, delays
as loops, or failed
off - the - shelf
components

 Model checking;
use RTOS
provided timing
facilities; fault
injection

 Language Explicating
comments

 Compiler - induced
errors

 Verify the compiler;
improve coding
techniques

 Off - the - shelf
components

 Missed deadlines;
inexplicable
failure

 Poorly tested
software or
hardware; falsely
advertised claims

 Fault injection;
software black
boxes

www.it-ebooks.info

http://www.it-ebooks.info/

440 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

systems, fault tolerance includes also such design choices that transform hard
real - time deadlines into softer ones. These are encountered in interrupt - driven
systems, which can provide for detecting and reacting to a missed deadline.

 Fault tolerance designed to upgrade the initial reliability in embedded
systems can be classifi ed as either spatial or temporal . Spatial fault - tolerance
includes methods involving redundant hardware and/or software solutions,
whereas temporal fault - tolerance involves miscellaneous techniques that allow
for tolerating missed deadlines. Of these two, temporal fault tolerance is more
diffi cult (often impossible) to achieve, since it requires careful algorithm design.

 8.4.1 Spatial Fault - Tolerance

 The reliability of real - time systems can usually be increased using some form of
spatial fault - tolerance based on redundant hardware . In one typical scheme, two
or more pairs of redundant hardware devices provide inputs to the system. Each
device compares its output to its companion. If the results are unequal, the pair
declares itself in error, and their outputs are ignored. An alternative is to use a
third device to determine which of the other two is correct. In either case, the
unavoidable penalty is increased cost, space, and power requirements.

 Various voting schemes (Bass et al., 1997) can also be used in software to
increase algorithm robustness. Often like inputs are processed from more than
one source and reduced to some sort of best estimate of the actual value. For
example, an aircraft ’ s position can be determined via information from satel-
lite positioning systems, inertial navigation data, and ground information. A
composite of these complementary readings is then made using data fusion
techniques (Varshney, 1997).

 Furthermore, it is important to build redundancy solely in such parts of the
real - time system, which are known to be signifi cant sources of catastrophic
faults. It is just wasting money and resources to implement fault tolerance in
parts that are not likely to have faults, although those faults, if they occurred,
would be catastrophic. This issue is discussed in the following vignette.

 Vignette: Fault - Tolerance But No Faults

 Consider the elevator bank control system of Figure 3.17 . From that fi gure,
it is easy to point out three areas, which are particularly susceptible to critical
faults:

F1 . Interface from the Hall - Call Buttons to Group Dispatcher; faults in
this interface isolate some or all hall calls from call allocation.

F2 . Communications link between the Group Dispatcher and individual
Elevator Controllers; faults in the serial link make it impossible to
allocate registered hall calls to one or all elevators.

F3 . The Group Dispatcher itself; should the dispatcher computer fail,
then the whole call - allocation process will terminate abruptly.

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN FOR FAULT TOLERANCE 441

 Hence, in the worst scenario, these faults could lead to a catastrophic situ-
ation where no passengers are serviced by the elevator bank. Imagine a
morning traffi c peak when a huge number of employees are entering a 40 -
 story offi ce building within an hour or so, and no elevators are servicing
one of the three zones (low - , mid - , or high - rise)!

 In lobbies with multiple elevators on two sides, the potential hall - call
interface problem (F1) is handled routinely by including redundant sets of
up and down buttons on both sides of the lobby. Moreover, these two sets
are interfaced to the group dispatcher via independent I/O channels. If one
of the interfaces becomes faulty, the other set of call buttons is still
operational.

 Following similar thinking without much further analysis, fault tolerance
through redundancy was provided for the communications - link and group -
 dispatcher faults (F2 and F3), too. This enhancement is illustrated in Figure
 8.5 , where a backup communications link as well as a backup group dis-
patcher are included (Ovaska, 1998). These redundant hardware/software
extensions were carefully designed and implemented, and the successful
real - time system was in production for several years. So, what is the point
of this vignette?

 Well, the term “ fault - tolerance ” consists of two essential parts: the “ fault ”
causing a failure and “ tolerance ” against its effects. While the elevator
system of Figure 8.5 is tolerant against faults F1 – F3, the point here is that
these faults were later recognized to be practically missing. The vast major-
ity of recorded hardware faults appeared in the I/O section interfacing to
the external operating environment of the elevator controllers. On the
other hand, computer faults and faults in the internal communications link
had an insignifi cant probability of occurrence in this particular product.
Thus, the backup components represented development, material, assembly,
and testing expenses, but did not offer any explicit benefi ts.

 Our conclusion is that before any fault - tolerance enhancements are
planned, the application - dependent issues of fault probability and severity
should be assessed thoroughly and objectively.

 Figure 8.5. Fault - tolerant version of the elevator bank control system.

Group

Dispatcher

Elevator

Controller 1

Elevator

Controller 2

Elevator

Controller 5
...

Hall-Call
Set 2

Hall-Call
Set 1 Group

Dispatcher

Main Backup

Main

Backup

www.it-ebooks.info

http://www.it-ebooks.info/

442 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Another way to increase fault tolerance is to use software checkpoints (Saglietti,
 1990). In this scheme, intermediate results are written to memory at fi xed
locations in program code for diagnostic purposes (see Fig. 8.6). These special
locations, called checkpoints, can be used both during system verifi cation and
during system operation. If the checkpoints are used only during testing, then
this additional code is known as a test probe. On the other hand, test probes
can introduce subtle timing problems for real - time systems.

 Fault - tolerance can be further increased by using checkpoints in conjunc-
tion with predetermined reset points in software. These reset points mark
 recovery blocks in the real - time software. At the end of each recovery block,
the corresponding checkpoints are tested for “ reasonableness. ” If the results
are not reasonable, then processing resumes with a prior recovery block (see
Fig. 8.7). The point, of course, is that some hardware device (or another process
that is independent of the one in question) has provided faulty inputs to the
block. By repeating the processing in the block, with presumably valid input
data, the “ soft ” error will not be repeated.

 Figure 8.7. Recovery block implementation (Laplante, 2003).

Code Unit

n

Code Unit

n + 1

Data Needed

by Code Unit

n + 1

Data Needed

by Code Unit

n + 2

Data Needed

by Code Unit

n

Test Data

from

Code Unit

n

Restart

Proceed

“Reasonable”

“Not Reasonable”

 Figure 8.6. Checkpoint implementation (Laplante, 2003).

Code Unit

n

Code Unit

n + 1

Data Needed

by Code Unit

n + 1

Data Needed

by Code Unit

n + 2

Data Needed

by Code Unit

n

Debug

Information for

Code Unit

n

Debug

Information for

Code Unit

n + 1

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN FOR FAULT TOLERANCE 443

 In the process block approach, each recovery block represents a redundant
parallel process to the block being tested. Although this strategy increases
system reliability, it can have a severe impact on real - time performance because
of the overhead added by the checkpoint and repetition of the processing in
a block.

 8.4.2 Software Black Boxes

 The software black box is related to checkpoints and is used in certain mission -
 critical systems to recover data to analyze the cause of disasters to prevent
future ones. The objective of a software black box is to determine the sequence
of events that led to the software failure for the purpose of identifying the
faulty program code (Elbaum and Munson, 2000). The software black - box
recorder is essentially a checkpoint that records and stores behavioral data
during program execution while attempting to minimize any impact on that
execution.

 The execution of program functionalities results in a sequence of module
transitions such that the real - time system can be described as modules and
their interaction. When software is running, it passes control from one module
to the next. Exchanging control from one module to another is considered a
transition. Call graphs can be created from these transitions graphically using
an N × N matrix, where N represents the number of modules in a system or
subsystem.

 When each module is called, each transition is recorded in a matrix, incre-
menting the associated element in a transition frequency matrix. From this, a
posteriori probability - of - transition matrix can be derived that records the
likeliness that a transition will occur. The transition frequency and transition
matrices indicate the number of observed transitions and the probability that
some sequence is missing in these data.

 Analysis can begin after the system has failed and the software black box
has been recovered. The software black box decoder generates possible func-
tional scenarios based on the execution frequencies found in the transition
matrix. The generation process attempts to map the modules in the execution
sequence to specifi c functionalities, which allows for the isolation of the likely
cause of failure.

 8.4.3 N - Version Programming

 In virtually any complex system, such a state can be entered where the system
is rendered ineffective or locks up. This is usually due to some untested fl ow -
 of - control in the software for which there is no escape. That is to say that event
determinism has been violated.

 In order to reduce the likelihood of this sort of catastrophic error, redun-
dant processors are sometimes added to the real - time system. These proces-
sors are coded to the same specifi cations, but by different programming teams.

www.it-ebooks.info

http://www.it-ebooks.info/

444 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

It is therefore unlikely that more than one of the systems could lock up under
the same circumstances. Since each of the redundant systems usually resets a
watchdog timer, it quickly becomes obvious when one of them is locked up,
because it fails to reset its individual timer. The other processors in the system
can then ignore this processor, and the overall system continues to function.
This technique is called N - version programming (Teng and Pham, 2002), and
it has been used successfully in a number of projects developing mission -
 critical systems, including the space shuttle ’ s general - purpose computer.
Nevertheless, Parnas showed in the case history of Ontario Hydro that even
independent programming teams might produce correlated results (Hoffman
and Weiss, 2001).

 The redundant processors can use a voting scheme to decide on outputs, or,
more often, there are two processors, a master and a slave. The master proces-
sor is online and produces the actual outputs to the system under control,
whereas the slave processor shadows the master offl ine. If the slave detects
that the master has become hung up, then the slave takes over the mastership
and goes on - line.

 8.4.4 Built - in - Test Software

 Built - in - test software (BITS) can enhance fault - tolerance by providing online
diagnostics data of the underlying hardware for further processing by the
software. BITS is especially important in embedded systems. For instance, if
an I/O channel is functioning incorrectly as determined by its onboard test
circuitry, the software may be able to shut off that channel and redirect the
I/O to another channel. Although BITS is an important part of embedded
systems, it may add considerably to the worst - case time - loading analysis. This
must be considered when selecting BITS and when interpreting the CPU
utilization contributions that result from the additional software.

 In a critical embedded system, the health of the CPU should be checked
regularly. A set of carefully constructed tests can be performed to verify the
effi cacy of its instruction set in all addressing modes. Such a comprehensive
test suite is time consuming and thus should be relegated to background pro-
cessing. Interrupts should be disabled during each subtest to protect the data
being used.

 Nonetheless, there is a “ catch - 22 ” involved in using the CPU to test itself.
If, for example, the CPU detects an error in its instruction set, can it be trusted?
On the other hand, if the CPU does not detect an error that is actually present,
then this, too, is a paradox. Such a contradiction should not be a reason for
omitting the CPU instruction set test, because in any case, the detected error
is due to some failure either in the test itself or in the underlying hardware.

 All types of memory, including nonvolatile memories, can be corrupted via
electrostatic discharge, power surging, vibration, or other physical means. This
damage can manifest either as a permutation of data stored in a memory cell
or as permanent damage to the cell. Corruption of both RAM and ROM by

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGN FOR FAULT TOLERANCE 445

randomly encountered charge particles is a particular problem in space. These
single - event upsets do not usually happen on earth, because either the mag-
netosphere defl ects the offending particle, or the mean free path of the particle
is not suffi cient to reach the surface of earth.

 Damage to the contents of memory is called a soft error , whereas damage
to the cell itself is a hard error . The embedded systems engineer is particularly
interested in techniques that could detect an upset to a memory cell and then
correct it.

 The contents of ROM are often checked by comparing its original check-
sum to a newly calculated one. The original checksum, which is usually a simple
(overfl owing) binary addition of all program - code memory locations, is com-
puted at link time and stored in a specifi c location in ROM. The new checksum
can be recomputed in a slow cycle or background processing, and compared
against the original checksum. Any deviation should be reported as a memory
error.

 Simple checksums are not a reliable form of error checking with large
memories, since errors to an even number of locations can result in error
cancellation. For instance, an error to bit 4 of two different memory locations
may cancel out in the overall checksum, resulting in no error being detected.
In addition, although an error may be reported, the location of the error in
memory remains unknown.

 A more reliable method for checking ROM - type memory uses a cyclic
redundancy code (CRC). The CRC treats the contents of memory as a long
stream of bits, and each of these bits as the binary coeffi cient of a message
polynomial (Moon, 2005). A second binary polynomial of much lower order,
(such as 16) called the generator polynomial, is divided (modulo - 2) into the
message, producing a quotient and a remainder. Before dividing, the message
polynomial is appended with a zero bit for every term (with a zero or unity
coeffi cient) in the generator polynomial. The remainder from the modulo - 2
division of the zero - padded message is the CRC check value, and the quotient
is discarded. The widely applied CRC - 16 (CCITT) generator polynomial is

 X X X16 12 5 1+ + + , (8.18)

 whereas the alternative CRC - 16 (ANSI) generator polynomial is

 X X X16 15 2 1+ + + . (8.19)

 These CRCs can detect all 1 - bit errors and virtually all multiple - bit errors. The
source of the error, however, cannot be pinpointed. For example, suppose a
ROM consists of 64 K of 16 - bit wide memory. The CRC - 16 of Equation 8.19
is to be employed to check the validity of the memory contents. Here, the full
memory contents represent a polynomial of order 65,536 · 16 = 1,048,576 at
most. Whether the polynomial starts from high or low memory does not matter
as long as consistency is maintained. After appending the polynomial with 16

www.it-ebooks.info

http://www.it-ebooks.info/

446 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

zeros due to the use of CRC - 16, the polynomial is at most of order 1,048,592.
This so - called message polynomial is then divided by the generator polynomial
X16 + X15 + X 2 + 1, producing a quotient, which is discarded, and the remain-
der, which is the desired CRC value to be saved.

 Because of the volatile nature of RAM, simple checksums or CRCs are not
viable. One way of protecting against errors to memory is to equip it with extra
bits used to implement some Hamming code (Moon, 2005). Depending on the
number of extra bits, known as the syndrome, errors to one or more bits can
be detected and even corrected. Such effective coding schemes can be used
with ROM, as well.

 Integrated circuits that implement Hamming code error detection and cor-
rection (EDC) are available commercially. During a normal memory fetch or
save, the data must pass through the EDC chip before going into or out of
memory. Besides, the chip compares the data against the check bits and makes
corrections if necessary. The chip also sets a readable fl ag, which indicates that
either a single - or multiple - bit error was detected. Realize, however, that the
error is not corrected in memory during a read cycle, so if the same erroneous
data is fetched again, it must be corrected again. When data is stored in
memory, however, the correct check bits for the data are computed and stored
along with the data, thereby fi xing any errors. This process is called RAM
scrubbing (Mariani and Boschi, 2005).

 In RAM scrubbing, the contents of a RAM location are simply read and
written back. The error detection and correction occurs on the system bus, and
the data to be corrected is reloaded into an intermediate register. Upon writing
the data back to the memory location, the correct data and syndrome are
stored. Thus, the error is corrected in memory, as well as on the bus. RAM
scrubbing is used, for instance, in the Space Shuttle ’ s inertial measurement
unit (Laplante, 1993). The obvious disadvantages of EDC are that additional
memory is needed for the scheme (6 bits for every 16 bits), and an access - time
penalty of about 50 ns per access is incurred if an error correction is made.
Finally, multiple - bit errors cannot be corrected.

 In the absence of EDC hardware — as is usual in most embedded systems —
 straightforward techniques can be used to verify the integrity of RAM - type
memory. These tests are usually run upon initialization, but they could also be
implemented in slow cycles if interrupts are appropriately disabled. It is typi-
cally desired to exercise the address and data buses as well as the memory
cells. This is accomplished by writing and then reading back certain bit patterns
to every memory location. The bit patterns are carefully selected so that any
stuck - at faults, as well as possible cross talk between wires, can be detected.
Bus wires do not always reside alongside by bit location, however, so that
various crosstalk situations may arise.

 In embedded systems, A/D converters, D/A converters, analog and digital
multiplexers, digital I/O, and the like may need to be tested after every power -
 up and also continually. Such interface modules can have built - in watchdog
timer circuitry to indicate that the device is still online. The software can check

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 447

for watchdog timer overfl ows and either reset the corresponding device or
indicate a specifi c failure.

 8.4.5 Spurious and Missed Interrupts

 Extraneous and unwanted interrupts not due to time loading are called spuri-
ous (or “ phantom ”) interrupts. Such interrupts can destroy algorithmic integ-
rity and cause runtime stack overfl ows or system crashes. Spurious interrupts
are caused by noisy hardware, power surges, electrostatic discharges, or single -
 event upsets. Missed interrupts can be caused in similar ways. In either case,
hard real - time deadlines can be compromised, leading to system failure. It is
the goal, therefore, to transform these hard errors into some kind of tolerable
soft errors.

 Spurious interrupts can be tolerated by using redundant interrupt hardware
in conjunction with a voting scheme. Similarly, the device issuing the interrupt
can issue a redundant check, such as using direct memory access (DMA) to
send a confi rming fl ag. Upon receiving the interrupt, the handler routine
checks the redundant fl ag. If the fl ag is set, the interrupt is legitimate. The
handler should then clear the fl ag. If the fl ag is not set, the interrupt is bogus
and the handler routine should exit quickly and in an orderly fashion. The
additional overhead of checking the redundant fl ag is minimal relative to the
benefi t derived. Of course, extra stack space should be allocated to allow for
at least one spurious interrupt per cycle to avoid stack overfl ow. Stack overfl ow
caused by repeated spurious interrupts is called a “ death spiral. ”

 Missed interrupts are more diffi cult to deal with. Software watchdog timers
can be constructed that must be set or reset by the task in question. Tasks
running at a higher priority or at a faster rate can check these memory loca-
tions to ensure that they are being accessed properly. If not, the dead task can
be restarted or an error indicated. The surest method for sustaining integrity
in the face of missed interrupts is through the design of robust algorithms, but
that wide topic is beyond the scope of this text.

 8.5 SOFTWARE TESTING AND SYSTEMS INTEGRATION

 There is more than a subtle difference between the common terms bug, defect,
fault, and failure. Use of “ bug ” is, in fact, discouraged, since it somehow implies
that an error crept into the program through no one ’ s action, which is, of course,
not true. The preferred term for an error in requirement, design, or program
code is either “ error ” or “ defect. ” Furthermore, the manifestation of a defect
during the operation of the software system is called a fault. And a fault that
causes the software system to fail to meet one of its requirements is a failure.

 Verifi cation and validation of the software are crucial phases of the devel-
opment process. Verifi cation determines whether the outcomes of a given
phase of the software development process fulfi ll the requirements established

www.it-ebooks.info

http://www.it-ebooks.info/

448 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

during the previous phase. Thus, verifi cation answers the question, “ Am I
building the software as specifi ed? ”

 Validation, on the other hand, determines the correctness of the fi nal soft-
ware with respect to the user ’ s explicit needs and requirements. Hence, valida-
tion answers the question, “ Am I building the right software? ”

 Testing is the execution of a program or partial program with known inputs
(excitations) and outputs (responses) that are both predicted and observed
for the purpose of fi nding faults or deviations from the requirements.

 Although effective testing is supposed to fl ush out errors, this is just one of
its purposes. The other is to increase trust in the software system. Perhaps once,
software testing was thought of as intended to remove all errors as will be seen
in the following vignette. But testing can only detect the presence of errors,
not the absence of them; therefore, it can never be known when all errors have
been detected . Instead, testing must increase faith in the system, even though
it still may contain undetected faults, by ensuring that the software meets its
requirements. This objective places emphasis on solid design techniques and
a well - developed requirements document. Moreover, a formal test plan must
be created that provides criteria used in deciding whether the system has satis-
fi ed the requirements.

 Vignette: Remove All Errors or Get Fired!

 A state - of - the - art embedded control system was delivered to a beta cus-
tomer. Due to schedule problems, the software was not thoroughly tested,
and almost daily, a new error was found by the users of the embedded system.
Understandably, the customer was unhappy. One evening, the regional
manager who had sold the system to that customer called the software
engineer in charge. The regional manager wanted to know “ when the last
error would be corrected. ” And the software engineer answered truthfully
 “ I do not know and nobody will ever know. ” This blunt answer made the
regional manager so upset that he immediately called to the vice president
of engineering and requested him to fi re such an impudent engineer.

 Fortunately, the rate of detected errors began to decline steeply, and, in
a few weeks, the customer stopped complaining. Hence, the faith in the new
software had reached a satisfactory level — although the last error was prob-
ably never detected. In addition, the intrepid software engineer was not fi red,
but he surely learned to put more effort on testing in his future projects.

 An in - depth treatment of software testing is available in Patton (2006) .
Moreover, fi ve thought - invoking views on software testing and industry needs
were provided by Glass et al. (2006) .

 8.5.1 Testing Techniques

 There is a wide range of testing techniques for unit - and system - level testing,
as well as for integration testing. Some techniques may be interchangeable,

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 449

while others are not. Any one of these testing techniques can be either insuf-
fi cient or not computationally feasible for real - time systems. Therefore, some
combination of multiple techniques is usually employed. Recently, commercial
and open - source user - guided test case generators have emerged. These tools,
such as XUnit (Meszaros, 2007), can greatly facilitate many of the testing
strategies to be discussed shortly.

 Several methods can be used to test individual modules or code units. These
techniques can be used by the unit author or by an independent test team to
exercise each code unit in the system. The same techniques can also be applied
to subsystems, that is, collections of modules related to the same function.

 In black box testing , only inputs and outputs of the code unit are considered;
how the outputs are generated based on a particular set of inputs is totally
ignored. Such a technique, being independent of the implementation of the
module, can be applied to any number of modules with the same functionality.
But this technique does not provide any insight into the programmer ’ s skills
in implementing the module. Consequently, dead or unreachable code cannot
be detected.

 For each module, a number of test cases need to be generated. This number
depends on the number of inputs, the functionality of the module, and so forth.
If a module fails to pass a single module - level test, then the detected error
must be repaired, and all previous module - level test cases are rerun to prevent
the repair from causing other errors.

 Some widely used black - box testing techniques include:

 • Exhaustive testing
 • Boundary - value testing
 • Random test - case generation
 • Worst - case testing

 An important aspect of using black - box testing techniques is that clearly
defi ned interfaces to the software modules are required. This places additional
emphasis on the application of Parnas partitioning principles (discussed in
Chapter 6) to module design.

 Brute - force or exhaustive testing involves presenting each code unit with
every possible input combination. Exhaustive testing works well in the case of
a small number of inputs, each with a limited input range, for example, a code
unit that evaluates a small number of Boolean inputs. A major problem with
exhaustive testing, however, is the combinatorial explosion in the number of
test cases. For instance, for the program code that will deal with raw acceler-
ometer data, altogether 2 16 · 2 16 · 2 16 = 2 48 test cases would be required (three
16 - bit acceleration components, ax , ay and az), which is not reasonable.

 Corner - case or boundary - value testing solves the problem of combinatorial
explosion by testing just a tiny subset of the input combinations identifi ed as
meaningful “ boundaries ” of the input space. For example, consider a code unit
with fi ve different inputs, each of which is a 16 - bit signed integer. Approaching

www.it-ebooks.info

http://www.it-ebooks.info/

450 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

the testing of this code unit using exhaustive testing would require 2 16 · 2 16 · 2 16 ·
216 · 2 16 = 2 80 test cases. However, if the test inputs are restricted to every combina-
tion of the minimum, maximum, and mean values for each input, then the test
set would consist of 3 5 = 243 test cases, which is a reasonable number. A test set
of this size can be handled easily with automatic test case generation.

Random test case generation , or statistically based testing, can be used for
both unit - and system - level testing. This kind of testing involves subjecting the
code unit to numerous randomly generated test cases over some period of
time. The purpose of this approach is to simulate execution of the software
under virtually realistic conditions.

 The randomly generated test cases are based on determining the underlying
statistics of the expected inputs. Such basic statistics are usually collected by
expert users of similar systems, or, if none exist, by educated guessing. The
theory is that system reliability will be enhanced if prolonged usage of the
software system can be simulated in a controlled environment. The major
drawback of such a technique is that the underlying probability distribution
functions for the input variables may be unavailable or incorrect. Besides,
randomly generated test cases are likely to miss special conditions with low
probability of occurrence.

 Pathological - case or worst - case testing deals with those test scenarios that
might be considered highly unusual or even unlikely. It is often the case that
these exceptional cases are exactly those for which the code is likely to be
poorly designed, and therefore, to fail. For instance, in the inertial measure-
ment system, while it might be highly unlikely that the system will achieve the
maximum acceleration that can be represented in a 16 - bit scaled number, this
worst case still needs to be tested.

 Of course, there are many other forms of black - box testing, including equiv-
alence class testing, all - pairs testing, and decision table based testing (Jorgensen,
 2008).

 An obvious disadvantage of black - box testing is that it does not recognize
unreachable or dead code. In addition, it may not test all of the fl ow paths in
the module. Another way to look at this is that black - box testing only tests what
is expected to happen, not what was not intended. Clear - box, glass - box, or white -
 box testing techniques can be used to deal with this problem. The fundamental
difference between black - and white - box testing is illustrated in Figure 8.8 .

 Whereas black - box tests are data driven, white - box tests are logic driven,
that is, they are designed to exercise all paths in the code unit. For example,
in the nuclear plant monitoring system, all error paths would need to be tested,
including those pathological situations that deal with simultaneous or multiple
failures.

 White - box testing also has the advantage that it can discover those code
paths that cannot be executed. Such unreachable code is undesirable because
it is likely a sign that the underlying logic is incorrect, because it wastes
memory space, and since it might inadvertently be executed in the case of the
corruption of the CPU ’ s program counter.

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 451

 Code inspections or group walkthroughs are a kind of white - box testing in
which code is inspected line - by - line by a group of experienced programmers.
Carefully organized and conducted walkthroughs have been shown to be
much more effective than traditional testing techniques.

 In code inspections, the author of some collection of software modules
presents each line of code to a competent review group, which can detect
errors as well as discover ways for improving the implementation. This audit
also provides possible control of the coding standards. Finally, unreachable
code can be discovered, too.

 Formal program proving is another kind of white - box testing using formal
methods in which the code is treated as a theorem and some form of calculus
is used to prove that the program is correct.

 A program is said to be partially correct if it produces the correct output
for each input when it terminates. It is said to be correct if it is partially correct
and it always terminates. Hence, to verify a program is correct, partial correct-
ness must be demonstrated fi rst, and then it must be demonstrated that the
program terminates.

 To illustrate formal program verifi cation, consider the following example.
It is casual since some of the rigorous mathematics are omitted for ease of
understanding.

 Figure 8.8. Black - and white - box views of a software module for the tester.

Inputs Inputs

Outputs Outputs

“Black-Box View” “White-Box View”

?

 Example: Formal Program Verifi cation

 Consider a function to compute the power a b , where a is a fl oating - point
number and b is a nonnegative integer (type and range checking are omitted
from the verifi cation, since it is expected that these are performed by the
run - time library).

www.it-ebooks.info

http://www.it-ebooks.info/

452 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 In its rigorous form, formal verifi cation requires a higher level of mathematical
sophistication and is appropriate, generally, only for limited, mission - critical
situations because of the intensity of analysis activity.

 Furthermore, a testing process that complements object - oriented design
and programming can signifi cantly increase the programmer ’ s productivity,
software quality, as well as reuse potential. There are three principal issues in
 testing object - oriented software :

 1. Testing the base class
 2. Testing external code that uses a base class
 3. Dealing with inheritance and dynamic binding

 Without inheritance, testing object - oriented code is not very different from
simply testing abstract data types. Each object has some data structure, such
as an array, and a set of member functions to operate. There are also member
functions to operate on the object. These member functions are tested like any
other function using black - box or white - box techniques.

 In a good object - oriented design, there should be a well - defi ned inheritance
structure. Therefore, most of the tests from the base class can be used for
testing the derived class, and only a small amount of retesting of the derived
class is required. On the other hand, if the inheritance structure is bad, for

 fl oat power(fl oat real, unsigned b)
 {
 if (b = = 0)
 return 1;
 else
 return a * power(a,b - 1); / * recursion * /
 }

 In a real - time sense, it is important to show that this program always ter-
minates, that is, unbounded recursion does not occur. To show this, note that
 b is a loop invariant, and that b is a monotonically decremented integer.
Hence, b will eventually become 0 , which is the explicit termination condition.

 Next, to demonstrate partial correctness, note that

a a b Z b

a b

b

i

b

b

= ∈ ≠

= =
=

+∏ 1
0

1 0

,

,

 and

 Recognizing that the program under verifi cation is called b times (recur-
sively) through the else condition and only once through the if condition,
yields the equality shown.

 Hence, the program is correct.

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 453

instance, if there is inheritance of implementation (where code is used from
the base class), then additional testing will be necessary. Hence, the price of
using inheritance poorly is having to retest all of the inherited code. Finally,
dynamic binding requires that all cases have to be tested for each binding
possibility.

 Effective testing is guided by information about likely sources of error. The
combination of polymorphism, inheritance, and encapsulation is unique to
object - oriented languages, presenting such opportunities for an error that do
not exist in procedural programming languages. Here, the main rule is that if
a class is used in a new context, then it should be tested as if it were new.

 Further guidelines for testing object - oriented software are available in
McGregor and Sykes (2001) .

Test - fi rst coding (or test - driven design) is a code production approach nor-
mally associated with eXtreme Programming (English, 2002). In test - fi rst
coding, the test cases are designed by the software engineer who will eventu-
ally write the code. The advantage of this approach is that it forces the software
engineer to think about the code in a different way that involves focusing on
 “ breaking down ” the software. Those who use this technique report that, while
it is sometimes diffi cult to change their way of thinking, once the test cases
have been designed, it is actually easier to write the program code, and debug-
ging becomes much easier because the unit - level test cases have already been
written. Test - fi rst coding is not really a testing technique, it is a design and
analysis approach, and it does not obviate the need for testing.

 As it turns out, cyclomatic complexity measures the number of linearly
independent paths through the code, and hence, provides an indication of the
minimum number of test cases needed to exercise every code path. To deter-
mine the linearly independent paths, McCabe developed an algorithmic pro-
cedure, called the baseline method , to determine a set of basis paths (Emergy
and Mitchell, 1989).

 First, a clever construction is followed to force the complexity graph to look
like a vector space by defi ning the notions of scalar multiplication and addition
along paths. Then basis vectors for this space are determined. The method
proceeds with the selection of a baseline path, which should correspond to
some “ ordinary ” case of program execution along one of the basis vector paths.
McCabe advises choosing a path with as many decision nodes as possible. Next,
the baseline path is retraced, and in turn, each decision is reversed, that is,
when a node of outdegree of greater than two is reached, a different path must
be taken. Continuing in this way until all possibilities are exhausted, it gener-
ates a set of paths representing the entire test set (Jorgensen, 2008). For
example, consider Figure 8.2 . In this case, the cyclomatic complexity was com-
puted to be 5, indicating that there are fi ve linearly independent test cases.
Tracing through the graph, the fi rst path is adcf . And following McCabe ’ s
procedure yields the other four paths acf , abef , abeb , and abea .

 Function and feature points can also be used to determine the minimum
number of test cases needed for adequate coverage. The International Function

www.it-ebooks.info

http://www.it-ebooks.info/

454 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

Point Users Group (http://www.ifpug.org/) indicates that there is a strong
relationship between the number of test cases, software defects, and function
points. Accordingly, the number of acceptance test cases can be estimated by
multiplying the number of function points by 1.2, which is the factor suggested
by McCabe. For instance, if a project consists of 200 function points, then 240
test cases would be needed.

 An experimental framework for comparing software testing techniques
from an industrial perspective was proposed by Eldh et al. (2006) .

 8.5.2 Debugging Approaches

 In real - time systems, testing methods often affect the systems that they test.
When this is considered harmful, nonintrusive testing should be used. For
example, when bypassing code during debugging, do not use conditional
branching. Conditional branching affects timing and can introduce subtle
timing problems. Conditional compilation, on the other hand, is more appro-
priate in these instances. In conditional compilation, selected code is included
only if a particular compiler directive is set, and hence it does not affect timing
in the production version.

 Programs can be affected by syntactic or logic errors. Syntactic or syntax
errors arise from the failure to satisfy the rules of the programming language.
A good compiler will always detect syntax errors, although the way that it
reports an error often can be misleading. For instance, in a C program a missing
} may not be detected until many lines after it should have appeared. Besides,
some compilers only report vaguely “ syntax error ” rather than, for example,
 “ missing } . ”

 In logic errors, the program code adheres to the rules of the language, but
the algorithm that is implemented is somehow wrong. Logic errors are more
diffi cult to diagnose because the compiler cannot detect them. Nevertheless,
a few basic rules may help you to fi nd and eliminate logic errors:

 • Document the program carefully and appropriately. Each nontrivial line
of code should include an explanatory comment. In the course of com-
menting, logic errors may be detected.

 • Where a symbolic debugger is available, use steps, traces, breakpoints,
skips, and so on to isolate the logic error.

 • Use automated testing where possible. Open - source test generators are
available, for instance, the XUnit family (Meszaros, 2007), which includes
JUnit for Java and CUnit for C ++ . These tools help generate test cases
and are used for ongoing unit and regression testing of components or
classes.

 • In the case of a plain command - line environment, such as Unix/Linux, use
print statements to output intermediate results at checkpoints in the code.
This may help detect logic errors.

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 455

 • In case of an error, comment out necessary portions of the code until the
program compiles and runs. Add in the commented - out code, one feature
at a time, checking to see that the program still compiles and runs. When
the program either does not compile or runs incorrectly, the last code
increment is involved in the error.

 Finding and eliminating errors effectively in real - time systems is as much art
as it is science, and the software engineer develops these intuitive skills gradu-
ally over time with practice. In many cases, code audits or walkthroughs can
be particularly helpful in fi nding logic errors.

 Source - level debuggers are software tools that provide the ability to step
through code at either an assembly or high - level language level. They are
extremely useful in module - level testing. However, they are less useful in
system - level debugging, because the real - time aspect of the system is neces-
sarily affected or even disabled.

 Debuggers can be obtained as part of compiler support packages or in
conjunction with logic analyzers. For example, sdb is a generic name for a
symbolic debugger associated with Unix and Linux. sdb allows the software
engineer to single step through the source language code and view the results
of each step.

 In order to use the symbolic debugger, the source code must be compiled
with a particular option set. This has the effect of including special run - time
code that interacts with the debugger. Once the code has been compiled for
debugging, then it can be executed “ normally. ” For instance, in the Unix/Linux
environment, the program can be started normally from the sdb debugger at
any point by typing certain commands at the command prompt. Nonetheless,
it is often more useful to single step through the source code. Lines of code
are displayed and executed one at a time by using the step command. If the
executed statement is an output statement, it will output to the screen accord-
ingly. If the statement is an input statement, it will await user input. All other
statements execute as usually. At any point in the single - stepping process,
individual variables can be examined or set. There are many other features of
sdb , such as breakpoint setting, which are common in all debuggers. In more
sophisticated operating environments, a graphical user interface is provided,
but essentially, these tools provide the same functionality.

 Very often when debugging a new program, the Unix operating system will
abort execution and indicate that a core dump has occurred. This is a signal
that some fault has occurred. A core dump creates a rather large fi le named
core , which is often removed before proceeding with the debugging. But
core contains some valuable debugging information, especially when used in
conjunction with sdb . For example, core contains the last line of the program
that was executed and the contents of the function - call stack at the time of
the fault. sdb can be used to single step up to the point of the core dump to
identify its cause. Later on, breakpoints can be used to quickly come up to this
particular line of code.

www.it-ebooks.info

http://www.it-ebooks.info/

456 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 A logical approach to debugging both software and hardware is presented
by Agans (2002) , where he suggests the nine “ bug - fi nding rules, ” R1 – R9, for
the practitioner:

R1. “ Understand the system. ”
R2. “ Make it fail. ”
R3. “ Quit thinking and look. ”
R4. “ Divide and conquer. ”
R5. “ Change one thing at a time. ”
R6. “ Keep an audit trail. ”
R7. “ Check the plug. ”
R8. “ Get a fresh view. ”
R9. “ If you didn ’ t fi x it, it ain ’ t fi xed. ”

 These general rules provide a useful checklist for anybody involved with
debugging.

 8.5.3 System - Level Testing

 Once individual modules have been tested, then all subsystems and the entire
system need to be tested. In larger systems, the process can be broken down
into a series of subsystem tests, and then a test of the complete system.

 System testing treats the software system as a black box so that one or more
of the black - box testing techniques can be applied. System - level testing occurs
after all modules pass their unit test. At this point, the coding team hands the
software over to the testing team for validation. If an error occurs during
system - level testing, the error must fi rst be repaired. Then every test case
involving the changed module must be rerun, and all previous system - level
tests must be passed in succession. The collection of system test cases is com-
monly called a system test suite.

Burn - in testing is a type of system - level testing that seeks to fl ush out those
failures appearing early in the life of the real - time system, and thus to improve
the reliability of the delivered software product. System - level testing may be
followed by alpha testing, which is a type of validation consisting of internal
distribution and exercise of the software. This testing is followed by beta
testing, where preliminary versions of validated software are distributed to
friendly customers, who test the software under actual use. Later in the life
cycle of the software, whenever corrections or enhancements are added,
regression testing is mandatory. Figure 8.9 shows the various phases of a
typical testing hierarchy.

Regression testing , which can also be performed at the module level, is used
to validate the modifi ed software against the old set of test cases that has
already been passed. Any new test case needed for the enhancements are then
added to the test suite, and the software is validated as if it were a new product.

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 457

Regression testing is also an integral part of integration testing as new modules
are added to the tested subsystem.

 The principal tenet of cleanroom software development is that given suffi -
cient time and with care, error - free software can be written. Cleanroom soft-
ware development relies heavily on group walkthroughs, code inspections, and
formal program verifi cation. It is taken for granted that software specifi cations
exist that are suffi cient to completely describe the system. In this approach,
the development team itself is not allowed to test any code as it is being
developed. Rather, syntax checkers, group walkthroughs, code inspections, and
formal verifi cations are used to ensure code integrity. Statistically based testing
is then applied at various stages of software implementation by a separate test
team. This technique produces documentation and program code that are
more reliable and maintainable, as well as easier to test than other develop-
ment methods.

 The program is developed by slowly “ growing ” features into the code, start-
ing with some baseline of functionality. At each milestone, an independent test
team checks the code against a set of randomly generated test cases based on
a set of statistics describing the frequency of use for each feature specifi ed in
the requirements. This group tests the code incrementally at predetermined
milestones, and either accepts or returns it to the development team for cor-
rection. Once a functional milestone has been reached, the development team
adds to the “ clean ” code, using the same techniques as before. Thus, like an
onion skin, new layers of functionality are added to the software system until
it completely satisfi es the requirements.

 In another type of testing, stress testing , the software system is subjected to
a large disturbance in the inputs (for instance, a large burst of interrupts), fol-
lowed by smaller disturbances spread out over a longer period of time. One

 Figure 8.9. Hierarchical bottom - up sequence of software testing phases.

.

. . .

System

System

System

Subsystem 1 Subsystem m

Unit Testing

Subsystem Testing

System Testing

Alpha Testing

Beta Testing

Units

Passed

Passed

Passed

Passed

Passed

Transfer to Unlimited
Production

www.it-ebooks.info

http://www.it-ebooks.info/

458 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

objective of this kind of testing is to see how the system fails, either gracefully
or catastrophically.

 Stress testing can also be useful in dealing with particular cases and condi-
tions where the system is under heavy load. For example, in testing for memory
or processor utilization in conjunction with other application and operating
system resources, stress testing can be used to determine whether performance
is acceptable. An effective way to stress test, for instance, is to generate a
confi gurable number of tasks in a test program and subject the software to
them. Running such tests for long periods of time also has the benefi t of check-
ing for possible memory leaks (such as stack overfl ows).

 One of the challenges in testing real - time systems is dealing with partially
implemented systems . Many of the problems that arise are similar to those
found in dealing with prototype hardware. There are straightforward strategies
involving creating stubs and special drivers to deal with missing components
at the interface. Commercial and open - source test generators can be helpful
in these cases. But the strategies involved for testing real - time systems are
nontrivial.

 Lastly, the test plan should follow the requirement to document item by
item, providing criteria that are used to judge whether the required item has
been met. A set of test cases is then written, which is used to measure the
criteria set out in the test plan. Writing such test cases can be diffi cult when a
complicated user interface is part of the requirements. The test plan includes
criteria for testing the real - time software on a module - by - module or unit level,
as well as on subsystem and system levels.

 8.5.4 Systems Integration

 Integration is the process of combining partial functionality to form the com-
plete system functionality. Because real - time systems are usually embedded,
the integration process involves both multiple software units and hardware.
Each of these parts potentially has been developed by different teams or
individuals within the project organization. Although it is presumed that the
parts have been rigorously tested and verifi ed separately, the overall behavior
of the embedded system, and conformance to most of the software require-
ments, cannot be tested until the system is wholly integrated. Software integra-
tion is further complicated when both software and hardware are new. In such
situations, it may be hard to identify whether a particular fault is caused by a
software or hardware error.

 The software integration phase has the most uncertain schedule and is typi-
cally the cause of project cost overruns. Moreover, the stage has been set for
failure or success at this phase, by the specifi cation, design, implementation,
and testing practices used throughout the software development life cycle.
Hence, by the time of software integration, it may be very diffi cult to identify
and fi x problems. Indeed, many modern programming practices were devised
to ensure arrival at this stage with the fewest errors in the source code. For

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 459

example, lightweight agile methodologies, such as eXtreme Programming, tend
to reduce these kinds of problems (English, 2002).

 Fitting the pieces of the software system together from its individual com-
ponents is a tricky process, especially for embedded systems. Parameter mis-
matching, variable name mistyping, and calling sequence errors are some of
the typical problems encountered during system integration.

 The system unifi cation process consists of linking together the tested soft-
ware modules drawn in an orderly fashion from the source - code library.
During the linking process, errors are likely to occur that relate to unresolved
external symbols, memory assignment violations, page link errors, and the like.
These problems must, of course, be resolved. Once resolved, the loadable code
or load module, can be downloaded from the development environment to
the target platform. This is achieved in a variety of ways, depending on the
system architecture. In any case, once the load module has been created and
loaded into the target platform, testing of timing as well as hardware/software
interaction can begin.

 Final system testing of embedded systems can be a truly demanding process,
often requiring weeks. During system validation, a careful test log must be
kept, indicating the test case number, results, and disposition. Table 8.4 is a
sample of such a test log for the elevator control system. If a system test fails,
it is imperative, once the problem has been identifi ed and presumably cor-
rected, that all affected tests be rerun. These include:

 • All module - level test cases for any module that has been changed
 • All related subsystem - level test cases
 • All system - level test cases

 Even though the module - level test cases and previous (sub)system - level test
cases have been passed, it is imperative that these be rerun to ensure that no
side effects have been introduced during error repair.

 As mentioned before, it is not always easy to identify sources of error during
a system test. Fortunately, a number of hardware and software tools are avail-
able to assist in the validation of embedded systems. Versatile testing tools
pave the way for ultimate success — especially in deeply embedded systems.

 An oscilloscope is not regarded as a software - debugging tool, but it is useful
in embedded software environments. Oscilloscopes can be used for validating

 TABLE 8.4. Sample Test Log for Elevator Control System

 Test Number Reference
Requirements Number

 Test Name Status Date Tester

 MO27 3.4.1 Attendant service Pass 11/3/10 S.J.O.
 MO28 3.4.2 Independent service Pass 11/4/10 P.A.L.
 MO29 3.4.3 Fireman service Fail 11/4/10 S.J.O.

www.it-ebooks.info

http://www.it-ebooks.info/

460 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

interrupt integrity, discrete signal issuance and receipt, and for monitoring
clocks.

 The logic analyzer is an important tool for debugging embedded software.
It can be used to capture data or events, to measure individual instruction
times, or to time sections of code. Moreover, the availability of programmable
logic analyzers with integrated debugging environments has further enhanced
the capabilities of the systems integrator.

 Advanced logic analyzers include built - in disassemblers for effective debug-
ging, as well as performance analysis and even code profi ling features. These
integrated environments make the identifi cation of performance bottlenecks
particularly convenient.

 No matter how elaborate, all logic analyzers have the same basic functional-
ity. This is shown in Figure 8.10 . The logic analyzer is connected to the system
under test by connecting probes that sit directly on the address and data buses.
A clock probe connects to the memory - access synchronization clock. Upon
each memory access, the corresponding address and data are captured by the
logic analyzer and stored in buffers for transfer to the logic analyzer ’ s main
memory, from which they can be processed for display. Using the logic ana-
lyzer, the software engineer can capture specifi c memory locations and data
for the purposes of timing or for verifying execution of a specifi c code segment.
The logic analyzer can be used to time accurately an individual machine -
 language instruction, segments of code, or an entire task.

 During module - level debugging and systems integration of embedded
software/hardware, the abilities to single - step the CPU, set the program
counter, and insert into and read from memory is extremely important. These
capabilities in conjunction with the symbolic debugger are keys to successful

 Figure 8.10. A logic analyzer connected to the system under test (SUT).

SUT

Bus

Buffers

Address and

Data Buses

Main

Memory

Captured

Addresses

and Data

Display

Addresses and

Data to Be

Shown

Control

Unit

Control

Signals

Memory-

Access Clock

Logic Analyzer

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 461

integration of real - time systems. In an embedded environment, however, this
capability is provided by an in - circuit emulator (ICE). In - circuit emulation uses
special hardware in conjunction with software to emulate the target CPU
while providing the aforementioned debugger features. Typically, the ICE
plugs into the chip carrier or board slot normally occupied by the CPU. In
addition, external wires may connect to an emulation system. Access to the
emulator is provided directly or via a workstation.

 In - circuit emulators are useful for single - stepping through critical portions
of code. In - circuit emulators are not typically useful in timing tests, however,
because subtle timing changes can be introduced by the emulator hardware.

 When integrating and debugging embedded systems, complementary soft-
ware simulators are often needed to stand in for hardware or inputs that do
not exist or that are not readily available, for instance, to generate simulated
accelerometer or gyro readings where real ones are unavailable at the time.
The author of the simulator program has a task that is by no means easy, since
the software must be written to mimic exactly the hardware specifi cation,
especially in timing characteristics. Moreover, the simulator must be thor-
oughly tested. Nevertheless, many real - time systems have been successfully
validated and integrated with software simulators, only to fail when connected
to the actual hardware environment.

 A deliberate approach must be used when performing systems integration
to ensure system integrity. Failure to do so can lead to cost escalation and
frustration. Software integration approaches are largely based on experience
and insight. The following represents a viable strategy for software
integration.

 In any real - time operating system (RTOS), it is important to ensure that all
tasks in the system are being scheduled and dispatched properly. Thus, the fi rst
goal in integrating the embedded system is to ensure that each task is running
at its prescribed rate, and that context is saved and restored correctly. This is
done without performing any application functions within those tasks; the
application functions are added later.

 As discussed before, a logic analyzer is particularly useful in verifying cycle
rates by setting the triggers on the starting location of each of the tasks
involved. During debugging, it is most helpful to establish the fact that cyclic
processes are being called at the appropriate rates. Until the system cycles
properly, the application code associated with each of the tasks should not be
added. The success of this method depends on the fact that one change at a
time is made to the system so that when the system becomes corrupted, the
problem can be isolated with a reasonable effort.

 The overall approach is depicted in Figure 8.11 , and it involves establishing
a baseline of plain RTOS components (no application functions). This ensures
that timer interrupts are being handled properly, and that all cycles are running
at their prescribed rates, without worry about interference from application
code. Once the baseline is successfully established, small sections of applica-
tion code are added and the cycle rates verifi ed. If an error is detected, it is

www.it-ebooks.info

http://www.it-ebooks.info/

462 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

corrected temporarily (to save time) when possible. If the correction (or
 “ patch ”) succeeds in restoring the cycle rates properly, then more code is
added. This ensures that the real - time system is grown incrementally, with an
appropriate baseline at each stage of the integration. Such an approach rep-
resents a smoothly phased integration process with regression testing after
each phase.

 8.5.5 Testing Patterns and Exploratory Testing

 This discussion is adapted from Laplante (2009) .
 There are various traditionally organized patterns (or problem – solution

pairs) for testing software. But all of the available software testing pattern
catalogues are language specifi c (e.g., Thomas et al., 2004) or focused on unit
testing (e.g., Meszaros, 2007), and we know of no testing pattern languages
that specifi cally focus on the problem of testing real - time systems. What is
needed is a set of general - purpose patterns for testing mission critical, real -
 time systems postintegration. In this regard, exploratory testing is of great
value. Exploratory testing seeks to uncover the various sources of uncertainty

 Figure 8.11. A straightforward integration strategy (Laplante, 2003).

Begin

Testing

Establish

Baseline

Add Code

Increment

Perform

Tests

Error? Temporary

Correction

End When

All Code

Tested

Yes

No

www.it-ebooks.info

http://www.it-ebooks.info/

SOFTWARE TESTING AND SYSTEMS INTEGRATION 463

described in Section 8.3 and helps to organize a set of abstract testing para-
digms that can greatly assist in developing large - scale test cases.

 First described by Kaner, exploratory testing is a guided , ad hoc technique
that incorporates simultaneous learning, test design, and test execution (Kaner,
 1988). Although almost exclusively applied to GUI (graphical user interface)
testing in commercial applications, exploratory testing is the kind of testing
that is often conducted in embedded systems to augment traditional, scripted
testing approaches.

 Traditional software and systems testing involves techniques that rely on
scripted, or context - based testing. That is, for each test, the test engineer
defi nes a particular initial state for the system (including the environment
state), a set of inputs to the system, and a set of expected outputs for the test.
In exploratory testing, however, testing is conducted in an almost ad hoc
manner; the tester simply uses the system in certain ways, and then records
any anomalies that he encounters. Exploratory testing is “ almost ad hoc ”
because the usage is actually guided by a behavior pattern driven by a particu-
lar posture that is adopted by the tester.

 Consider the following tourism metaphor: scripted - based testing involves a
traveler who follows a planned itinerary. Exploratory testing involves a trav-
eler who uses his own instincts and personal agenda to guide his explorations.
Continuing with the metaphor, we may have many types of traveler personali-
ties, and these personalities infl uence the journey of each traveler. Whittaker
describes many such journeys in his book (Whittaker, 2009). For instance, he
notes that in big cities, the local people avoid tourist traps. The software
analogy is the set of features avoided by expert users. In the “ Historical
District Tour, ” then, testers deliberately explore those features that the experts
would avoid. In the “ Hotel District Tour, ” testers test the functionality of the
code that is running behind the scenes when the software is ostensibly at rest.
Although Whittaker enumerates a number of tours that would be appropriate
for security testing or embedded systems (the “ Saboteur ’ s Tour ” and “ Seedy
District Tour; ” think about the implications), there is ample room for other
tours specifi cally related to embedded and other real - time systems.

 One way to develop a set of useful exploratory tests for real - time systems
is to consider the sources of systems uncertainty (Bach, 2004), and then create
specifi c tours that uncover these uncertainties. These explorations can be con-
verted into use, and misuse cases for the purpose of operationalizing the tests,
and for regression testing. Consider the following examples.

 Example: Environmental Explorations

 Environmental explorations simulate uncertainty in the environment in
which the system is to be operating. These uncertainties may emanate from
operating system anomalies, as in the Mars Pathfi nder Mission, or from
operational domain disturbances, such as a power surge or a violent storm.

www.it-ebooks.info

http://www.it-ebooks.info/

464 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Example: Language Explorations

 Many compilers produce code in ways that appear to be nonlinear. For
example, removing a single line of source code can fundamentally change

 Example: Behavioral Explorations

 There is a broad class of timing and scheduling problems that are the hall-
mark of real - time systems. But these kinds of problems are very commonly
tested and diagnosed using traditional scripted, context - driven testing, so
no new exploratory tests are offered at this time.

 Example: State Explorations

 Internal faults, such as jumping program counter, due to a number of pos-
sible scenarios, can lead to uncertainty of program state that is diffi cult to
diagnose, and nearly impossible to recover from. Because these kinds of
failures lead to erratic, almost drunken behavior, we call these explorations
 “ Fear and Loathing in Las Vegas Tours ” (after the famed counter - culture
book by Hunter Thompson).

 Example: Output Explorations

 A software control system can deliver grossly or subtly defective output to
the system under control, causing the system response to be perturbed
further. The aberrant feedback loop can eventually cause failure in the
control system. A set of exploration tests, called “ Magic Mystery Tours ”
(after the Beatles ’ album of the same name), need to simulate every variant
of this scenario.

 Example: Input Explorations

 Input uncertainties, such as spurious or missed interrupts, anomalous data,
and deliberately poisoned data, can lead to a cascading series of failures
that overload the system. Typically, an abandonment of the single fault
assumption is needed to overwhelm any built - in fault - tolerance mecha-
nisms. Such tests are called “ Murphy ’ s Tour, ” because anything that could
go wrong is made to go wrong.

Hence, there needs to be a family of explorations that uncovers these types
of problems. Let us call these kinds of explorations a “ Bad Weather Tour. ”
To facilitate such explorations, simulations need to be created that can
model any kind of adverse operating environment condition that can be
imagined. Experience can serve as a guide in these situations.

www.it-ebooks.info

http://www.it-ebooks.info/

PERFORMANCE OPTIMIZATION TECHNIQUES 465

 Though never given these colorful names, Laplante and his colleagues used
these explorations extensively in testing various embedded systems for avion-
ics applications, including the Space Shuttle Inertial Measurement Unit, satel-
lite systems, and other navigation systems. Work is ongoing to classify and
socialize these exploratory tests for other kinds of real - time systems.

 8.6 PERFORMANCE OPTIMIZATION TECHNIQUES

 Identifying wasteful computation is a preliminary step in reducing code execu-
tion time, and hence, the CPU utilization factor. Many traditional approaches
employed in compiler optimization (see Chapter 4) can be applied for this
purpose, but various other methods have evolved that are specifi cally oriented
toward embedded systems. A small sample of common performance optimiza-
tion techniques is discussed in the following three subsections.

 Moreover, all real - time processing should be done, in principle, at the
slowest rate that can be tolerated . Checking a discrete temperature for a large
lecture hall at faster than 1 second may be wasteful, for room temperature
cannot change quickly owing to thermal inertia. In the nuclear power plant,
on the other hand, dedicated sensors are used to monitor the core temperature
continuously and issue a high - priority service request if an over - temperature
is detected.

 8.6.1 Scaled Numbers for Faster Execution

 In virtually all computers, integer operations are faster than fl oating - point
ones. This fact can be exploited by converting fl oating - point algorithms into
scaled integer algorithms. In the so - called scaled numbers, the least signifi cant

 Example: Commercial Off - the - Shelf Explorations

 These explorations seek to uncover problems in software furnished by third
parties, such as commercial vendors, or open source software. Traditional
testing of these components needs to be done. Because “ trust but verify ” is
the hallmark of this testing, we call these “ Reagan ’ s Tours ” (with respect to
nuclear arms verifi cation, President Ronald Reagan declared that it was
best to “ trust, but verify ”).

the compiler output thereafter. The effects of these changes can lead to
insidious timing problems and undesirable side effects. Therefore, a set of
explorations are needed to test the compiler and other systems programs
involved in the production of the executable code (debuggers, linkers,
loaders, and so forth). A series of exploratory tests, called “ Shakeout Tours ”
(after the term used for a debugging fi rst voyage for some transportation
craft), are needed to uncover these potential problems.

www.it-ebooks.info

http://www.it-ebooks.info/

466 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 Figure 8.12. A 16 - bit BAM word.

180 90 45 22.5 0.005493164

MSB LSB

bit (LSB) of an integer variable is assigned a real - number scale factor. Scaled
numbers can be added and subtracted together as well as multiplied and
divided by a constant — but not by another scaled number. The results are then
converted to fl oating point only at the last computing step, thus saving process-
ing time.

 Example: Scaled Acceleration Samples

 Suppose an analog - to - digital converter is converting accelerometer data.
If the least signifi cant bit of the two ’ s complement 16 - bit integer has
value a = 0.0001 m/s 2 , then any acceleration can be represented up to
the maximum value of (2 15 − 1) · 0.0001 m/s 2 = 3.2767 m/s 2 . The 16 - bit
number 0000 0000 0000 1101, for instance, represents an acceleration
of 13 · 0.0001 m/s 2 = 0.0013 m/s 2 .

 A common practice is to convert an integer number x into its fl oating - point
equivalent by x · a and then proceed to use it in calculations directly with other
converted numbers; for example, d = x · a − y · a , where y · a is a similarly
converted fl oating - point number. Instead, the calculation could be performed
in integer form fi rst and then converted to fl oating point: d = (x − y) · a — this
would undoubtedly save some time.

 For algorithms involving numerous additions and subtractions of like data,
scaled numbers can introduce signifi cant time savings. Note, however, that
multiplication and division by another scaled number cannot be performed on
a scaled number, as those operations would change the scale factor. Besides,
accuracy is generally sacrifi ced by excessive use of scaled numbers. Therefore,
a careful error analysis is needed when using scaled numbers for implementing
complicated or numerically sensitive algorithms.

 Another type of scaled number is based on the property that adding 180 °
to any angle is analogous to taking its two ’ s complement. This technique, called
 binary angular measure (BAM) works as follows. Consider the LSB of an n - bit
word to be 2 − (n − 1) · 180 ° with the most signifi cant bit (MSB) of 180 ° . The range
of any angle θ represented this way is 0 ° ≤ θ ≤ 360 ° − 2 − (n − 1) · 180 ° . A 16 - bit
BAM word is shown in Figure 8.12 . For better accuracy, BAM can be extended
to multiple words. Each n - bit word has a maximum value of:

 2 2 180 3601−()⋅ ° = ° −− −()n LSB, (8.20)

www.it-ebooks.info

http://www.it-ebooks.info/

PERFORMANCE OPTIMIZATION TECHNIQUES 467

 TABLE 8.5. A Generic Function Look - Up Table Containing
Both the Function and Its Derivative

 x f (x) f ′ (x)

 x 0 f (x 0) f ′ (x 0)
 x 0 + Δ x f (x 0 + Δ x) f ′ (x 0 + Δ x)
 x 0 + 2 Δ x f (x 0 + 2 Δ x) f ′ (x 0 + 2 Δ x)
 � � �
 x 0 + (n − 1) Δ x f (x 0 + (n − 1) Δ x) f ′ (x 0 + (n − 1) Δ x)

 with granularity

 2 1801− −() ⋅ ° =n LSB. (8.21)

 Now, consider the 16 - bit BAM word:

 0000 0000 1010 0110

 It corresponds to the angle 166 · 2 − 15 · 180 ° ≈ 0.9119 ° .
 BAM words can be added and subtracted together, as well as multiplied

and divided by constants as if they were unsigned integers, and converted at
the last stage of the algorithm to produce fl oating - point results. It is easy to
show that the overfl ow condition for BAM numbers presents no problem as
the angle simply wraps around to 0 ° . BAM is frequently used in navigation
software, robotic control, and in conjunction with digitizing imaging devices.

 8.6.2 Look - Up Tables for Functions

 A further variation of the scaled - number concept uses a stored table of pre-
calculated function values at fi xed intervals. Such a table, called a look - up table
(Bateman and Yates, 1988), allows for the computation of continuous functions
using mostly fi xed - point arithmetic.

 Let f (x) be a continuous real - valued function and let Δ x be the interval size.
Suppose it is desired to store n values of f (x) over the range x ∈ [x 0 ,
 x 0 + (n − 1) · Δ x] in an array of scaled integers. Corresponding values for the
derivative, f ′ (x), may also be stored in the table for faster interpolation as will
be shown below. The choice of Δ x represents a trade - off between the size of
the table and the desired resolution of the function. A generic look - up table
is given in Table 8.5 . Such a table can be used for the interpolation of f x̂(),
where x x x x< < +ˆ Δ , by the well - known interpolation formula:

 f x f x x x
f x x f x

x

x

ˆ ˆ() = () + −()⋅
+() − ()

→

Δ
Δ

ΔDerivative when 0� ��� ����

. (8.22)

 This calculation is done using integer instructions except for the fi nal
multiplication by the factor x̂ x x−() Δ and conversion to fl oating point. The

www.it-ebooks.info

http://www.it-ebooks.info/

468 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

accuracy of Equation 8.22 improves obviously when Δ x → 0. If f ′ (x) is also
stored in the look - up table, then the interpolation formula reduces to:

 f x f x x x f xˆ ˆ .() = () + −()⋅ ′() (8.23)

 This clearly improves the execution time of the interpolation algorithm
(increasing memory space is traded with decreasing execution time).

 The main advantage in using look - up tables, of course, is speed. If a table
value is found directly and no interpolation is needed, then the approach is
much faster than any corresponding series expansion.

 Look - up tables are widely used in the implementation of continuous func-
tions, such as the sine, cosine, and tangent functions, as well as their inverses.
Because trigonometric functions are used frequently, for example, in conjunc-
tion with the discrete Fourier transform (DFT) and discrete cosine transform
(DCT), look - up tables can provide considerable speed - up in real - time signal
and image processing applications.

 In some real - time applications, partial results can be given in order to meet
a critical deadline. In cases where software routines are needed to provide
mathematical support, complex algorithms are often employed to produce the
desired calculation. For instance, a Taylor - series expansion (perhaps using a
look - up table for function derivatives) could be terminated prematurely, at a
loss of accuracy, but with improved real - time performance. Techniques involv-
ing early truncation of a series expansion in order to meet deadlines are called
imprecise computation. Imprecise computation may be diffi cult to apply,
however, because it is not usually easy to determine the processing that can
be discarded and its overall effects.

 8.6.3 Real - Time Device Drivers

 In general, a real - time device driver is a piece of system software that forms
a high - level interface between the hardware platform and application soft-
ware, and may use the functionality of the real - time operating system (RTOS)
to accomplish this task effectively. It has three main purposes, which all have
a more or less explicit connection to real - time performance:

 1. To provide an effi cient and reliable interface to hardware devices, and
achieve minimum input/output overhead by carefully designed and
implemented driver functions.

 2. To hide the device - specifi c details from application programmers, and
hence improve the programmers ’ productivity.

 3. To isolate a particular hardware platform and devices from the applica-
tion software, and thus enhance the portability and reusability of software.

 A device - driver simplifi es the use of real - time devices, such as peripheral
interface adapters, data acquisition hardware, wireless network interfaces, and

www.it-ebooks.info

http://www.it-ebooks.info/

PERFORMANCE OPTIMIZATION TECHNIQUES 469

so forth. While the use of peripheral interface adapters is straightforward, the
programming of communications network adapters usually goes beyond the
scope of engineers developing software for some embedded application.
Hence, the device drivers for sophisticated real - time devices are often acquired
from the manufacturer of the hardware device, who knows all the functional
details of the particular hardware device. Moreover, a device driver may be
operating system specifi c.

 Real - time device drivers manage a variety of important functions, which
include (see Fig. 8.13):

 • Initialization of the device
 • Logical (possibly standard) boundary to the application software
 • Physical interfacing to the particular device hardware
 • Resource arbitration and sharing
 • Chip - level command/control sequences
 • Interrupt servicing
 • Exception handling

 In addition, virtual device drivers can be used to emulate the functionality of
specifi c hardware devices during the process of software testing when the real
devices are not yet available. Such a virtual driver mimics the behavior of some

 Figure 8.13. Typical functions of a real - time device driver that is interacting closely
with the RTOS.

Application Software

Device Driver

Logical Boundary

Initialization
Arbitration &

Sharing
Command &

Control
Interrupts

Physical Interfacing

Hardware Device

Exceptions

www.it-ebooks.info

http://www.it-ebooks.info/

470 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

physical device, and thus provides a realistic environment for testing real - time
software.

 Serti ć et al. discussed the use of UML for designing a device driver for a
real - time Linux environment (Serti ć et al., 2003). Both static and run - time
models of the device - driver ’ s behavior were developed, including a model of
the interrupt handler. Furthermore, the implemented device driver was veri-
fi ed to be computationally effi cient and reliable, and it is used in a data -
 communications application. The proposed design approach is applicable to
other device drivers, as well.

 To conclude, any real - time device driver is usually such a critical unit of
software that the effort used to optimize its performance can be easily
justifi ed.

 8.7 SUMMARY

 After several solid chapters on the design and analysis of real - time systems,
this integrative chapter provided a rich composition of additional consider-
ations for the practitioner. Actually, one characteristic that makes the fi eld of
real - time systems engineering so fascinating is the multi - dimensionality of the
whole fi eld; there are, indeed, many attractive areas to become specialized
with. And nobody can likely claim to master them all. This also means that a
competitive development team needs members with partially similar and par-
tially different educational focuses, who could then complement each other
and form a dynamic group that is more than a sum of its members.

 The hidden or passive role of software metrics and associated cost modeling
techniques is going to enhance to be enhanced even in smaller organizations,
since the cost - consciousness and need for careful project planning are continu-
ously increasing. This trend is advanced by the growing role (and size) of
software in embedded systems, as well as the globalizing nature of software
development projects. For instance, future smartphones will be increasingly
 “ software products, ” and even mid - size companies will likely have interna-
tional software development teams.

 Uncertainty management has always been an important topic within
embedded systems engineering. Nonetheless, this importance is getting new
fl avor when autonomous systems, ubiquitous computing, and massively dis-
tributed wireless solutions are growing in production volumes. They will surely
create fresh challenges for the embedded software developer, too. Such uncer-
tainty challenges are largely related to the issues of software reliability and
fault tolerance. Hence, there is a need for a senior - level course on “ uncertainty
management and fault tolerance in wireless distributed systems. ” Such a
software - biased course could be targeted for both computer - engineering and
computer - science students.

 The demand for high system reliability is extending steadily from high - end
real - time systems toward low - end ones. In the foreseeable future, govern-

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 471

ments, societies, organizations, and individuals will all be increasingly depen-
dent on real - time computing. This somewhat “ blue - eyed ” dependency could
be seen as a threat, and thus it calls for fault - tolerant solutions.

 Software testing is another area that has a signifi cant position in the success
of future embedded systems. This signifi cance arises from the growing number
and global distribution of embedded products, as well as from the growing size
of embedded software. To keep the time - to - market measure acceptable and
simultaneously ensure that the software maintenance phase will be satisfac-
tory, cost - wise, it is crucial to increase the use of automatic test case generators,
automatic testing environments, as well as design for testability. In addition,
carefully developed virtual hardware platforms together with virtual device
drivers are necessary to improve the confi dence level of early testing phases.

 Due to the continuing validity of the Moore ’ s law, the instruction through-
put of embedded processors is increasing at a remarkable rate. This obviously
reduces the need for traditional performance optimization approaches in all
but the most time - critical or expense - sensitive applications. On the other hand,
the emerging use of multi - core processors in embedded applications for
achieving true concurrency of multiple tasks calls for novel performance opti-
mization techniques. Therefore, the area of performance optimization is in the
process of stepping into something rather unknown.

 Finally, in spite of all the architectural advancements, it is not likely that the
availability of hardware - based fl oating - point support is going to increase in
medium - and low - end embedded platforms. This keeps the importance of
scaled numbers, look - up tables, and other traditional performance optimiza-
tion techniques at a steady level.

 8.8 EXERCISES

8.1. Research the use of the cyclomatic complexity metric in real - time
systems by performing a thorough Web search. How would you conclude
your fi ndings?

8.2. Recalculate the cyclomatic complexity metric for the if-then-else ,
while , and until structures depicted in Figure 8.1 .

8.3. Recalculate the FP (function point) metric for the inertial measurement
system using a set of weightings that assumes that signifi cant off - the -
 shelf software (say 70%) is to be used. Make assumptions about which
factors will be most infl uenced by the off - the - shelf software. How many
lines of C ++ code do you estimate you will need?

8.4. Do the same as Exercise 8.3, except recalculate now the FP+ (feature
point) metric. How many lines of C ++ code do you estimate will be
needed?

www.it-ebooks.info

http://www.it-ebooks.info/

472 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

8.5. In N - version programming, the different programming teams code inde-
pendently from the same set of specifi cations. Discuss the possible dis-
advantages of this approach.

8.6. Describe the effect (if any) of the BITS and reliability schemes (a) – (d),
without appropriately disabling interrupts. How should interrupts be
disabled?

(a) CPU instruction set test
(b) CRC calculation for ROM
(c) RAM pattern tests
(d) RAM scrubbing

8.7. Suppose a real - time computer system has 16 - bit data and address buses.
What test patterns are necessary and suffi cient to test the address and
data lines, as well as the RAM cells?

8.8. Write a module in the programming language of your choice that gener-
ates a CRC check value for a range of 16 - bit memory. The modules
should take as input the starting and ending addresses of the range, and
output the 16 - bit check value. Use either CRC - 16 (CCITT) or CRC - 16
(ANSI) as your generator polynomial.

8.9. A software module is to take as inputs four signed 16 - bit integers and
produce two outputs, the sum and average. How many test cases would
be needed for an exhaustive testing scheme? How many would be
needed if just the minimum, maximum, and average values for each input
were to be used?

8.10. How much could testing and test case/suite generation be automated in
practice? What are the roadblocks to automating a test suite? In pro-
gramming languages like Java?

8.11. For the example systems discussed throughout this book:

(a) Airline reservation system
(b) Elevator control system
(c) Inertial measurement system
(d) Nuclear monitoring system

 which testing methods would you prefer and why?

8.12. An elevator bank monitoring system shows the clock time in hours
and minutes on multiple displays. The time is generated by a program-
mable 16 - bit timer, which uses a 50 - kHz clock signal for calculating
seconds. These seconds are then accumulated to minutes and further to
hours by software. However, the users of monitors were initially com-
plaining that the clock time is advancing or lagging up to 7 minutes in a
month.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 473

 A fi eld engineer made a survey of the problem and noticed that the
magnitude of advance or lag remains practically constant on each site,
but is dependent on the individual monitoring computer. Based on these
observations, a solution for the annoying problem was developed and
taken in use in the fi nal testing stage before the complete monitoring
system leaves the elevator factory.

 What kind of approach would you take with this problem if no hard-
ware modifi cations were allowed? Hint: the monitoring computer has
free parameter space in a Flash memory that can be accessed by a service
tool.

8.13. Create a compact look - up table (fl oating - point numbers with three
decimal places) for the tangent function in increments of 1 ° . Be sure to
take advantage of symmetry.

8.14. Suppose x is a 16 - bit BAM word representing the angle 225 ° , and y is
another 16 - bit BAM word representing 157.5 ° . Using binary arithmetic,
show that x + y = 22.5 ° .

8.15. What are the advantages and disadvantages of writing a BAM object
class in an object - oriented language like C ++ ?

 REFERENCES

 A. Abran , A. Sellami , and W. Suryn , “ Metrology, measurement and metrics in software
engineering , ” Proceedings of the 9th IEEE International Software Metrics
Symposium , Sydney, Australia, 2003 , pp. 2 – 11 .

 D. J. Agans , Debugging: The Nine Indispensable Rules for Finding Even the Most Elusive
Software and Hardware Problems . New York : AMACOM , 2002 .

 J. Bach , “ Exploratory testing , ” in The Testing Practitioner , 2nd Edition . E. van Veenendaal
(Ed.), Den Bosch, The Netherlands : UTN Publishers , 2004 , pp. 253 – 265 .

 J. M. Bass , G. Latif - Shabgahi , and S. Bennett , “ Experimental comparison of voting
algorithms in cases of disagreement , ” Proceedings of the 23rd Euromicro Conference ,
Budapest, Hungary, 1997 , pp. 516 – 523 .

 A. Bateman and W. Yates , Digital Signal Processing Design . London, UK : Pitman , 1988 .
 L. Bernstein and C. M. Yuhas , Trustworthy Systems through Quantitative Software

Engineering . Hoboken, NJ : Wiley - Interscience , 2005 .
 B. W. Boehm , Software Engineering Economics . Englewood Cliffs, NJ : Prentice - Hall ,

 1981 .
 B. W. Boehm et al., Software Cost Estimation with COCOMO II . Upper Saddle River,

NJ : Prentice - Hall , 2000 .
 B. W. Boehm and R. Valerdi , “ Achievements and challenges in COCOMO - based soft-

ware resource estimation , ” IEEE Software , 25 (5), pp. 74 – 83 , 2008 .
 S. Chandra , P. Godefroid , and C. Palm , “ Software model checking in practice: An indus-

trial case study , ” Proceedings of the 24th International Conference on Software
Engineering , Orlando, FL, 2002 , pp. 431 – 441 .

www.it-ebooks.info

http://www.it-ebooks.info/

474 ADDITIONAL CONSIDERATIONS FOR THE PRACTITIONER

 J. C. Coppick and T. J. Cheatham , “ Software metrics for object - oriented systems , ”
Proceedings of the ACM Annual Computer Science Conference , Kansas City, MO,
 1992 , pp. 317 – 322 .

 S. Elbaum and J. C. Munson , “ Investigating software failures with a software black box , ”
in Proceedings of the IEEE Aerospace Conference , Big Sky, MT, 2000 , vol. 4,
pp. 547 – 566 .

 S. Eldh , H. Hansson , P. Sasikumar , A. Pettersson , and D. Sundmark , “ A framework for
comparing effi ciency, effectiveness and applicability of software testing techniques , ”
Proceedings of the Testing: Academic & Industrial Conference — Practice and
Research Techniques , Windsor, UK, 2006 , pp. 159 – 170 .

 K. O. Emergy and B. K. Mitchell , “ Multi - level software testing based on cyclomatic
complexity , ” Proceedings of the IEEE National Aerospace and Electronics
Conference , Dayton, OH, 1989 , vol. 2, pp. 500 – 507 .

 A. English , “ Extreme programming, it ’ s worth a look , ” IT Professional , 4 (3), pp. 48 – 50 ,
 2002 .

 R. L. Glass , R. Collard , A. Bertolino , J. Bach , and C. Kaner , “ Software testing and
industry needs , ” IEEE Software , 23 (4), pp. 55 – 57 , 2006 .

 M. Halstead , Elements of Software Science . New York : Elsevier North - Holland , 1977 .

 M. G. Hinchey and J. P. Bowen (Eds.), Industrial - Strength Formal Methods in Practice .
 London, UK : Springer - Verlag , 1999 .

 D. M. Hoffman and D. M. Weiss (Eds.), Software Fundamentals: Collected Papers by
David L. Parnas . New York : Addison - Wesley , 2001 .

 C. Jones , “ Backfi ring: Converting lines of code to function points , ” IEEE Computer ,
 28 (11), pp. 87 – 88 , 1995 .

 C. Jones , Estimating Software Costs . New York : McGraw - Hill , 1998 .

 P. Jorgensen , Software Testing: A Craftsman ’ s Approach , 3rd Edition . Boca Raton, FL :
 CRC Press , 2008 .

 C. Kaner , Testing Computer Software . Blue Ridge Summit, PA : TAB Professional &
Reference Books , 1988 .

 I. Koren and C. M. Krishna , Fault Tolerant Systems . San Francisco, CA : Morgan
Kaufmann , 2007 .

 P. A. Laplante , “ Fault - tolerant control of real - time systems in the presence of single
event upsets , ” Control Engineering Practice , 1 (5), pp. 9 – 16 , 1993 .

 P. A. Laplante , Software Engineering for Image Processing . Boca Raton, FL : CRC Press ,
 2003 .

 P. A. Laplante , “ The certainty of uncertainty in real - time systems , ” IEEE Instrumentation
 & Measurement Magazine , 7 (4), pp. 44 – 50 , 2004 .

 P. A. Laplante , “ Exploratory testing for mission critical, real - time, and embedded
systems , ” IEEE Reliability Society Annual Technical Report , 2009 . Available at
http://paris.utdallas.edu/IEEE - RS - ATR/document/2009/2009 – 08.pdf, last accessed
August 17, 2011.

 B. Littlewood , “ Learning to live with uncertainty in our software , ” Proceedings of the
2nd International Software Metrics Symposium , London, UK, 1994 , pp. 2 – 8 .

 M. V. M ä ntyl ä , J. Vanhanen , and C. Lassenius , “ Bad smells — humans as code critics , ”
Proceedings of the 20th IEEE International Conference on Software Maintenance ,
Chicago, IL, 2004 , pp. 399 – 408 .

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 475

 R. Mariani and G. Boschi , “ Scrubbing and partitioning for protection of memory
systems , ” in Proceedings of the 11th IEEE International On - Line Testing Symposium ,
St - Raphael, France, 2005 , pp. 195 – 196 .

 T. J. McCabe , “ A complexity measure , ” IEEE Transactions on Software Engineering ,
 2 (4), pp. 308 – 320 , 1976 .

 J. D. McGregor and D. A. Sykes , A Practical Guide to Testing Object - Oriented Software .
 Upper Saddle River, NJ : Addison - Wesley Professional , 2001 .

 G. Meszaros , xUnit Test Patterns: Refactoring Test Code . Upper Saddle River, NJ :
 Addison - Wesley , 2007 .

 Y. Miyazaki and K. Mori , “ COCOMO evaluation and tailoring , ” Proceedings of the 8th
International Conference on Software Engineering , London, UK, 1985 ,
pp. 292 – 299 .

 T. K. Moon , Error Correction Coding: Mathematical Methods and Algorithms . Hoboken,
NJ : Wiley - Interscience , 2005 .

 S. J. Ovaska , “ Evolutionary modernization of large elevator groups: Toward intelligent
mechatronics , ” Mechatronics , 8 (1), pp. 37 – 46 , 1998 .

 R. Patton , Software Testing , 2nd Edition . Indianapolis, IN : Sams Publishing , 2006 .
 R. S. Pressman , Software Engineering: A Practitioner ’ s Approach , 5th Edition . New

York : McGraw - Hill , 2000 .
 F. Saglietti , “ Location of checkpoints in fault - tolerant software , ” Proceedings of the 5th

Jerusalem Conference on Information Technology , Jerusalem, Israel, 1990 ,
pp. 270 – 277 .

 D. Seibt , “ Function point method: Characteristics, implementation and application
experiences , ” Angewandte Informatik , 29 (1), pp. 3 – 11 , 1987 .

 H. Serti ć , F. Rus , and R. Rac , “ UML for real - time device driver development , ”
Proceedings of the 7th International Conference on Telecommunications , Zagreb,
Croatia, 2003 , vol. 2, pp. 631 – 636 .

 X. Teng and H. Pham , “ A software - reliability growth model for N - version programming
systems , ” IEEE Transactions on Reliability , 51 (3), pp. 311 – 321 , 2002 .

 J. Thomas , M. Young , K. Brown , and A. Glover , Java Testing Patterns . Hoboken, NJ :
 John Wiley & Sons , 2004 .

 P. K. Varshney , “ Multisensor data fusion , ” Electronics & Communications Engineering
Journal , 9 (6), pp. 245 – 253 , 1997 .

 J. M. Voas and G. McGraw , Software Fault Injection: Inoculating Programs against
Errors . New York : John Wiley & Sons , 1998 .

 J. A. Whittaker , Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to
Guide Test Design . Boston : Addison Wesley , 2009 .

www.it-ebooks.info

http://www.it-ebooks.info/

 9
FUTURE VISIONS ON
REAL- TIME SYSTEMS

477

 Forecasting is always a risky endeavor, as we have frequently observed, for
example, when trying to plan our outdoor activities relying on professional
weather forecasts that eventually turn out to be incorrect — it is raining heavily
although it was supposed to be sunny. Technology forecasting is especially
diffi cult, particularly if we try to forecast too far into the future. Nevertheless,
different kinds of technology forecasts are created by business consultants,
research engineers, and scientists. These forecasts are typically used for sup-
porting decision - making processes and for strategic planning purposes. The
fundamental methodologies behind forecasting are the use of analogies,
extrapolation, and modeling, as well as their various combinations (Makridakis
et al., 1998). Conversely, vision creation on the development of some technol-
ogy is a speculative form of technology forecasting that might rely on the
established forecasting methodologies but is strongly supported by human
intuition — even imagination. Such technology visions are sometimes used in
place of actual forecasts or in parallel to complement them, since forecasts do
anyhow contain uncertainty.

 In this chapter, we provide selective visions of the evolution and advance-
ment of real - time systems. The time span of our visions is up to year 2040;
hence, some of the visions are necessarily “ blue - sky ” visions, while others are
more “ feet - on - the - ground ” type. But what is the motivation behind this

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

478 FUTURE VISIONS ON REAL-TIME SYSTEMS

chapter? Well, our primary intent is to create a stimulating basis for class
debates, panel discussions, literature search assignments, and so forth, which
could be used as a fi nal stage of a university course on Real- Time Systems
Design . Besides, these visions are helpful for the practitioner who needs to gain
understanding of prospective real - time technologies. It may be easy to disagree
with some of our visions, but it is certainly educational to fi nd specifi c argu-
ments and reasoning to support the disagreement as objectively as possible.
The visions we present are derived from our collective insight informed by the
most current literature on real - time systems technologies. It must be empha-
sized, however, that the literature cited in this chapter is a subjectively collected
sample — not the byproduct of any comprehensive literature survey. Our insight,
on the other hand, has matured during the exciting three decades that we have
been involved with real - time systems, particularly the embedded ones.

 At a recent European Futurist Conference, some leading futurologists
expressed their prognoses (or visions) for year 2020. Below is a condensed list
of such prognoses, which have an obvious connection to future real - time
systems (Talwar and Pearson, 2010):

 • “ Augmented reality will be much more mature and a familiar part of our
lives. ”

 • “ Our interaction with machines will inevitably need to become more
 ‘ natural ’ through the dramatic increase in the use of indirect channels of
communication — making machines sensitive to biometric data [and ges-
tures] from which emotional and contextual information can be derived. ”

 • “ 10 Terabits of computer memory (roughly the equivalent of the memory
space in a single human brain) will probably cost just $1000. ”

 • “ At the end of each day, I spend 20 minutes reviewing and annotating the
downloads from my personal data chips that captured every conversation
I had and every image I saw. ”

 We believe that all of these envisioned futures should be reality by 2020.
 While the previous visions were expressed by futurologists, the SICE (The

Society of Instrument and Control Engineers , Japan) Trans - Division Technology
Committee on Embedded Systems has created a roadmap of embedded
control systems (Funabashi et al., 2009). Their roadmap covers the years 2015,
2025, and 2035, and includes the following principal milestones:

 • 2015: Distributed embedded control systems with multi - core processors
and advanced networks.

 • 2015: Practical modeling methods from function specifi cation to
implementation.

 • 2015: Automatic verifi cation methods for control software.
 • 2015: Collaboration among enterprises by model - based development

methods.

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME HARDWARE 479

 • 2025: Automatic generation of small - scale control software from high -
 level specifi cations.

 • 2025: Remote maintenance of control software.
 • 2035: Automatic software generation from high - level specifi cations for

networked embedded systems.
 • 2035: Evolution and self - organizing mechanisms for developing new

products.

 In addition, Funabashi et al. defi ned the term “ ubiquitous intelligence ” as an
approach toward post - embedded systems, which consists of embedded control
systems that are networked with each other and also to computing clouds
(Funabashi et al., 2009).

 The prognoses of the selected group of international futurologists as well
as the thoughtful milestones of the Japanese roadmap provide guidance for
our future visions on real - time systems, as will be seen shortly.

 Our visions on real - time systems have fi ve dimensions (which, however, are
not fully orthogonal): real - time hardware, real - time operating systems, real -
 time programming languages, real - time systems engineering, and real - time
applications. And these distinct vision elements are presented in Sections
 9.1 – 9.5 , respectively. Moreover, Section 9.6 summarizes the chapter and
Section 9.7 provides a collection of future - vision exercises for class usage. We
weave a common thread throughout the chapter by building explicit connec-
tions between consecutive sections. Thus, this chapter is more than a collection
of individual visions on real - time systems — it is an integrated whole that will
hopefully leave the perceptive reader with much to consider.

 Furthermore, as any vision of long - term technology development contains
more or less uncertainty, it is suggested that the instructor and students would
create their individual confi dence pentacles for the fi ve vision elements of
Sections 9.1 – 9.5 (Exercise 9.6). A vision confi dence pentacle has an axis for
every vision element, and each axis corresponds to the evaluator ’ s confi dence
on the contents of the particular section: “ 1 ” represents full confi dence and
 “ 0 ” no confi dence at all (Sick and Ovaska, 2007). Figure 9.1 illustrates such a
confi dence pentacle with arbitrary confi dence values. The likely differences
between the instructor ’ s and students ’ pentacles could form a fruitful basis for
classroom discussions.

 9.1 VISION: REAL - TIME HARDWARE

 The exponential progress of integrated circuit technology has followed Moore ’ s
law for more than four decades. In 1965, Gordon Moore predicted that the
density of transistors doubles every 2 years. And today, we can have several
millions of transistors on a single processor chip. Moore ’ s law can be expressed
mathematically as (Powell, 2008):

www.it-ebooks.info

http://www.it-ebooks.info/

480 FUTURE VISIONS ON REAL-TIME SYSTEMS

 ˆ .N N y y
2 1

22 2 1= −()[] (9.1)

 where N 1 is the known number of transistors in year y 1 , and N̂2 is the predicted
number of transistors in year y 2 . To give some perspective for our visions
on real - time hardware, let us calculate N̂2 for years 2020, 2030, and 2040, and
use a normalized value for the initial number of transistors in 2011, that is
 N 1 = 1. The corresponding values for N̂2 are ≈ 23, ≈ 724, and ≈ 23171, respec-
tively. These numbers will signifi cantly scale up the current “ several millions ”
of transistors, if Moore ’ s law continues to be valid. On the other hand, Powell
estimated that the physical quantum limit to Moore ’ s law would be reached
in 2036 (Powell, 2008) — but that distant year is close to the end of our vision-
ing period.

 A principal concern with the future billion - transistor integrated circuits is
their high power consumption leading to severe heat problems (Gea -
 Banacloche and Kish, 2005). This creates obvious needs to optimize the clock
frequency (and operating voltage) in every block of an integrated processor
system, because the power consumption is linearly proportional to the applied
clock frequency. Hence, different functional blocks will run at different rates,
which are no more than “ adequate ” for the particular function.

 Error - tolerant computing is seen as another (but rather “ revolutionary ”)
approach that could relieve the power consumption problem in future proces-
sor chips (Lammers, 2010). It is based on relaxed thinking that most internal
errors that occur during the instruction execution process will be corrected
(power is consumed) but small errors could be ignored (power is saved). This
somewhat probabilistic approach would necessarily drive computing results
away from determinism; and that is something we cannot tolerate in hard and
fi rm real - time systems. Nonetheless, in certain soft real - time systems, such as
massive graphics processing, it could be acceptable. Augmented/virtual reality,
as well as mobile data - logging applications, are potential users of error - tolerant
computing.

 Figure 9.1. An example of the vision confi dence pentacle.

Hardware

Operating
Systems

Programming
Languages

Applications Systems
Engineering

1

0

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME HARDWARE 481

 Although embedded processors have never been on the leading edge with
respect to the number of transistors on a single chip, there will be enormous
opportunities to innovate new embedded processor systems as long as Moore ’ s
law continues to be valid. These opportunities will be discussed below as our
hardware visions.

 9.1.1 Heterogeneous Soft Multi - Cores

 In 2004, Paul Otellini, the President and CEO of Intel, announced that his
company would dedicate “ all of our future product designs to multi - core envi-
ronments ” (Patterson, 2010). Although Intel is no longer a major player in the
embedded processor fi eld, this shaking announcement was a global starting
point for a new era in embedded processor research and development, as well.
Since that, a few commercial and many experimental multi - core architectures
have emerged for embedded systems use (Levy and Conte, 2009).

 Multi - core processor architectures offer the possibility for true concurrency
in executing multiple tasks (with equal priorities) in a real - time system. In
principle, every individual task could run on its own CPU core and thus have
all the processing capacity of that core available. However, if the CPU cores
on a single chip were equal, this would lead to very ineffi cient use of comput-
ing resources (and excessive power consumption). Since some software tasks
are computationally light while others are heavier, and some have a long
execution cycle while others have a shorter one, it would be advantageous to
have a multi - core processor with an application - specifi c set of heterogeneous
CPU cores that could be assigned to individual tasks and run at various voltage
settings based on their explicit needs (Hashemi and Ghiasi, 2010).

 But there are diverse hard real - time applications, and, hence, also diverse
needs for the composition of a heterogeneous multi - core chip. For instance,
one eight - task application could need a multi - core chip with four 8 - bit RISC
microcontroller cores, two 32 - bit RISC cores, and two 16 - bit digital signal
processor cores. Moreover, another four - task system could require just three
8 - bit RISC microcontroller cores and one 24 - bit digital signal processor core.
Naturally, it would not be feasible to have a large variety of heterogeneous
multi - core chips available as standard components.

 The traditional solution to this “ variety problem ” is an application - specifi c
integrated circuit (ASIC), which could be used for implementing heteroge-
neous multi - core architectures tailored for a specifi c application. Nonetheless,
the expensive design and manufacturing processes, as well as long turnaround
times, make ASICs undesired for most applications. Fortunately, large fi eld -
 programmable gate array s (FPGA s) provide an attractive implementation
alternative for heterogeneous multi - core processors. It is clearly visible that
programmable (or reconfi gurable) substrates are replacing the dedicated
ASICs rather fast in a broad range of applications (Hashemi and Ghiasi, 2010),
and with the continuously increasing number of logic elements, FPGAs can
be used for implementing heterogeneous soft multi - cores. The individual soft

www.it-ebooks.info

http://www.it-ebooks.info/

482 FUTURE VISIONS ON REAL-TIME SYSTEMS

CPU cores are implemented cost - effectively utilizing basic FPGA logic ele-
ments only, instead of using any special higher - level elements (except memory
blocks) (Elkateeb and Mandepanda, 2009); this guides the different FPGA
manufacturers toward standardization.

 A heterogeneous soft multi - core (HSMC) architecture for embedded appli-
cations is depicted in Figure 9.2 . The single FPGA circuit contains six CPU
cores, a high - speed communications channel between the cores (or “ network -
 on - chip ”), core - specifi c external interface unit (EIU), as well as core - local
memories. Moreover, the clock frequencies of individual CPU cores are opti-
mized for the exact needs of the task executed; this leads to simple reduction
of power consumption. While the dedicated processor designs are directly
composed of transistors, logic gates, and standard cells, the future “ soft com-
ponents ” in reconfi gurable platforms are such high - level functions as CPU
cores, inter - core communications channels, memories, and so on — the level of
abstraction will step up remarkably keeping the design effort manageable. In
hard real - time embedded applications, the number of required CPU cores (or
parallel tasks) is typically no more than 10 – 15.

 In mission - critical applications (such as the Mars Exploration Rover in Fig.
 1.6), reconfi gurable soft - core systems could even be self - repairing as discussed
in Laplante (2005) . The semi - automatic design and confi guring process of
future HSMC compositions will be discussed in Section 9.3 .

 Figure 9.2. A heterogeneous soft multi - core architecture for future embedded systems
(only Core 1 is shown with internal details for clarity).

Core 1 Core 2 Core 3

Core 6Core 5Core 4

Memory

External I/O
Communications

ChannelClock 1

16-bit RISC

EIU

Task 1 Is
Executed Here

FPGA

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME HARDWARE 483

 9.1.2 Architectural Issues with Individual Soft Cores

 After proposing a composition of multiple heterogeneous soft cores as an
application - specifi c platform for embedded hard real - time systems, we next
discuss the architectural issues related to the individual soft cores within the
composition.

 It is generally known that instruction queues/pipelines and instruction/data
caches create challenges for the analysis of real - time systems since they make
it diffi cult to estimate the upper and lower bounds of execution times for
individual tasks. A main problem is that straightforward combinations of
module - level execution time measurements — the usual manner in which per-
formance analysis is conducted — may lead to overly pessimistic worst - case
execution time estimates for the whole task (Wilhelm et al., 2009). And these
problems are not only related to the diffi culty of performance analysis, but
both pipelines and caches cause uncertainty to response times; hence, real - time
punctuality becomes deteriorated.

 In hard real - time systems with heterogeneous soft multi - cores, it is possible
to eliminate cache memories and have a fl at memory architecture instead. This
is feasible because every task runs on its own CPU core, and the clock fre-
quency of the core does not usually need to be at the limits of the underlying
FPGA hardware; the CPU – memory latency gap does not exist in such an
environment. This architectural feature makes the individual soft - core blocks
simpler, since no cache controller is needed. Furthermore, as every CPU core
has a private memory, there is no memory - interleaving latency either in this
multi - core platform.

 Pipelines, superpipelines, superscalar architectural features, and out - of -
 order execution are all used to improve the instruction throughput of modern
processors. While they do improve the average execution time of instructions,
they also introduce a remarkable uncertainty to worst - case execution times.
Therefore, following the recommendations of Wilhelm et al. (Wilhelm et al.,
 2009), we prefer a short (3 – 5 stages) compositional pipeline that makes the
timing analysis straightforward. As they point out, with fully timing composi-
tional architectures, the analysis can safely follow local worst - case paths only.

 Finally, the soft CPU cores have RISC - like instruction sets without any
speculative features, register - rich data paths, memory - mapped input/output
(I/O), and Harvard architecture. And it should be adequate to have confi gu-
rable soft cores with a few performance levels available for each relevant
FPGA platform, such as:

 • 8 - bit low - performance RISC
 • 16 - bit medium - performance RISC
 • 32 - bit high - performance RISC
 • 16 - bit digital signal processor
 • 32 - bit digital signal processor

www.it-ebooks.info

http://www.it-ebooks.info/

484 FUTURE VISIONS ON REAL-TIME SYSTEMS

 These soft - core blocks can be confi gured fl exibly with respect to the avail-
ability of fl oating - point arithmetic, amount and type of memory, and the avail-
able external interface units.

 9.1.3 More Advanced Fieldbus Networks and Simpler Distributed Nodes

 In the early years of real - time systems, automation and control computing in
large - scale plants (Kamiya, 2004) was centralized: a single computer unit col-
lected measurements, executed elementary signal processing and control algo-
rithms, and delivered commands for actuators, as well as references for local
analog controllers. This required signifi cant amounts of parallel wiring in indus-
trial environments (chemical factories, paper mills, electric power plants, etc.)
with high levels of electromagnetic interferences. And the wiring was particu-
larly problematic when analog signals were transferred for lengthy distances. As
we know, these problems were tackled effectively by implementing distributed
control systems, which use fi eldbus networks for wiring - effi cient connections
between individual measurement units, controllers, actuators, and monitors.

 Furthermore, the distributed control approach is not just for saving wiring
expenses and space, but it provides an opportunity to implement machine
intelligence in the distributed units. Nevertheless, there is also another driver
for distributing intelligence around the whole control system — to make it pos-
sible to manage hard real - time constraints in such a cooperative environment,
where the shared communications network creates considerable uncertainties
for node - to - node message delivery times. This is still the situation with most
fi eldbus systems.

 In the future, the fi eldbus networks will become much faster due to the
increasing use of optical cabling instead of copper wires. Besides, messages
will be delivered in chunks of only a few bytes with light - weight simplifi ed
protocols. This makes it possible to reduce the latencies and their uncertainties
when delivering time - critical messages. With these advanced networks, it is
possible to move some of the distributed intelligence “ back ” to the central
computing unit that is normally handling the supervisory control tasks. The
motivation behind such a move is to simplify the numerous distributed nodes
and thus make their remote maintenance and updating easier.

 The powerful central computing unit is further connected to a computing
cloud (Luo, 2010) over the Internet. This cloud - computing infrastructure is
relying on a regional data center that provides on - demand services for the
plant supervision center, local service crews, product maintenance groups,
research and development teams, operative management, and so forth. The
required raw data is collected from the distributed units per need basis, but
all postprocessing, fault prognosis and diagnosis, optimization of process
parameters, as well as service - specifi c user interfaces, are provided by the
servers of the computing cloud. And all this information and derived knowl-
edge could even be accessed by smartphones using a web browser or possible
augmented reality features.

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME OPERATING SYSTEMS 485

 Figure 9.3 illustrates a distributed control architecture for large - scale plants,
which is based on simple distributed nodes, advanced fi eldbus networks, a
central computing unit, Internet connection, and a computing cloud. This dual -
 level architecture is also applicable besides industrial plants. The hard real -
 time functions are processed strictly within the fi eldbus framework, while the
soft real - time services are provided by the cloud. In addition, both of these
entities may handle fi rm real - time tasks — depending on the nature of the
particular application.

 As a general comment, before taking any complex control architecture in
use, it is important to perform a careful sensitivity analysis to ensure the
robustness of the new architecture to changes (Racu et al., 2008). Sensitivity
analysis is necessary to identify how well the new architecture can accommo-
date updates and later modifi cations, for instance.

 9.2 VISION: REAL - TIME OPERATING SYSTEMS

 Since currently available multi - core processors are not feasible for multitask-
ing use in hard real - time applications with strict mission or safety concerns

 Figure 9.3. A distributed control architecture for future large - scale plants.

Computing Cloud

User 3User 1

User 4User 2

Internet

Central
Computing Unit

Node a

Node b

Node c

Node d

Node A

Node B

Node C

Node D

Local Control of
Subsystem I

Local Control of
Subsystem II

Advanced
Fieldbuses

Supervisory
Control and

Node Support

Hard RT

Soft RT

www.it-ebooks.info

http://www.it-ebooks.info/

486 FUTURE VISIONS ON REAL-TIME SYSTEMS

(Wolf et al., 2010), we proposed the straightforward architecture of heteroge-
neous soft multi - cores — which is highly deterministic — earlier in this chapter.
Next, we will outline a plain real - time operating system for that reconfi gurable
environment. The service - oriented operating system is very simple, because it
does not need to perform any intra - core or inter - core scheduling/dispatching,
as will be seen below.

 9.2.1 One Coordinating System Task and Multiple
Isolated Application Tasks

 The HSMC architecture provides a dedicated CPU core for every task that
runs in isolation. Actually, this approach could be interpreted as a distributed
multi - processor system on a single chip. Hence, the needed RTOS functional-
ity is focused merely on reliable synchronization and intertask communication.
These critical services are executed within a single system task that interacts
with the application tasks through the high - speed communications channel
depicted in Figure 9.2 . All application tasks handle their local scheduling and
dispatching themselves. In this context, scheduling/dispatching means the
timely activation of application programs due to local hardware interrupts and
system events related to synchronization or intertask communication. When
an application program is waiting for some hardware interrupt or a specifi c
system event, a background program (non real - time) is running and executing
built - in self - tests for the hardware platform — this is a natural alternative to
simple idling. Thus, every CPU core contains a foreground – background system.

 Synchronization is performed using mutex locks or other forms of sema-
phores for protecting critical resources, such as shared data - acquisition chan-
nels and external communications networks. Application tasks request mutexes
from the system task, which allocates them when available. If the desired
mutex is not immediately available for the requesting task, the task puts itself
to a wait state, and when the system task fi nally provides an event correspond-
ing to the availability of the mutex, the waiting application task will be con-
tinued. And eventually, the mutex lock will be released for other application
tasks. The system task handles simultaneous requests from application tasks
using a priority or round - robin scheme, or some combination of them (depend-
ing on the application). Moreover, when common resources are accessed, a
time - bounded handling is guaranteed by the system task; the usage time of
every shared resource is limited to a particular duration. Hence, the worst - case
execution time analysis is always possible. No such condition as priority inver-
sion will ever occur, since true task concurrency is practiced with independent
cores.

 Intertask communication is carried out using task - local message buffers,
which are “ connected to each other ” by the system task. That is, if Task 1 wants
to send a message to Task 2, it fi lls its local message buffer and informs the
system task that there is a message for Task 2. Next, the contents of the
message buffer are transferred over the high - speed communications channel

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME OPERATING SYSTEMS 487

to the message center of the system task. Finally, after Task 2 has informed the
system task that it is waiting for a message from Task 1, the system task deliv-
ers the message buffer to Task 2. In addition, the system task sends a “ message
delivered ” notifi cation to Task 1. If some message is not requested by the
addressed destination task within a specifi ed time period, an “ undelivered
message ” warning will be sent to the source task. Besides, if an expected
message is not made available by the associated source task within another
specifi ed time period, an “ unavailable message ” warning will be sent to the
destination task. It is also possible to broadcast messages simultaneously to
multiple tasks using the same principle, as illustrated in Figure 9.4 .

 In addition to the synchronization and intertask communication services,
the system task may provide also other utility services, such as an accurate
real - time clock and calendar.

 This simple real - time operating system and the straightforward processor
architecture together are responses to the increasing complexity of hard real -
 time systems. The deterministic and easily manageable computing platform
makes it possible for research and development teams to concentrate more
effectively on the design of applications, as will be discussed in Section 9.4 .

 9.2.2 Small, Platform Independent Virtual Machines

 Let us leave the special HSMC architecture for a while and take a look at a
more traditional approach. Recent architectural/hardware advances have pro-
duced a number of experimental small embedded processors with more pro-
cessing power and memory and lower power than previous generations, and all
this with a relatively small footprint. But modern virtual machine support for

 Figure 9.4. An example of coordinated message broadcasting from Task 1 to Tasks 2 – 4.

Task 1

Message
Buffer 1

System Task

Message
Center

Task 2

Message
Buffer 2

Task 3

Message
Buffer 3

Task 4

Message
Buffer 4

“Message
Delivered”

“Message Requests
from 1”

“Broadcast
to 2, 3, 4”

Simultaneous
Delivery

www.it-ebooks.info

http://www.it-ebooks.info/

488 FUTURE VISIONS ON REAL-TIME SYSTEMS

these environments may still require too much memory. For example, the ROM
size for Java Standard Edition for Embedded Systems is approximately 30 M
bytes, and the . NET “ Compact Framework ” is around 5 M bytes. Nevertheless,
for small embedded environments, a virtual machine with a ROM size in the
256 K - byte range would be desirable to fi t into the smallest devices.

 Even when a virtual machine that is small enough is developed, the archi-
tecture of a typical real - time system is not designed to manage the load of a
virtual machine. Hence, a new architectural paradigm for a small microcon-
troller platform is needed that can support both real - time processing and a
virtual machine (Davis, 2011). In addition, an appropriate microkernel archi-
tecture that can run on the virtual machine will need to be developed.

 9.3 VISION: REAL - TIME PROGRAMMING LANGUAGES

 Over the past few decades, specialized real - time programming languages have
been introduced every now and then, but they have not obtained any main-
stream role in embedded software development. The embedded systems indus-
try is rather satisfi ed with the currently available procedural and object - oriented
languages. So, why would the situation change in the visionable future?

 There are two principal needs that cannot be fulfi lled properly with the
existing programming languages under the ongoing transition to multi - core
platforms:

 1. The need to improve the productivity of programmers
 2. The need to continue to have platform - independent code

 The fi rst need is related to the general trends that the complexity of embedded
systems is growing steadily, and the product development cycles are becoming
shorter. And the latter one is a consequence of the emergence and evolution
of diverse multi - core architectures. How could we develop software for a
specifi c multi - core processor that would be portable to another multi - core or
even a single - core environment? This is a particularly critical question if the
embedded software has a long life; there is not yet architectural convergence
in the multi - core processor fi eld, and the processors that will be available by
the end of this decade will be different from existing ones. Therefore, industrial
companies that have taken multi - core platforms for their embedded products
(so far, soft or fi rm real - time systems only) are currently using the multi - cores
as multiple single - cores to reduce their dependency on the particular parallel
architecture. Besides, by following such a conservative approach, there is not
any need to have a special multi - core operating system either. Our heteroge-
neous soft multi - core approach that was introduced in Sections 9.1 and 9.2 can
be seen as an extension of such a pragmatic principle.

 When the semiconductor industry switched from making processors run
faster to putting more of them on a single chip, no clear notion was given how

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME PROGRAMMING LANGUAGES 489

such devices would, in general, be programmed (Patterson, 2010); hence, to
get rid of a hardware bottleneck, a programming bottleneck was essentially
introduced. The programmers of multi - core processors are facing the classical
parallel programming challenges, such as sequential dependencies, load bal-
ancing, memory sharing, and synchronization. In a recent Workshop of
Computer Architecture Research Directions, two recognized scientists, David
August and Keshav Pingali, had a moderated debate around the fundamental
question “ Do applications programmers need to write explicitly parallel pro-
grams? ” (Arvind et al., 2010). After a lively debate, no ultimate agreement was
concluded for the explicit versus implicit issue — both of the parallel program-
ming models have their pros and cons, but the implicit approach is obviously
preferable. Furthermore, as the productivity of programmers and the shortage
of skilled programmers are current problems in the expanding fi eld of embed-
ded systems development (even without considering needs for parallel pro-
gramming experts), it is practical to favor the implicit parallel programming
model. In implicit parallel programming, it is the responsibility of the
compiler — not the programmer — to identify and utilize the opportunities for
parallelism. And that should be the way how embedded software is pro-
grammed in the multi - core era. The new architectures should not make the
practitioner ’ s programming task any harder or destroy the portability of code
between different platforms.

 9.3.1 The UML ++ as a Future “ Programming Language ”

 To make the programming process more effi cient, it is necessary to raise the
level of abstraction above the current programming languages. Thus, we
propose that the traditional programming languages would “ merge ” with the
universal modeling language (UML) and form the UML++ . This imaginary
name was selected both to distinguish the future modeling and programming
language from the current UML and to emphasize that it has evolved, indeed,
from the UML. The UML – UML ++ relationship has an analogy to the C – C ++
association. UML forms a sound basis for a “ parallel programming language, ”
since its objects are considered as parallel entities, and a single object entity
exhibits itself as a concurrent activity. Such a step - up in the level of program-
mer ’ s abstraction will mean that code generation has to become automatic,
and, hence, programmers will shift their efforts from code writing to the design
of real - time systems. And with the heterogeneous soft multi - core architecture,
the outcome is the design of real - time systems — not just real - time software —
 because there is the necessity to compose and confi gure the application -
 specifi c processor as well. All this is done using the UML ++ , which needs to
have strict formalism in the full subset of diagrams that are intended for
 specifying hard real - time systems. Thus, the UML ++ Design Engine is able to
map the high - level behavioral description of a real - time system semi -
 automatically to the multiple soft cores of the heterogeneous processor plat-
form, which is synthesized as a set of confi gurable CPU cores with varying

www.it-ebooks.info

http://www.it-ebooks.info/

490 FUTURE VISIONS ON REAL-TIME SYSTEMS

levels of performance and functionality. In addition, the program code is gen-
erated automatically for each of the soft cores from the UML + + descriptions.
This procedure is sketched in Figure 9.5 .

 But currently, UML 2.0 is considered overly complex and diffi cult to learn/
use among many practitioners; would that not hinder the acceptance of
UML + + ? Not necessarily, if the basic UML notation is made familiar to
 “ everybody ” already in middle and high schools and throughout their college
education. This could be feasible, since the graphic notation techniques used
in math, science, and engineering courses could be replaced consistently with
the basic UML notation in associated textbooks (currently, diverse block and
fl ow diagrams are used depending on the context). Spinellis called this approach
 “ UML everywhere, ” and he pointed out “ after a short learning period, we ’ ll
all be able to concentrate on how our diagrams can best convey our ideas,
rather than on inventing new notations ” (Spinellis, 2010). In this way, the effort
in taking the advanced UML + + in use by future practitioners could be
moderate.

 To conclude, the unambiguous behavioral modeling part of UML + + would
be the future “ real - time programming language ” (and much more) for HSMC
architectures. An initial step toward that direction was taken in Arpinen et al.
(2006). However, before all the required features are well established and in
mainstream use within the embedded systems community, we are close to the
year 2040. This lengthy adoption period is understandable when we take into
account the methodology - wise conservative nature of embedded systems

 Figure 9.5. The procedure of generating an application - specifi c HSMC platform and
the corresponding program code for the individual soft cores using the UML + + design
engine.

UML++ Modeling

Multi-Core
Composition

Soft-Core
Library

Memory
Library

Peripheral
Library

System
Library

HSMC Platform
Synthesis

Core-Level
Code Generation

Designer’s
Advices

Application
Library

Soft-Core
Synthesis
Database

HSMC Platform and
System/Application

 Software

UML++
Design Engine

Soft-Core
Programming

Database

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME SYSTEMS ENGINEERING 491

industry. And while it is easy to argue that such an automatic code generation
scheme is ineffi cient, we can safely respond that the continuing validity of
Moore ’ s law will override such considerations in our visioning period. This
straightforward reasoning has an analogy to the painful but successful transi-
tions from the assembly language to procedural languages and further from
procedural languages to object - oriented ones in hard real - time systems.

 9.4 VISION: REAL - TIME SYSTEMS ENGINEERING

 Formal methods have always given hope that better ways of building reliable
real - time systems easier, faster, and cheaper could be found. But this promise
has never really been fulfi lled, largely because of diffi culties in modeling tem-
poral behavior.

 Currently, there are problems in using formal methods as the panacea for
real - time systems design and analysis. There is no standard methodology — in
fact, there seem to be too many formal methods available. There also seems
to be a dearth of real success stories in building successful real - time systems
exclusively using formal methods. And when these success stories are reported,
they are hailed as some kind of exceptional case. If formal methods really are
the answer, then reports of their successful use in real - time systems should not
be news — they should be commonplace.

 Software engineering pioneer David Parnas recently made this case and
decried the current state of applied formal methods. “ It is our job to improve
these methods, not sell them. Good methods, properly explained, sell them-
selves. Our present methods don ’ t sell beyond the fi rst trial ” (Parnas, 2010).
Parnas goes on to argue for a different paradigm for the use of formal methods
and for simplicity and more universality in notation.

 In the previous section, we proposed the UML ++ , which is a next - generation
modeling language to be used for the design and implementation of real - time
software for single - and (heterogeneous) multi - core environments. The formal
UML++ model of an embedded system is platform independent, since all
platform dependencies are hidden inside the UML++ Design Engine depicted
in Figure 9.5 . These platform dependencies are related both to the application -
 specifi c multi - core composition, as well as to the actual FPGA circuit in use.
It should be emphasized that the software design and implementation activi-
ties are highly inseparable within the UML ++ framework; thus, the fi nal
UML++ model is constructed iteratively, and the incremental process is sup-
ported by high - level simulation tools for verifying the model increments as
they appear. This model verifi cation is performed semi - automatically.

 9.4.1 Automatic Verifi cation of Software

 The software for the HSMC platform is generated automatically from the
UML++ model (see Fig. 9.5). In parallel with such a major computation effort,

www.it-ebooks.info

http://www.it-ebooks.info/

492 FUTURE VISIONS ON REAL-TIME SYSTEMS

also the necessary test cases and associated test suites are generated.
Furthermore, the embedded software is verifi ed automatically at three differ-
ent levels:

 1. Object Level : Each object within a single CPU core.
 2. Core Level : Each CPU core within the multi - core processor.
 3. System Level : All CPU cores together.

 To be able to carry out adequate tests for the levels 2 and 3 of real - time soft-
ware, a versatile library of confi gurable simulation programs is needed for
providing the essential application environment. The biggest challenges toward
fully automatic software verifi cation are related to these simulated application
environments; it is apparent that they have to be generated semi - automatically
throughout our visioning period.

 9.4.2 Conservative Requirements Engineering

 The role of requirements engineering must be emphasized, since it is of
growing importance to develop the “ right product ” at the “ right time ” for truly
global markets with tough competition and shortening life cycles. Depending
on the type of the product to be developed, the requirements engineering
process can either be incremental and closely integrated to the UML ++ design/
implementation phase or be a separate phase that is completed before the
UML++ modeling begins at all. The former approach has clear similarities to
agile methodologies, while the latter one is supporting a sequential life cycle
model. And both of these are defi nitely needed, because there are various
types of embedded products, as well as development environments with dif-
ferent characteristics to manage.

 While the design/implementation is carried out entirely using the single
UML++ tool, the requirements engineering activities continue to be supported
by multiple tools. This is due to the diversity of stakeholders. They are not
going to have a “ common language ” during this visioning period; the method-
ological gap between marketing and engineering people remains too wide.

 9.4.3 Distance Collaboration in Software Projects

 In the future, embedded software development projects will be distributed
increasingly in multiple physical locations, which may reside even in different
continents. This is due to the globalization boom that has made the large cor-
porations and also smaller companies distribute their research and develop-
ment (R & D) units. The parent organization can be located in Europe or the
United States, but there may be local R & D groups in countries such as Brazil,
China, and India.

 To establish a solid foundation for effective cooperation between the geo-
graphically distributed groups, it is necessary to have common modeling tools

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME APPLICATIONS 493

in use within the whole project team. A model - centered approach to software
engineering collaboration is benefi cial due to its structuring effects (Whitehead,
 2007).

 Today, e - mail and certain web - based applications are used routinely in most
development projects as the preferred means for inter - group communication.
The amount of physical travel by real - time software engineers is continuously
decreasing; it is time - consuming, expensive, and environmentally unsound.
Nonetheless, based on our international R & D experience, a well - prepared
physical meeting of a project team cannot be fully substituted by current
video - conferencing techniques. The state of video conferencing is still too
primitive, and the divisive “ they - and - us ” arrangement disturbs natural
interaction.

 Whitehead presented a relevant roadmap on collaboration in software
engineering (Whitehead, 2007). He indicated that the future communications
and presence technologies will offer novel opportunities for fading the physi-
cal distances between cooperating engineering groups. Particularly, the advanc-
ing virtual reality environments of 3D games (and virtual environments like
Second Life) could provide a reasonable virtual environment for design
reviews, regular project meetings, and even for daily coffee breaks. In that way,
the cohesion of the entire project team would improve and the harmful “ they -
 and - us ” thinking could diminish.

 It is expected that the innovative game industry will develop such virtual - or
augmented - reality environments during this visioning period that could also
provide a “ quantum leap ” for natural and effective interaction between dis-
tributed software engineering groups.

 9.4.4 Drag - and - Drop Systems

 Components for building real - time systems abound in open - source reposito-
ries, and many of these are quite robust and are currently being used in
industrial - strength real - time systems. But for the most critical applications,
new engineering paradigms are needed to allow for easy identifi cation, valida-
tion, verifi cation and assembly of these components from a number of sources
(e.g., open source, commercial off - the - shelf, and in - house reuse).

 We envision a new generation of drag - and - drop component - based software
engineering tools and associated capability to support round - tripping engi-
neering (forward and reverse engineering from specifi cation to code).
Progenitors of these kinds of systems abound, but none has the kind of robust-
ness and provable correctness that is needed for the most critical applications.

 9.5 VISION: REAL - TIME APPLICATIONS

 Since the beginning of the embedded systems era, numerous embedded appli-
cations have been introduced; many of them have survived over years and

www.it-ebooks.info

http://www.it-ebooks.info/

494 FUTURE VISIONS ON REAL-TIME SYSTEMS

have an established position in our lives, while others have quietly disap-
peared. The introduction of new embedded applications will undoubtedly
continue during the visioning period — and beyond that. In this section, we
discuss some future embedded applications that could have a considerable
impact in our personal lives and the society around us.

 Large numbers of small, communicating real - time computers found in
smartphones, wearable clothing, appliances, vending machines, and so forth
promise to transform the way human beings interact with their environment.
We are only moments away from the following scenarios:

 • Embedded microcontrollers in your clothes communicate with the
washing machine in order to set up the appropriate wash cycles.

 • Sensors reading perspiration and body temperature adjust the environ-
ment in your home or car.

 • Your refrigerator and smart pantry can take inventory of the contents and
prepare a shopping list for you based on your dietary preferences, recently
prepared meals, and upcoming holidays.

 All of the envisioned advances of Sections 9.1 – 9.4 will enable new families of
applications that promise amazing functionality. Understandably, we can
discuss only a small sample of these possibilities.

 9.5.1 Local Networks of Collaborating Real - Time Systems

 Local communications networks involving collaborating real - time systems are
needed for advanced smart homes and smart buildings. In addition to numer-
ous conveniences (e.g., environmental control), there are many safety and
security applications for the elderly, disabled, or very young in a smart home.
For example, such a system could track if a resident has wandered outside of
a safe zone or has been immobile for too long. Connecting the system with
vital sign and other status monitoring equipment can provide important infor-
mation for tracking and maintaining the health and wellness of any inhabitant
of a private home or public facility, such as a hospital, school, or retirement
facility.

 There is a rich variety of entertainment and comfort applications, too. For
instance, virtual wall art and music and climate control that adapt to the tastes
and desires of the most proximate individual in the room of our home. As a
matter of fact, Bill Gates envisioned these applications of RFID technology
in his own home and then realized them (Gates, 1995). These same adaptations
could next be implemented in various public spaces, such as schools, libraries,
and hospitals. And the same advancements that will be found in smart homes
can scale up to smart buildings that interact with internal components (e.g.,
elevators, HVAC, and lighting), users, and the environment (Snoonian, 2003).

 Robots present the ultimate challenge for real - time systems engineers
because they are a blend of image processing, artifi cial intelligence, and elec-

www.it-ebooks.info

http://www.it-ebooks.info/

VISION: REAL-TIME APPLICATIONS 495

tromechanical systems all communicating over a fi eldbus network. But we can
expect to see more, and robot - based applications in industrial and residential
settings with a likelihood of realistic, humanoid robots becoming common-
place by 2040. Even today, many homes worldwide have an autonomous
robotic vacuum cleaner, which is able to navigate a living space while vacuum-
ing the fl oor and rugs.

 9.5.2 Wide Networks of Collaborating Real - Time Systems

 Perhaps the most exciting applications for real - time systems involve large
numbers of collaborating systems over a wide area. Typical applications involve
intelligent transportation systems, the smart grid, and coordinated infrastruc-
ture systems.

 Intelligent transportation systems are those in which individual vehicles
interact with each other and traffi c monitoring and controlling equipment,
emergency vehicles, pedestrians, and other real - time components (Ma et al.,
 2009).

 A smart grid, on the other hand, is “ an automated, widely distributed energy
delivery network [that is] characterized by a two - way fl ow of electricity and
information and will be capable of monitoring everything from power plants
to customer preferences to individual appliances. It incorporates into the grid
the benefi ts of distributed computing and communications to deliver real - time
information and enable the near - instantaneous balance of supply and demand
at the device level ” (U.S. Department of Energy, Offi ce of Electricity Delivery
and Energy Reliability, 2008).

 Furthermore, secure systems for infrastructure, such as power grid, water
processing, telecommunications systems, and so forth, interact to identify
complex threat vectors, such as cyberpandemics . A cyberpandemic is a “ massive
disruption of computing services that can trigger second - and third - order
failures or malfunctions in computing and non - computing systems worldwide ”
(Laplante et al., 2009).

 All of these systems currently exist in rudimentary forms, but fully capable,
robust, and fault - tolerant solutions will be available within the next two
decades. All kinds of interesting problems are presented by these systems for
real - time engineers. However, many of these problems are scaled up versions
of the kinds of challenges that we have studied throughout this text.

 9.5.3 Biometric Identifi cation Device with Remote Access

 Another interesting class of applications is based on a novel biometric iden-
tifi cation (Ricanek et al., 2010) device with remote access (BIDRA). BIDRA
is an intelligent device that virtually everybody could own and have continu-
ally available, or maybe it will be integrated with the future smartphone. It is
able to perform reliable and robust biometric identifi cation of its genuine
owner, and the identifi cation procedure is repeated aperiodically to make sure

www.it-ebooks.info

http://www.it-ebooks.info/

496 FUTURE VISIONS ON REAL-TIME SYSTEMS

that the person who holds the BIDRA device is really its owner and nobody
else. Moreover, BIDRA can interact securely with its near environment as
well as be accessed over the Internet using a wireless communications
interface.

 These principal features make BIDRA a solution to multiple problems,
which are somehow related to secure identifi cation of individuals. Today, we
all have multiple high - strength passwords that make it possible for us to use
various systems and services with different levels of privacy and security. But
anybody could use those systems/services with our identity if he just had our
password. And, unfortunately, this scenario is happening all the time, because
there is always a possibility of gaining access to somebody else ’ s password by
illegal or at least questionable means. BIDRA could conveniently be used in
place of all passwords, and the advanced biometric identifi cation technique
would guarantee a high level of personal security. So, the annoying problem
of passwords becomes solved.

 Furthermore, BIDRA could be used for confi guring different environments
automatically to match the personal preferences of the corresponding indi-
vidual. For example, when the individual enters his automobile that may also
be used by other family members, the automobile recognizes him sitting
behind the steering wheel and adjusts the steering wheel, driver ’ s seat, mirrors,
interior temperature, and preferred radio channels according to the predefi ned
preferences obtained from BIDRA. BIDRA would also serve as a general key
to multiple electronic locks (home, offi ce, automobile, etc.) — no other keys are
needed anymore.

 In addition, BIDRA could be used for effortless automobile parking in a
public parking garage. A remote BIDRA reader recognizes that an automo-
bile that is driven by Person X is entering the parking hall and records the
arrival time. Later on, when the automobile driven by the same individual exits
the garage, the remote reader records the departure time. No on - site payment
is needed in such a default case, but the payment would be charged directly
from the bank account, which number is provided by BIDRA.

 Automatic overspeed detection is used increasingly on highways and streets
in many countries. There is typically an inductive sensor under the road surface
that is used for measuring the speed of passing vehicles, and a rugged camera
that takes a digital image of every overspeeding vehicle. Eventually, some
manual processing is needed before a penalty invoice is mailed to the owner
of the vehicle. BIDRA could greatly simplify the process of overspeed “ ticket-
ing. ” In place of those expensive roadside cameras, only a simple BIDRA
reader with wireless Internet access is needed. When a vehicle passes such a
reader and an overspeed is detected, the penalty invoice can automatically be
e - mailed to the address provided by the BIDRA of the driver, or even charged
directly from the driver ’ s bank account. In some countries, certain fi nes are
dependent on the driver ’ s annual income, which is also known by BIDRA.
Besides, no vehicle can be taken in use without a valid driver ’ s license, and
this information is stored in BIDRA, as well.

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 497

 This free visioning process could be continued further, but the examples
already presented show the huge potential that BIDRA would offer. But what
would happen if a BIDRA device were lost? No worry, every BIDRA contains
a satellite navigation receiver that is used to determine BIDRA ’ s location with
a high accuracy. And it is possible to access a lost BIDRA device through a
wireless Internet connection to fi nd out the precise coordinates where it cur-
rently resides. In principle, it would also be possible to track every BIDRA
device all the time by some authorized person or organization — if just allowed.

 9.5.4 Are There Any Threats behind High - Speed
Wireless Communications?

 The term “ wireless ” was mentioned three times in the short BIDRA introduc-
tion, and it appears that our digitized society is going toward faster and faster
wireless networks. “ Wireless is handy and wireless is everywhere, ” but there
may be serious threats behind such thinking.

 Since the beginning of the cell phone era, there has been a debate whether
the transmitted high frequencies or microwaves can cause brain cancer.
Nonetheless, there is no scientifi c proof that cell phones would be dangerous
for their users ’ health. On the other hand, there is ongoing discussion on the
possible effects of cell phones and base stations of wireless communications
systems to humans ’ hormonal excretion. Disturbances in specifi c hormonal
excretion can lead, for instance, to depression or alcoholism. Moreover, there
are at least suspicions that high - speed wireless communications systems can
disrupt the navigation abilities of certain insects, such as honeybees.

 Persistent long - term research is needed to confi rm or reject those and other
similar hypotheses related to the biological effects of wireless communications
(Valberg et al., 2007). In parallel with such research efforts, however, the used
microwave frequencies are continually increasing as higher data rates are
achieved for wireless Internet use.

 If the biological threats turn out to be true, that would have a signifi cant
infl uence to the future real - time systems, too. Another, purely technical concern
is that the public frequency bands (which require no explicit operator licenses)
will become overly crowded due to the excessive use of wireless sensor net-
works in future embedded applications.

 9.6 SUMMARY

Future Visions on Real - Time Systems is a truly challenging topic that could be
presented in numerous different ways, depending on the chosen viewpoint.
Instead of aiming to provide a comprehensive treatment of this wide topic, we
decided to focus on a carefully selected sample of specifi c subjects that could
form an educational basis for class discussions and related assignments at the
end of a practical course on real - time systems.

www.it-ebooks.info

http://www.it-ebooks.info/

498 FUTURE VISIONS ON REAL-TIME SYSTEMS

 The continuing development of hardware technologies maintains a solid
basis for the advancement of real - time systems. Large and reconfi gurable (but
cost - effective) FPGA platforms, together with the proposed heterogeneous
soft multi - core architecture, make it possible to implement hard real - time
systems with true task concurrency. The possibility of assigning an individual
CPU core for each software task makes the overall software structure straight-
forward and hence easier to maintain. And this is important, since the size of
applications software is going to grow considerably in future embedded systems.

 Moreover, the role of real - time operating systems is somewhat different in
HSMC environments than in traditional multitasking, because every software
task runs in isolation on its private CPU core. No centralized scheduling/
dispatching is needed, but the RTOS is mainly providing punctual synchroni-
zation and intertask communication services for cooperating tasks. This deter-
ministic scheme is much simpler than those multi - core operating systems that
handle both intra - core and inter - core scheduling/dispatching, as well as
dynamic load balancing.

 Furthermore, the programming of HSMC processors is carried out at a
higher level of abstraction than provided by the existing procedural and
object - oriented languages. We call the new “ real - time programming language ”
UML++ . However, the UML ++ is not just a programming language, but an
evolved entity of the present UML with enhanced levels of formality and real -
 time support. The incrementally designed and verifi ed behavioral models are
used by the UML ++ Design Engine both for automatic composition of the
application - specifi c HSMC platform and for automatic code generation.

 It is no more practical to test the future applications software manually, but
automatic test case and test suite generation is followed by automatic test
execution. With the HSMC platform, the embedded software is tested auto-
matically at three hierarchical levels: object level, core level, and system level.

 Effective collaboration between software engineers is going to be an
increasingly important issue in embedded software development. This is due
to the growing complexity of real - time software and the globalization of soft-
ware development activities. To make the inter - group collaboration more
natural and effi cient, it could be possible to use the future virtual - and
augmented - reality environments of 3D games as collaboration environments
between geographically distributed software engineering groups.

 One of the principal problems of the digitalizing society is how to identify
the users of various systems/services reliably but conveniently. Currently
employed password schemes are approaching the end of their utility for
obvious reasons. Hence, we proposed the biometric identifi cation device with
remote access to be used in virtually all future applications where secure
identifi cation of individuals is needed. It uses a robust biometric technique for
identifying the genuine owner of the BIDRA. A few potential applications of
the BIDRA were envisioned and discussed. It is likely that such an identifi ca-
tion device with fl exible wireless communications and self - locating abilities
will become available before the end of our visioning period.

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES 499

 Future applications of real - time systems are exciting, but most of the chal-
lenges facing the realization of these systems are the same problems that have
faced real - time systems engineers for more than 50 years. While many solu-
tions to old problems can be scaled up, new complexities are introduced as
the capabilities of systems improve over time. Besides, applications develop-
ment will create new theoretical problems to be solved and require new and
better software engineering techniques so that the applications can be effec-
tively realized.

 A new edition of a textbook is like a new spring in nature.

 9.7 EXERCISES

9.1. Find at least three advantages and three disadvantages of the HSMC
architecture (see Fig. 9.2). Based on those fi ndings, evaluate your confi -
dence (scale 0 – 1) on this particular hardware vision. By which decade, if
ever, would you think that such an approach would be practical and in
wide use?

Class assignment : Compare the answers of individual students and create
a collective answer for the class.

9.2. What are the benefi ts, if any, that a computing cloud (see Fig. 9.3) could
offer for a distributed control system of large - scale plants compared with
traditional solutions to similar requirements?

Class discussion : Is it feasible to combine Internet - based cloud comput-
ing with such a distributed control system having hard and fi rm real - time
constraints?

9.3. How could the physical communications channel, used in Figure 9.4
for transferring messages between different CPU cores, be implemented
in practice? What are the pros and cons of those alternative
implementations?

Class discussion : Could the physical communications channel become a
bottleneck for the synchronization and intertask communication services
offered by the system task?

9.4. What are the main challenges — or even obstacles — behind the suggested
design and implementation procedure of Figure 9.5 ? Based on the identi-
fi ed challenges, evaluate your confi dence (scale 0 – 1) on that particular
vision.

Class assignment : Compare the answers of individual students and create
jointly a single collective answer of the whole class.

9.5. The proposed BIDRA device seems to offer a vast variety of application
opportunities. List fi ve possible applications of BIDRA that are not

www.it-ebooks.info

http://www.it-ebooks.info/

500 FUTURE VISIONS ON REAL-TIME SYSTEMS

mentioned in the text. Which practical issues could hinder the develop-
ment or wide spreading of BIDRA?

Class debate : The instructor moderates a prepared debate between two
teams. First, the class is divided to three teams; one of the teams is favor-
ing the BIDRA concept, one is against it, and one team is evaluating the
presented arguments. What are the objective conclusions of the evalua-
tion team?

9.6. Based on your personal vision confi dence pentacle (see Fig. 9.1), identify
the strongest and weakest vision element (or dimension) expressed in this
chapter. Take the possible multiple visions within a single vision element
as a whole when drawing the pentacle.

Class assignment : Compare the pentacles of individual students and
create jointly a single collective pentacle of the entire class.

9.7. What are the three most important visions on real - time systems that are
missing from this chapter? Explain why those visions are of particular
importance.

Class discussion : Evaluate the additional visions of individual students
and create the class ’ top 3 of additional visions (possibly by voting).

9.8. Virtual machines, such as the Java Virtual Machine (JVM), can make the
applications software easily portable to diverse hardware platforms.
Would it be feasible to consider a similar virtual machine model also for
the HSMC architecture (see Figs. 9.2 and 9.5), which is intended for hard
real - time systems? What advantages and disadvantages would such a
scheme offer in this case?

Class discussion : What are the main challenges in developing and imple-
menting small and temporally predictable virtual machines for embedded
applications?

 REFERENCES

 T. Arpinen , P. Kukkala , E. Salminen , M. H ä nnik ä inen , and T. D. H ä m ä l ä inen ,
 “ Confi gurable multiprocessor platform with RTOS for distributed execution of
UML 2.0 designed applications , ” Proceedings of the Design, Automation and Test
in Europe , Munich, Germany, 2006 , vol. 1.

 D. A. Arvind , K. Pingali , D. Chiou , R. Sendag , and J. J. Yi , “ Programming multicores:
Do applications programmers need to write explicitly parallel programs? ” IEEE
Micro , 30 (3), pp. 19 – 33 , 2010 .

 R. Davis , Evaluating virtual machines for use on a small embedded real time micro-
controller platform . Doctoral Dissertation, Colorado Technical University, 2011 .

 A. Elkateeb and A. Mandepanda , “ Embedded soft processor for sensor networks , ”
Proceedings of the International Conference on Network - Based Information
Systems , Indianapolis, IN, 2009 , pp. 268 – 272 .

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 501

 M. Funabashi , T. Kawabe , and A. Nagashima , “ Towards post embedded systems era , ”
Proceedings of the ICROS - SICE International Joint Conference , Fukuoka, Japan,
 2009 , pp. 466 – 469 .

 B. Gates , The Road Ahead . New York : Penguin Books , 1995 .

 J. Gea - Banacloche and L. B. Kish , “ Future directions in electronic computing and
information processing , ” Proceedings of the IEEE , 93 (10), pp. 1858 – 1863 , 2005 .

 M. Hashemi and S. Ghiasi , “ Versatile task assignment for heterogeneous soft dual -
 processor platforms , ” IEEE Transactions on Computer - Aided Design of Integrated
Circuits and Systems , 29 (3), pp. 414 – 425 , 2010 .

 A. Kamiya , “ General model for large - scale plant application , ” in Computationally
Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing ,
S. J. Ovaska (Ed.), Hoboken, NJ : Wiley - Interscience , 2004 , pp. 35 – 55 .

 D. Lammers , “ The era of error - tolerant computing , ” IEEE Spectrum , 47 (11), p. 15 , 2010 .

 P. A. Laplante , “ Computing requirements for self - repairing space systems , ” Journal
of Aerospace Computing, Information, and Communication , 2 (3), pp. 154 – 169 ,
2005 .

 P. Laplante , B. Michael , and J. Voas , “ Cyberpandemics: History, inevitability, response , ”
IEEE Security and Privacy , 7 (1), pp. 63 – 67 , 2009 .

 M. Levy and T. M. Conte , “ Embedded multicore processors and systems , ” IEEE Micro ,
 29 (3), pp. 7 – 9 , 2009 .

 Y. Luo , “ Network I/O virtualization for cloud computing , ” IT Professional , 12 (5),
pp. 36 – 41 , 2010 .

 Y. Ma , M. Chowdhury , A. Sadek , and M. Jeihani , “ Real - time highway traffi c condition
assessment framework using vehicle – infrastructure integration (VII) with artifi cial
intelligence (AI) , ” IEEE Transactions on Intelligent Transportation Systems , 10 (4),
pp. 615 – 627 , 2009 .

 S. Makridakis , S. C. Wheelwright , and R. J. Hyndman , Forecasting: Methods and
Applications , 3rd Edition . New York : John Wiley & Sons , 1998 .

 D. L. Parnas , “ Really rethinking ‘ formal methods ’ , ” IEEE Computer , 43 (1), pp. 28 – 34 ,
 2010 .

 D. Patterson , “ The trouble with multi - core , ” IEEE Spectrum , 47 (7), pp. 28 – 32 , and 53 ,
 2010 .

 J. R. Powell , “ The quantum limit to Moore ’ s law , ” Proceedings of the IEEE , 96 (8),
pp. 1247 – 1248 , 2008 .

 R. Racu , A. Hamann , and R. Ernst , “ Sensitivity analysis of complex embedded real -
 time systems , ” Real - Time Systems , 39 (1), pp. 31 – 72 , 2008 .

 K. Ricanek , M. Savvides , D. L. Woodard , and G. Dozier , “ Unconstrained biometric
identifi cation: Emerging technologies , ” IEEE Computer , 43 (2), pp. 56 – 62 , 2010 .

 B. Sick and S. J. Ovaska , “ Fusion of soft and hard computing: Multi - dimensional catego-
rization of computationally intelligent hybrid systems , ” Neural Computing and
Applications , 16 (2), pp. 125 – 137 , 2007 .

 D. Snoonian , “ Smart buildings , ” IEEE Spectrum , 40 (8), pp. 18 – 23 , 2003 .

 D. Spinellis , “ UML everywhere , ” IEEE Software , 27 (5), pp. 90 – 91 , 2010 .

 R. Talwar and I. Pearson , “ The world in 2020 [General Forecasts] , ” Engineering and
Technology , 5 (1), pp. 21 – 24 , 2010 .

www.it-ebooks.info

http://www.it-ebooks.info/

502 FUTURE VISIONS ON REAL-TIME SYSTEMS

 U.S. Department of Energy, Offi ce of Electricity Delivery and Energy Reliability , “ The
smart grid: An introduction , ” 2008 . Available at http://energy.gov/sites/prod/fi les/
oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf, last
accessed August 17, 2011.

 P. A. Valberg , T. E. van Deventer , and M. H. Repacholi , “ Workgroup report: Base sta-
tions and wireless networks — radiofrequency (RF) exposures and health conse-
quences , ” Environmental Health Perspectives , 115 (3), pp. 416 – 424 , 2007 .

 J. Whitehead , “ Collaboration in software engineering: A roadmap , ” Proceedings of the
Future of Software Engineering , Minneapolis, MN, 2007 , pp. 214 – 225 .

 R. Wilhelm et al., “ Memory hierarchies, pipelines, and buses for future architectures in
time - critical embedded systems , ” IEEE Transactions on Computer - Aided Design
of Integrated Circuits and Systems , 28 (7), pp. 966 – 978 , 2009 .

 J. Wolf et al., “ RTOS support for parallel execution of hard real - time applications on
the MERASA multi - core processor , ” Proceedings of the 13th IEEE International
Symposium on Object/Component/Service - Oriented Real - Time Distributed
Computing , Carmona, Spain, 2010 , pp. 193 – 201 .

www.it-ebooks.info

http://www.it-ebooks.info/

 GLOSSARY

503

 Many of these terms have been adapted from P. A. Laplante (Editor - in - Chief),
The Dictionary of Computer Science , Engineering , and Technology . Boca
Raton, FL: CRC Press, 2001.

Abstract class: A superclass that has no direct instances.
Abstract data type: A programming language construct where a user defi nes

his own data type along with the requisite operation that can be applied
to it.

Accept operation: Operation on a mailbox that is similar to the pend opera-
tion, except that if no data are available, the task returns immediately from
the call with a condition code rather than suspending.

Access time: The interval between when data are requested from the memory
cell and when they are actually available on the bus (read operation).
Analogously applicable with the write operation.

Accumulator: A special - purpose register used with arithmetic and logic
instructions in certain processor architectures.

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

504 GLOSSARY

Actual parameter: The named variable passed to a procedure or subroutine.
Adaptive programming: A lightweight programming methodology that offers

a series of frameworks to apply adaptive principles and encourage collabo-
ration to obtain easily evolvable code.

Address bus: The collection of parallel wires needed to address individual
memory cells.

Agile programming: A lightweight programming methodology that is divided
into four principal activities — planning, designing, coding, and testing — all
performed iteratively.

Algorithm: A systematic and precise, step - by - step procedure for solving a
certain problem or accomplishing a task, for instance, converting a particu-
lar kind of input data to a particular kind of output data. An algorithm can
be executed by a computer.

Alpha testing: A type of validation consisting of internal distribution and
exercise of the developed software.

ALU: See arithmetic logic unit.
Analog - to - digital conversion: The process of sampling and converting analog

(continuous amplitude and time) signals into digital (discrete amplitude
and time) ones.

Anonymous variable: A hidden variable created by the compiler to facilitate
call - by - value parameter passing.

Application program: Program to perform tasks and solve problems related
to some specifi c application.

Argument: An address or data that is passed to a procedure or function
call as a typical way of communicating across procedure/function
boundaries.

 Arithmetic Logic Unit (ALU): CPU ’ s internal unit that performs arithmetic
and logic operations.

Arithmetic operation: Anyone of the following operations: addition, subtrac-
tion, multiplication, and division.

Artifact: Any by - product of the software development process including
program code and documentation.

Assembler: A computer program that translates an assembly code text fi le to
an object fi le suitable for linking.

Assembly code: A program written in assembly language.
Assembly language: The set of symbolic (mnemonic) equivalents to the

machine language instruction set.
Asynchronous event: An event that is not synchronous to the applied clock

signal.
Atomic instruction: An instruction that cannot be interrupted.
Attribute: A named property of a class that describes a value held by each

object of the class.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 505

Attribute multiplicity: The possible number of values for an object – attribute
combination.

Background: Noninterrupt - driven tasks in foreground/background systems.

BAM: See binary angular measure.

Bathtub curve: A graph describing the phenomenon that in hardware com-
ponents most errors occur either very early or very late in the lifecycle of
the component. Similar thinking is applicable to software as well.

Benchmark: Standard tests that are used to compare the performance of
computers, processors, circuits, or algorithms.

Beta testing: A type of system test where preliminary versions of validated
software are distributed to friendly customers, who test the new software
under actual use.

 Binary Angular Measure (BAM): An n - bit scaled number where the least
signifi cant bit is 2 − (n− 1) · 180 ° .

Binary semaphore: A semaphore that can take on one of two possible
values.

BITS: See built - in - test software.

Black - box testing: A testing methodology where only the inputs and outputs
of the software unit are considered. How the outputs are generated inside
the unit is ignored.

Blocked: The condition experienced by tasks that are waiting for the occur-
rence of some event.

Branch instruction: An instruction used to modify the instruction execution
sequence of the CPU. The transfer of control to another sequence of instruc-
tions may be unconditional or conditional based on the result of a previous
instruction.

Branch prediction: A mechanism in advanced CPUs used to predict the
outcome of conditional branch instructions prior to their execution.

Breakpoint: An instruction address at which a debugger is instructed to
suspend the execution of a program. Or a critical point in a program, at
which execution can be conditionally stopped to allow examination if the
program variables contain the correct values and/or other manipulation of
data.

Breakpoint instruction: A debugging instruction provided through hardware
support in most processors. When a program hits a breakpoint, specifi ed
actions occur that save the state of the program, and then switch to another
program that allows the user to examine the stored state.

Broadcast communication: In statecharts, a technique that allows for transi-
tions to occur in more than one orthogonal system simultaneously.

Buffer: A temporary data storage area used to interface between, for example,
a fast device and a slower task servicing that device.

www.it-ebooks.info

http://www.it-ebooks.info/

506 GLOSSARY

 Built - in - Test Software (BITS): Special software used to perform self - testing.
Online BITS assures testing concurrently with normal operation, while
offl ine BITS suspends normal operation.

Burn - in testing: Testing technique that seeks to fl ush out those failures that
appear early in the life cycle of the part and thus improve the reliability of
the delivered product.

Burst period: The time over which data are being passed into a buffer.

Bus: The set of parallel wires that connect the CPU and main memory. The
bus is used to transfer memory addresses and exchange data between the
CPU and main memory in binary - encoded form. The width of the bus is
determined by the number of bits or wires provided for the binary code.
Usually, the address and data wires are referred to as the address bus and
data bus, respectively.

Bus arbitration: The process of ensuring that only one device at a time can
place data on the bus.

Bus contention: Condition in which two or more devices attempt to gain
control of the bus simultaneously.

Bus cycle: A complete memory read or write operation; from addressing to
successful data delivery.

Bus grant: A signal provided by the DMA controller to a device, indicating
that is has exclusive rights to the bus.

Bus timeout: A condition whereby a device making a DMA request does not
receive a bus grant before some specifi ed time.

Busy wait: In polled - loop systems, the process of testing the fl ag without
success.

Cache: See memory caching.

Cache hit ratio: The percentage of memory accesses in which a requested
instruction or data are actually in the cache memory.

Call - by - address: See call - by - reference.

Call - by - reference: Parameter passing mechanism in which the address of the
parameter is passed by the calling routine to the called procedure so that
it can be altered there. Also known as call - by - address.

Call - by - value: Parameter passing mechanism in which the value of the actual
parameter in the subroutine or function call is copied into the procedure ’ s
formal parameter.

Calling tree: See structure chart.

CAN: A fi eldbus network used widely in automotive and machine automation
applications.

Capability: An object that contains both a pointer to another object and a set
of access permissions that specify the modes of access permitted to the
associated object from a process that holds the capability.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 507

CASE: Computer - aided software engineering.

Catastrophic error: An error that renders the system useless or has severe
consequences.

 Central Processing Unit (CPU): In a computer, it provides fetching, decoding,
and executing machine - language instructions, reading operands from the
main memory, and writing results to the main memory.

CFD: See control fl ow diagram.

Chain reaction: In statecharts, a group of sequential events where the n th
event is triggered by the (n − 1)th event.

Checkpoint: The instant in the history of execution at which a consistent
version of the system ’ s state is saved so that if a later event causes potential
diffi culties, the system can be restarted from the state that had been saved
at the checkpoint.

Checksum: A value used to determine if a block of data has changed. The
checksum is formed by adding all of the data values in the block together.
After that, the checksum is usually inserted to the end of the data block.

Circular queue: See ring buffer.

CISC: See complex instruction set computer.

Class: A group of objects with similar attributes, behavior, and relationships
to other objects.

Class defi nitions: Object declarations along with the methods associated with
them.

Clear - box testing: See white - box testing.

COCOMO: A constructive cost model developed by Boehm, which is one of
the most widely used resource estimation tools.

Code inspection: See group walkthrough.

Coding: The process of programming, generating program code in a specifi c
language. Or the process of translating data from some representation form
into a different one by using a set of rules or tables.

Collision: Condition in which one device already has control of the bus when
another obtains access. Also, simultaneous use of a critical resource.

Compaction: The process of compressing fragmented memory so that it is no
longer fragmented but continuous.

Compiler: A program that translates a high - level language program into an
executable machine - language program or other lower - level form, such as
assembly language.

 Complex Instruction Set Computer (CISC): Processor architecture character-
ized by a large, microcoded instruction set with numerous addressing
modes.

Computational intelligence: See soft computing.

www.it-ebooks.info

http://www.it-ebooks.info/

508 GLOSSARY

Compute - bound: Computations in which the number of operations is large in
comparison with the number of executed I/O instructions.

Computer simulation: Execution of computer programs that allows one to
model the important aspects of the behavior of the specifi c system under
study.

Concrete class: A class that can have direct instances.
Condition code register: CPU ’ s internal register used to implement a condi-

tional transfer, such as a conditional branch instruction.
Conditional instruction: An instruction that performs its function only if a

certain condition is met.
Conditional transfer: A change of the program counter based on the result of

a test.
Confi guration: Operation in which a set of parameters is imposed for defi ning

the operating conditions or mode.
Constant folding: A code optimization technique that involves precomputing

constants at compile time.
Context: The minimum information that is needed in order to save a currently

executing task so that it can be resumed.
Context switching: The process of saving and restoring suffi cient information

for a real - time task so that it can be resumed after being interrupted.
Contiguous fi le allocation: The process of forcing all allocated fi le sectors to

follow one another on the hard disk or other mass memory.
Continuous random variable: A random variable with a continuous sample

space.
 Control Flow Diagram (CFD): A real - time extension to data fl ow diagrams

that shows the fl ow of control signals through the system.
Control specifi cations: In data fl ow diagrams, a fi nite state machine in dia-

grammatic or tabular representation.
 Control Unit (CU): CPU ’ s internal device that synchronizes the entire fetch –

 execute cycle.
Cooperative multitasking system: A scheme in which two or more tasks are

divided into states or phases, determined by a fi nite state machine. Calls to
a central dispatcher are made after each phase is complete.

Coprocessor: A second specialized CPU used to extend the machine
language instruction set of the main CPU. For instance, a fl oating - point
coprocessor.

Coroutine system: See cooperative multitasking system.
Correctness: A property in which the software does not deviate from the

requirements specifi cation. Sometimes used synonymously with reliability,
but correctness requires a stricter adherence to the requirements.

Correlated data: See time - relative data.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 509

Counting semaphore: A semaphore than can take on two or more values. Also
called a general semaphore.

CPU: See central processing unit.
CPU utilization: A measure of the percentage of nonidle processing.
CRC: See cyclic redundancy code.
Critical region: Code segment that interacts with a serially reusable resource.
Crystal: A lightweight programming methodology that empowers the devel-

opment team to defi ne the development process and refi ne it in subsequent
iterations until it is stable.

CU: See control unit.
Cycle stealing: A situation in which an ongoing DMA access precludes the

CPU from accessing the bus.
 Cyclic Redundancy Code (CRC): A mathematical method for checking the

correctness of memory contents or received data, which is superior to a
simple checksum.

Cycling: The process whereby all tasks are being appropriately scheduled,
although no actual processing is occurring.

Cyclomatic complexity: A measure of a software complexity devised by
McCabe.

Daemon: A device server that does not run explicitly, but rather lies dormant
waiting for specifi c condition(s) to occur.

Dangerous allocation: Any memory allocation that can preclude system
determinism.

Data bus: Bus used to carry data between the various components in the
computer system.

Data dependency: The normal situation in which the data that an instruction
uses or produces depends upon the data used or produced by other instruc-
tions such that the instructions must be executed in a specifi c order to
obtain the correct results.

 Data Flow Diagram (DFD): A structured analysis tool for modeling software
systems.

Data structure: A particular way of organizing a group of data, usually opti-
mized for effi cient storage, fast search, fast retrieval, and/or fast
modifi cation.

Data - oriented methodology: An application development methodology that
considers data as the main focus of activities.

Dead code: See unreachable code.
Deadlock: A catastrophic situation that can arise when tasks are competing

for the same set of two or more serially reusable resources. Also called a
deadly embrace.

Deadly embrace: See deadlock.

www.it-ebooks.info

http://www.it-ebooks.info/

510 GLOSSARY

Death spiral: Stack overfl ow caused by repeated spurious interrupts.

Debug: To fi nd and remove errors from hardware or software.

Debug port: The facility to switch the processor from run mode into probe
mode to access its debug and general registers.

Debugger: A program that allows interactive analysis of a running program
by allowing the user to pause execution of the running program and examine
its variables and path of execution at any point. Or a program that aids in
debugging.

Debugging: Locating and correcting errors in a hardware circuit or a com-
puter program. Or determining the exact nature and location of a program
error and fi xing the error.

Decode: The process of isolating the opcode fi eld of a machine language
instruction and determining the corresponding address in CPU ’ s
micromemory.

Default: The value or status that is assumed unless otherwise specifi ed.

Defect: The preferred term for an error in a requirement, design, or code. See
also fault and failure.

Demand page system: Technique where program segments are permitted to
be loaded in noncontiguous memory, as they are requested in fi xed - size
chunks.

Density: In computer memory, the number of bits per unit area.

Dependability: System feature that combines such concepts as reliability,
safety, maintainability, performance, and testability.

De - referencing: The process in which the actual locations of the parameters
that are passed using call - by - value are determined.

Deterministic system: A system where for each possible state and each set of
inputs, a unique set of outputs and next state of the system can always be
determined.

 Digital Signal Processor (DSP): An application - specifi c processor that is tai-
lored for the specifi c needs of digital signal processing algorithms.

Digital - to - analog conversion: The process of converting digital (discrete
amplitude and time) signals into analog (continuous amplitude and time)
ones.

 Direct Memory Access (DMA): A scheme in which access to the computer ’ s
memory bus is afforded temporarily to other devices in the system without
the intervention of the CPU.

Direct mode instruction: Instruction in which the operand is the data con-
tained at the address specifi ed in the address fi eld of the instruction.

Disassembler: A computer program that can take an executable image (a
stream of machine - language instructions) and convert it back into assembly
code.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 511

Discrete signals: Logic lines used to control devices.
Discriminator: An enumerated attribute that indicates which aspect of an

object is being abstracted by a particular generalization.
Dispatcher: The part of the real - time kernel that performs the necessary

bookkeeping to start a task.
Distributed computing: An environment in which multiple computers are

networked together, and the resources from more than one computer are
available to a user or application.

Distributed real - time systems: A collection of interconnected, self - contained
processors.

DMA: See direct memory access.
DMA controller: Device that performs bus arbitration.
Dormant state: In the task - control block (TCB) model, the state of a task that

is unavailable to the operating system.
Double buffering: A technique using two swappable buffers where one is

fi lled while the data in the other is being used.
Double - indirect mode: A memory addressing scheme similar to indirect

mode, but with another level of indirection.
DRAM: Dynamic random - access memory. See also dynamic memory.
DSI: Delivered source instructions. See KLOC.
DSP: Digital signal processing. Also digital signal processor.
Dynamic memory: Random - access memory that uses a capacitor to store

logic ones and zeros, and that must be refreshed periodically to restore the
charge lost due to capacitive discharge.

Dynamic priority system: A multitasking system in which the priorities to
tasks can change. Contrast with fi xed priority system.

 Dynamic Systems Development Method (DSDM): A lightweight program-
ming methodology conceived as a methodology for rapid application
development. DSDM relies on a set of principles that include empowered
teams, frequent deliverables, incremental development, and integrated
testing.

Effort: One of Halstead ’ s metrics (see Chapter 8).
Embedded software: Real - time software that is part of an embedded system.

Embedded software integrates an operating system with specifi c drivers
and application software.

Embedded system: A real - time computing machine contained in a device
whose purpose is not to be a computer. For example, the computers in
automobiles and household appliances are all embedded computers.

Emulator: The fi rmware that simulates a given machine architecture. Also a
device, computer program, or system that accepts the same inputs and
produces the same outputs as a given system.

www.it-ebooks.info

http://www.it-ebooks.info/

512 GLOSSARY

Encapsulation: Property of a program that describes the complete integration
of data with a legal process relating to the data.

 Entity Relationship Diagram (ERD): A diagram that describes the important
entities in a system and the ways in which they are interrelated.

Enumeration: A list of permitted values.

Environment: A set of objects outside the system whose attributes affect and
is affected by the behavior of the system.

Event: Any occurrence that results in a change in the state of a real - time
system.

Event determinism: When the next states and outputs of the system are
known for each set of inputs that trigger events.

Event fl ag: Synchronization mechanism provided by certain programming
languages.

Exception: An error or other special condition that arises during program
execution.

Exception handler: Code used to process exceptions.

Execute: Process of sequencing through the steps in micromemory or hard-
wired state machine corresponding to a particular machine language
instruction.

Executing state: In the task control block model, the state of a task that is
currently running.

Executive: See kernel.

External fragmentation: When main memory becomes checkered with unused
but available partitions.

 eXtreme Programming (XP): A lightweight programming methodology
based on 12 practices including pair programming, test fi rst coding,
having the customer on site, and frequent refactoring. eXtreme program-
ming is, perhaps, the most prescriptive of the lightweight (agile)
methodologies.

Failed system: A system that cannot satisfy one or more of the requirements
listed in the formal system specifi cation.

Failure: Manifestation of an error at system level. It relates to execution of
wrong actions, nonexecution of correct actions, severe performance degra-
dation, and so forth.

Failure function: An analytical or empirical function describing the probabil-
ity that a system fails at time t .

Fault: The appearance of a defect during the operation of a software system.

Fault prevention: Any technique or process that attempts to eliminate the
possibility of having a failure occur in a hardware device or software
routine.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 513

Fault tolerance: Correct execution of a specifi ed function in a system, pro-
vided by redundancy, despite existing faults. The redundancy provides the
information needed to negate the effects of faults.

Feature - driven development: A lightweight model - driven, short - iteration
process built around the feature, a unit of work that has meaning for the
client and developer and is small enough to be completed quickly.

Feature points: An extension of function points to cope with systems having
a high level of algorithmic complexity. This software metric is also suitable
for embedded environments.

Fetch: The process of retrieving a machine language instruction from main
memory and placing it in the instruction register.

Fetch – execute cycle: The process of continuously fetching and executing
machine language instructions from the main memory.

 Field Programmable Gate Array (FPGA): A digital integrated circuit, which
is designed so that it can be confi gured (or “ programmed ”) for specifi c
applications after manufacturing.

Fieldbus: A communications network intended for automation and control
applications.

File fragmentation: Analogous to memory fragmentation, but occurring
within fi les, with the same associated problems.

 Finite State Automaton (FSA): See fi nite state machine.

 Finite State Machine (FSM): A mathematical model of a machine consisting
of a set of inputs, a set of states, and a transition function that describes the
next state given the current state and an input event. Also known as fi nite
state automaton and state diagram.

Firing: In Petri nets or in certain multiprocessor architectures, when a process
performs its prescribed function.

Firm real - time system: A real - time system that can fail to meet a few dead-
lines without system failure.

Firmware: Small system programs, which are used to control specifi c hardware
devices. Firmware is stored in a nonvolatile memory that is usually
unalterable.

Fixed priority system: A multitasking system in which the task priorities
cannot be changed. Contrast with dynamic priority system.

Fixed - rate system: A system in which interrupts occur only at fi xed rates.

Floating - point number: A term describing the computer ’ s representation of a
real - valued number.

Flowchart: A traditional graphic representation of an algorithm or a
program in using named functional blocks, decision evaluators, and I/O
symbols interconnected by directional arrows that indicate the fl ow of
processing.

www.it-ebooks.info

http://www.it-ebooks.info/

514 GLOSSARY

Flush: In pipelined CPU architectures, the act of emptying the instruction
pipeline when branching occurs.

Foreground: A collection of interrupt - driven or real - time tasks in foreground/
background systems.

Formal parameter: The dummy variable used in the description of a proce-
dure or subroutine.

Forward error recovery: A technique of continuing processing by skipping a
few faulty states (applicable to some real - time systems in which occasional
missed or wrong responses are tolerable).

FPGA: See fi eld programmable gate array.
Framework: A skeletal structure of a program that requires further

elaboration.
FSA: Finite state automaton. See fi nite state machine.
FSM: See fi nite state machine.
Function points: A widely used software metric in nonembedded environ-

ments. Function points measure the number of interfaces between modules
and subsystems in programs or systems.

Function test: A check for correct device operation generally by truth table
verifi cation.

Functional decomposition: The division of tasks into modules according to
their functionality.

Functional requirements: Those system features that can be directly verifi ed
by executing the program.

Garbage: An object or a set of objects that can no longer be accessed, typically
because all pointers that direct accesses to the object or set have been
eliminated.

Garbage collector: A software run - time system component that periodically
scans dynamically allocated storage and reclaims allocated storage that is
no longer in use.

General register: CPU ’ s internal memory that is addressable in the address
fi eld of certain machine - language instructions.

General semaphore: See counting semaphore.
Generalization: The relationship between a class and one or more variations

of that class.
Generator polynomial: The modulo - 2 divisor of the message polynomial in

CRC.
Global variable: Any variable that is within the scope of all modules of the

software system.
Group walkthrough: A kind of white - box testing in which a number of persons

inspect the code line - by - line with the unit author.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 515

Hamming code: An effective coding technique used to detect and correct
errors in computer memory.

Hard error: Physical (unrepairable) damage to a memory cell.
Hard real - time system: A real - time system in which missing even one dead-

line results in system failure.
Hazard: A momentary output error that occurs in a logic circuit because of

input signal propagation along different delay paths in the circuit.
Heterogeneous: Having dissimilar hardware/software components in a system.
Host: A computer that is the one responsible for performing a certain com-

putation or function.
Hybrid system: A system in which interrupts occur both at fi xed rates and

sporadically.
ICE: See in - circuit emulator.
Immediate - mode instruction: An instruction in which the operand is an

integer - valued number.
Implied - mode instruction: An instruction involving one or more specifi c

memory locations or registers that are implicitly defi ned in the operation
performed by the instruction.

Imprecise computation: Techniques involving early termination of an itera-
tive computation in order to meet deadlines.

 In - Circuit Emulator (ICE): A device that replaces the processor and provides
the functions of the processor plus various testing and debugging
functions.

Incrementality: A software development approach in which progressively
larger increments of the desired product are developed.

Indirect - mode instruction: Instruction where the operand fi eld is a memory
location containing the address of the address of the operand.

Induction variable: A variable in a loop that is incremented or decremented
by some constant.

Information hiding: A program design principle that makes available to a
function just the data it needs — everything else is hidden.

Inheritance: In object orientation, the possibility for different data types to
share the same code.

Initialize: To place a hardware system in a known state, for instance, at power -
 up. Or to store the correct initial data in a data item, for example, fi lling an
array with zero values before it is used.

Input space: The set of all possible input combinations to a system.
Instance: An occurrence of a class.
Instruction issue: The sending of an instruction to CPU ’ s functional units for

execution.

www.it-ebooks.info

http://www.it-ebooks.info/

516 GLOSSARY

Instruction register: CPU ’ s internal register that holds the instruction pointed
to by the contents of the program counter.

Instruction set: The instruction set of a processor is the collection of all the
machine - language instructions available to the programmer (or a high - level
language compiler).

Integration: The process of uniting hardware/software modules from different
sources to form the overall system.

Internal fragmentation: Condition that occurs in fi xed - partition schemes
when, for instance, a processor requires 1 K byte of memory, while only 2
K byte partitions are available.

Interoperability: Software quality that refers to the ability of the software
system to coexist and cooperate with other systems.

Interpreter: A computer program that translates and immediately performs
intended operations of the source statements of a high - level language
program.

Interrupt: An input to a processor that signals the occurrence of an asynchro-
nous event.

Interrupt controller: A device that provides additional interrupt handling
capability to a CPU.

Interrupt handler: A predefi ned subprogram that is executed when an inter-
rupt occurs. Also known as an interrupt service routine.

Interrupt handler location: Memory location containing the starting address
of an interrupt handler routine. The program counter is automatically
loaded with its address when the particular interrupt occurs.

Interrupt latency: The delay between when an interrupt request occurs and
when the CPU begins reacting to it.

Interrupt register: A register containing a bit map of all pending (latched)
interrupts.

Interrupt return location: Memory location (usually in the stack memory)
where the content of the program counter is saved when the CPU processes
an interrupt.

 Interrupt Service Routine (ISR): See interrupt handler.

Interrupt vector: Register that contains the identity of the (highest - priority)
interrupt request. The interrupt vector is sent to the CPU by the device
whose interrupt request was just acknowledged by the CPU.

Intrinsic function: A macro where the actual function call is replaced by cor-
responding in - line code.

Jackson chart: A popular form of structure chart that provides for conditional
branching.

Kalman fi lter: A mathematical construct used, for instance, to combine mea-
surements of the same quantity from different sources.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 517

KDSI: See KLOC.

Kernel: The smallest portion of the operating system that provides for task
scheduling and dispatching only.

Kernel preemption: A method used in real - time Unix that provides preemp-
tion points in calls to kernel functions to allow them to be interruptible.

Key: In a mailbox, the data that are passed as a fl ag used to protect a critical
region.

KLOC: A software metric measuring thousands of lines of source code (not
counting comments and nonexecutable statements). Also known as thou-
sands of delivered source instructions KDSI) and noncommented source
code statements (NCSS).

Latency: A measure of time delay experienced in a real - time system.

 Least Recently Used (LRU) rule: The best nonpredictive memory - page
replacement algorithm.

Legacy system: Applications that are in a maintenance phase but are not
ready for retirement.

Leveling: In data fl ow diagrams, the process of redrawing a diagram at a fi ner
level of detail.

Library: A set of precompiled routines that may be linked with a program at
compile time or loaded at load time or dynamically at run time.

Lightweight programming methodology: Any programming methodology
that is adaptive rather than predictive and emphasizes people rather than
processes. Also known as agile programming.

Link: The postcompilation process in which individual object modules are
placed together and cross - module references resolved.

Linker: A computer program that takes one or more object fi les, assembles
them into blocks that are to fi t into particular regions in memory, and
resolves all references to other segments of a program and to libraries of
precompiled program units.

Little ’ s law: Rule from queuing theory stating that the average number
of customers in a queuing system is equal to the average arrival rate
of the customers to that system times the average time spent in the
system.

Live variable: A variable that can be used subsequently in the program.

Livelock: Another term for task starvation.

Load module: Executable code that can be readily loaded into the machine.

Locality - of - reference: The notion that if you examine a list of recently exe-
cuted program instructions, you will see that most of the instructions are
localized to within a small number of addresses.

Lock - up: When a system enters a state in which it is rendered ineffective.

www.it-ebooks.info

http://www.it-ebooks.info/

518 GLOSSARY

Logic analyzer: A sophisticated instrument that can be used to read, store,
and display signals from individual circuits, circuit boards, or hardware
systems.

Logical operation: A machine - language instruction that performs Boolean
operations, such as AND, OR, and XOR.

Look - up table: An arithmetic technique that uses precalculated tables for
function values and may rely on mathematical defi nition of the derivative
to interpolate these functions quickly.

Loop invariant optimization: The process of placing computations outside a
loop that do not need to be performed within the loop.

Loop invariant removal: A code optimization technique that involves remov-
ing code that does not change inside a looping sequence.

Loop jamming: An optimization technique that involves combining multiple
loops within the control of one loop variable.

Loop unrolling: A code optimization technique that involves expanding a
loop so that loop overhead is completely removed.

Loosely coupled system: A software system that can run on other hardware
with the rewrite of no more than a few modules (perhaps device drivers).

LRU: See least recently used rule.

Machine code: The machine format of a compiled executable, in which indi-
vidual instructions are represented in binary notation.

Machine language: The set of legal instructions to a CPU, expressed in binary
notation.

Macro: See macroinstruction.

Macroinstruction: A native machine - language instruction.

Macroprogram: A sequence of macroinstructions.

Mailbox: An intertask communication device consisting of a memory location
and two operations — post and pend — that can be performed on it.

Main memory: Memory that is directly addressable by the CPU.

Maintainability: A software quality that is a measure of how easily the system
can be evolved to accommodate new features, or changed to repair errors.

Maintenance: The changes made on a system to fi x errors, to support new
requirements, or to make it more effi cient.

Major cycle: The largest sequence of repeating processes in cyclic or periodic
systems.

MAR: See memory address register.

Mask register: A register that contains a bit map either enabling or disabling
specifi c interrupts.

Master processor: The online processor in a master/slave confi guration.

MDR: See memory data register.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 519

Mealy fi nite state machine: A fi nite state machine with outputs during
transitions.

 Memory Address Register (MAR): Register that holds the address of the
memory location to be acted on.

Memory caching: A technique in which frequently used segments of main
memory are stored in a faster and smaller bank of memory, called a cache,
which is local to the CPU.

 Memory Data Register (MDR): Register that holds the data to be written to
or that is read from the memory location held in the MAR.

Memory leak: It occurs when a task consumes temporary memory, but is
unable to release it back to the real - time operating system after it is no
more needed.

Memory - loading: The percentage of usable memory that is being used.

Memory locking: In a real - time system, the process of locking all or certain
parts of a task into memory to reduce the overhead involved in paging, and
thus make the execution times more predictable.

Memory - mapped I/O: An input/output scheme where reading or writing
involves executing a load or store instruction on a pseudomemory address
mapped to the device. Contrast with DMA and programmed I/O.

Memory reference instruction: An instruction that communicates with
memory, writing to it (store) or reading from it (load).

Message exchange: See mailbox.

Message polynomial: Used in CRC.

Metadata: Data that describes other data.

Methods: In object - oriented systems, functions that can be performed on
objects.

Microcode: A stream of low - level operations that are executed as a result of
a single macroinstruction being executed.

Microcontroller: A single - chip computer system, which contains a CPU, some
memory, and I/O ports.

Microinstructions: See microcode.

Microkernel: A kernel that provides for task scheduling and dispatching only.

Micromemory: CPU ’ s internal memory that holds the individual microcodes
corresponding to macroinstructions.

Microprogram: Sequence of microcode stored in the micromemory.

Minor cycle: A sequence of repeating processes in cyclic or periodic systems.

Mixed listing: A printout that combines the high - level language instructions
with the corresponding assembly language code.

Mixed system: A system in which interrupts occur both at fi xed rates and
sporadically.

www.it-ebooks.info

http://www.it-ebooks.info/

520 GLOSSARY

Modularity: Design principle that calls for design of small, self - contained code
units.

Moore fi nite state machine: See fi nite state machine.

Multi - core processor: A processor that is composed of two or more CPUs,
which are independent but share some memory.

Multiplexer (MUX): An analog or digital device used to route multiple lines
onto fewer lines.

Multiprocessing operating system: An operating system where more than one
processor is available to provide for simultaneity. Contrast with multitask-
ing operating system.

Multiprocessor: A computer system that has more than one internal processor
capable of operating collectively on a computation. Normally associated
with those systems where the individual processors can access a common
main memory.

Multitasking operating system: An operating system that provides suffi cient
functionality to allow multiple tasks to run on a single processor so that the
illusion of simultaneity is created. Contrast with multiprocessing operating
system.

Mutex: A common name for a semaphore variable.

MUX: See multiplexer.

NCSS: Noncommented source statements. See KLOC.

Nested subroutine: A subroutine called by another subroutine.

Nonfunctional requirements: System requirements that cannot be tested
simply by program execution.

Nonvolatile memory: Memory whose contents are preserved upon removing
power.

Non von Neumann architecture: An architecture that does not use the stored -
 program serial fetch – execute cycle.

No - op: A macroinstruction that does not change the state of the CPU but just
advances the program counter.

NP - complete problem: A decision problem that is a seemingly intractable
problem for which the only known solutions are exponential functions of
the problem size and which can be transformed to all other NP - complete
problems. Compare with NP - hard problem.

NP - hard problem: A decision problem that is similar to an NP - complete
problem, except that for the NP - hard problem it cannot be shown to be
transformable to all other NP - complete problems.

N - version programming: A programming technique used to reduce the
likelihood of system lock - up by using redundant processors, each
running software that has been coded to the same specifi cations by different
teams.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 521

Nucleus: See kernel.

Null: A special value denoting that an attribute value is unknown or not
applicable.

Object: An instance of a class defi nition.

Object code: A fi le comprising a compiled description of a program
segment.

Object - oriented: The organization of software into discrete objects that
encapsulate both the data structure and behavior.

Object - oriented analysis: A method of analysis that estimates requirements
from the perspective of the classes and objects found in the problem domain.

Object - oriented design: A design methodology viewing a system as a collec-
tion of objects with messages passed from object to object.

Object - oriented language: A programming language that provides constructs
that encourage a high degree of information hiding and data abstraction.

Object - oriented methodology: An application development methodology
that uses a top - down approach based on the decomposition of a system in
a collection of objects communicating via messages.

Object - oriented programming: A programming style using languages that
support abstract data types, inheritance, function polymorphism, and
messaging.

Object type: The type of an object determines the set of allowable operations
that can be performed on the object. This information can be encoded in
a “ tag ” associated with the object, can be found along an access path
reaching to the object, or can be determined by the compiler that inserts
 “ correct ” instructions to manipulate the object in a manner consistent with
its type.

Opcode: Starting address of the microcode of a machine language instruction
stored in micromemory.

Open source code: Source code that is made available to the user community
for moderate improvement and correction.

Open system: An extensible collection of independently written applications
that cooperate to function as an integrated system.

Operating system: A set of programs that manages the operations of a com-
puter. It oversees the interaction between the hardware and software and
provides a set of services to system users.

Operation: Specifi cation of one or a set of computations on the specifi ed
source operands placing the results in the specifi ed destination operands.

Organic system: A system that is not embedded.

Orthogonal product: In statecharts, a process that depicts concurrent tasks
that run in isolation.

www.it-ebooks.info

http://www.it-ebooks.info/

522 GLOSSARY

Output dependency: The situation when two sequential instructions in a
program write to the same location. To obtain the desired result, the second
instruction must write to the location after the fi rst instruction.

Output space: The set of all possible output combinations for a system.

Overlay: Dependent code and data sections used in overlaying.

Overlaying: A technique that allows a single program to be larger than the
allowable user space.

Overloading: Principle according to which operations bearing the same name
apply to arguments of different data type.

Page: Fixed - size chunk used in demand - paged memory systems.

Page fault: An exception that occurs when a memory reference is made to a
location within a page not loaded in main memory.

Page frame: See page.

Page stealing: When a page is to be loaded into main memory, and no free
pages are found, then some page frame must be written out or swapped to
disk to make room.

Page table: A collection of pointers to pages used to allow noncontiguous
allocation of page frames in demand paging.

Pair programming: A technique in which two persons write code together.

Parnas partitioning: See information hiding.

Pattern: A named problem – solution pair that can be applied in new contexts,
with advice on how to apply it in novel situations.

PC: See program counter.

PDL: See program design language.

Peephole optimization: A code optimization technique where a small window
of assembly language or machine code is compared against known patterns
that yield optimization opportunities.

Pend operation: Operation of removing data from a mailbox. If data are not
available, the task performing the pend suspends itself until the data become
available.

Performance: A measure of the software ’ s capability of meeting certain func-
tional constraints such as timing or output precision.

Petri net: A mathematical/pictorial system description technique.

Phantom interrupt: See spurious interrupt.

Phase - driven code: See state - driven code.

PIC: Priority interrupt controller. Also known as interrupt controller.

Ping - pong buffering: See double buffering.

Pipeline: For example, an intertask communication mechanism provided in
some operating systems. See also pipelining.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 523

Pipelining: A technique used to increase CPU ’ s instruction throughput that
relies on the fact that fetching the instruction is only one part of the fetch –
 execute cycle, and that is can overlap with different parts of the fetch –
 execute cycle for other instructions.

PIU: Peripheral interface unit.

PL/I: A procedural programming language that was introduced in the 1960s.
It was the model for the fi rst high - level programming languages that were
developed in the late 1970s for microprocessors (such as MPL, PL/M, and
PL/Z).

Polled loop system: A real - time system in which a single and repetitive test
instruction is used to test a fl ag, which indicates that some event has
occurred.

Polymorphism: In object - oriented programming, polymorphism allows the
programmer to create a single function that operates on different objects,
depending on the type of object involved.

Portability: A quality in which the software can easily run in different hard-
ware and operating system environments.

Post operation: Operation that places data in a mailbox.

Power bus: The collection of wires used to distribute power to the various
components of computer systems.

Power on self - test: A series of diagnostic tests performed by a computer when
it powers on.

Pragma: In certain programming languages, a pseudo - op that allows assembly
code to be placed in line with the high - level language code.

Preempt: A condition that occurs when a higher - priority task interrupts a
lower - priority task.

Preemptive - priority system: A system that uses preemption schemes instead
of round - robin or fi rst - come, fi rst - served scheduling.

Primary memory: See main memory.

Priority inversion: A condition that occurs when a medium - priority task is
executing while a high - priority task is waiting for a shared resource from a
low - priority task.

Procedure: A self - contained code sequence designed to be reexecuted from
different places in a main program or another procedure.

Process: The context, consisting of allocated memory, open fi les, and network
connections, in which an operating system places a running program.

Process control block: An area of memory containing information about the
context of an executing program.

 Program Counter (PC): A CPU register containing the address of the next
macroinstruction to be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

524 GLOSSARY

 Program Design Language (PDL): A type of abstract high - order language
used in system specifi cation.

Programmed I/O: Transferring data to or from a peripheral device by running
a program that executes specifi c computer instructions or commands to
control the transfer. An alternative is to transfer data using DMA.

Propagation delay: The contribution to interrupt and other latencies due to
limitations in switching speeds of digital devices and in the transit time of
electrons across wires.

Protection fault: An error condition detected by the address mapper when
the type of request is not permitted by the object ’ s access code.

Prototype: A mock - up of a software system often used during the design
phase.

Prototyping: Building an engineering model of all or part of a system to verify
that the concept works.

Pseudocode: A technique for specifying the logic of a program in an English -
 like language. Pseudocode does not have to follow strict syntax rules and
can be read by anyone who understands programming logic.

Pseudo - exhaustive testing: A testing technique that relies on various forms of
hardware/software segmentation and application of exhaustive test pat-
terns to these segments.

Pseudo - operation: In assembly language, an operation code that is an instruc-
tion to the assembler rather than a machine - language instruction.

Pseudorandom testing: A testing technique based on pseudorandomly gener-
ated test patterns. The test comprehensiveness is adapted to the required
level of fault coverage.

Pure procedure: A procedure that does not modify itself during its own execu-
tion. The instructions of a pure procedure can be stored in a read - only
portion of the memory and can be accessed by multiple tasks.

Race condition: A situation where multiple tasks access and manipulate
shared data with the outcome dependent on the relative timing of these
tasks.

Raise: Mechanism used to initiate a software interrupt in certain program-
ming languages, such as C.

RAM scrubbing: A technique used in memory confi gurations that include
error detection and correction chips. Such a technique, which reduces the
chance of multiple - bit errors occurring, is needed because in some confi gu-
rations, memory errors are corrected on the bus and not in memory itself.
The corrected memory data then need to be written back to memory.

Random testing: The process of testing using a set of pseudorandomly gener-
ated test patterns.

Random variable: An integer - or real - valued variable whose values are not
predictable but random.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 525

Rate - monotonic system: A fi xed - rate, preemptive, prioritized real - time system
where the task priorities are assigned so that the higher the execution rate,
the higher the priority.

Reactive system: A system that has some essential interaction with its
environment.

Read/write line: A logic control line that is set to logic 0 during each memory
write and to logic l during memory read.

Ready state: In the task - control block model, the state of those tasks that are
ready to execute, but are not executing since some higher priority task is
executing.

Real - time: Refers to systems whose correctness depends not only on outputs
but the timeliness of those outputs as well. Failure to meet one or more of
the deadlines can result in system failure.

Real - time computing: Support for operating environments in which response
time to an event must occur within a predetermined amount of time. Real -
 time systems may be categorized into hard, fi rm, and soft real - time.

Recovery: Action that restores the state of a task to an earlier confi guration
after it has been determined that the system has entered a state that does
not correspond to the desired functional behavior. For correct functional
behavior, the states of all tasks should be restored in a manner consistent
with each other and with the conditions within communication links or
message channels.

Recovery block: Section of code that may terminate in checkpoints. If the
check fails, processing can resume at the beginning of a recovery block.

Recursion: The process whereby a program calls itself.

Recursive procedure: A procedure that can be called by itself or by another
program that it has called; effectively, a single task can have several execu-
tions of the same procedure alive at the same time. Recursion provides one
means of defi ning special functions, such as the factorial function.

 Reduced Instruction Set Computer (RISC): CPU architecture usually char-
acterized by a compact instruction set with limited addressing modes and
hardwired (as opposed to microcoded) macroinstructions.

Reduction in strength: A code optimization technique that uses the fastest
macroinstruction available to accomplish a given calculation.

Redundancy: The use of parallel or serial components in a system to reduce
the probability of failure. Similarly, referring to an increase in the number
of components that can interchangeably perform the same function in a
system. Redundancy can increase the system reliability.

Reentrant: Term describing a program that uses concurrently exactly the
same executable code in memory for more than one invocation of the
program rather than separate copies of a program for each invocation. The
read and write operations must be timed so that the correct results are

www.it-ebooks.info

http://www.it-ebooks.info/

526 GLOSSARY

always available and the results produced by one invocation are not over-
written by another.

Reentrant procedure: A procedure that can be used by several concurrently
running tasks in a multitasking system.

Refactoring: To perform a behavior - preserving code transformation.

Register - direct mode: A memory - addressing scheme similar to direct mode
except the operand is a CPU register and not an explicit address.

Register - indirect mode: A memory - addressing scheme similar to indirect
mode, except the operand address is kept in a register rather than in another
memory address.

Regression testing: A testing methodology used to validate modifi ed software
against an earlier set of test cases that have already been passed.

Reliability: The probability that a component or system will function without
any failure over a specifi ed time period, under stated conditions.

Requirements analysis: A phase of software development life cycle in which
the high - level (or business) requirements for a software product are defi ned
and documented.

Response time: The time between the presentation of a set of inputs to a
software system and the appearance of all the associated outputs.

Reusability: The possibility to use or easily adapt the hardware or software
developed for a specifi c system to build other systems. Reusability is a
property of module design that permits and supports reuse.

Reuse: Program modules are reused when they are copied from one program
and used in another.

Reverse engineering: The reverse analysis of an old application to conform
to a new methodology.

Ring buffer: A fi rst - in, fi rst - out list in which simultaneous input and output to
the list is achieved by keeping separate head and tail pointers. Data are
loaded at the tail and read from the head.

RISC: See reduced instruction set computer.

Robustness: A software quality that measures the software ’ s tolerance to
exceptional situations, for example, an input out of range.

Root: In overlaying memory management, the portion of memory containing
the overlay manager and code common to all overlay segments, such as
math libraries.

Round - robin system: A system in which several tasks are executed sequen-
tially to completion, often in conjunction with a cyclic executive.

Round - robin system with timeslicing: A system in which each executable task
is assigned a fi xed time quantum called a time slice in which to execute. A
clock is used to initiate an interrupt at a rate corresponding to the time slice.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 527

RTOS: Real - time operating system.
RTSJ: The real - time specifi cation of Java.
SA: See structured analysis.
Safety: The probability that a system will either perform its functions correctly

or will discontinue its functions in a well - defi ned and safe manner.
Safety - critical system: A system that is intended to handle unexpected, dan-

gerous events.
Sampling rate: The rate at which an analog input signal is converted to digital

form.
Scale factor: A technique used to simulate fl oating - point operations by assign-

ing an implicit noninteger value to the least signifi cant bit (LSB) of an
integer.

Scaled number: A performance optimization technique where the least sig-
nifi cant bit (LSB) of an integer variable is assigned a real number scale
factor.

Schedulability analysis: The compile - time prediction of tasks ’ execution time
performance.

Scheduler: The part of the real - time kernel that determines which task will
execute.

Scratch pad memory: CPU ’ s internal memory used for intermediate
results.

Screen signature: The CRC of a screen memory.
Scrum: A lightweight programming methodology based on the empirical

process control model, the name is a reference to the point in a rugby match
where the opposing teams line up in a tight and contentious formation.
Scrum programming relies on self - directed teams and dispenses with much
advanced planning, task defi nition, and management reporting.

SD: See structured design.
Secondary memory: Memory that is characterized by long - term storage

devices, such as hard disks and Flash cards, which are not part of the physi-
cal address space of the CPU.

Segment: A disjoint processing element in instruction pipelining. Also called
a stage.

Self - modifying code: A program using a machine instruction that changes the
stored binary pattern of another machine instruction in order to create a
different instruction that will be executed subsequently. This is by no means
a recommended practice.

Self - test: A functional test that a module, either hardware or software, runs
upon itself.

Self - test and repair: A fault - tolerant technique based on a functional unit ’ s
active redundancy, spare switching, and reconfi guration.

Semaphore: A special variable type used for protecting critical regions.

www.it-ebooks.info

http://www.it-ebooks.info/

528 GLOSSARY

Semaphore primitives: The two fundamental operations that can be per-
formed on a semaphore, namely, wait and signal.

Semidetached system: See loosely coupled system.

Serially reusable resource: A resource that can only be used by one task at a
time and that must be used to completion.

Server: A task used to manage multiple requests to a serially reusable resource.

SEU: See single - event upset.

Signal operation: Operation on a semaphore that essentially releases the
resource protected by the semaphore.

 Single - Event Upset (SEU): Alteration of memory contents due to charged
particles present in space, or in the presence of a nuclear event.

Slave processor: The off - line processor in a master – slave confi guration.

SLOC: See source lines of code.

Soft computing: An association of computing methodologies centering on
fuzzy logic, artifi cial neural networks, and evolutionary computation. Each
of these methodologies provides complementary and synergistic reasoning
and searching methods to solve complex, real - world problems. Also known
as computational intelligence.

Soft error: Repairable alternation of the contents of a memory cell.

Soft real - time system: A real - time system in which failure to meet deadlines
results in performance degradation but not necessarily a system failure.

Software: A systematic composition of macroinstructions.

Software design: A phase of software development lifecycle that maps what
the system is supposed to do into how the system will do it in a particular
hardware/software confi guration.

Software development lifecycle: A way to divide the work that takes place in
the development of an application.

Software engineering: Systematic development, operation, maintenance, and
retirement of software.

Software evolution: The process that adapts the software to changes of the
environment where it is used.

Software interrupt: A machine language instruction that initiates an interrupt
function. Software interrupts are often used for system calls, because they
can be executed from anywhere in memory and the CPU provides the
necessary return address handling.

Software reengineering: The reverse analysis of an old application to conform
to a new methodology.

Software reliability: The probability that a software system will not fail before
some time t , under certain conditions.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 529

Source code: Software code that is written in a form or language meant to be
understood by programmers. Must be translated (or compiled) to object
code in order to run on a computer.

 Source Lines of Code (SLOC): A metric that measures the number of execut-
able program instructions; one SLOC may span several lines, for instance,
as in an if - then - else statement.

Spatial fault tolerance: Methods involving redundant hardware or software
components.

Specifi cation: A statement of the design or development requirements to be
satisfi ed by a system or product.

Speculative execution: An instruction execution technique in which instruc-
tions are executed without regard to data dependencies.

Spin lock: Another name for the wait semaphore operation.
Sporadic system: A system with all interrupts occurring sporadically.
Spurious interrupt: An extraneous and unwanted interrupt. Also known as a

phantom interrupt.
SRAM: See static random - access memory.
Stack: A fi rst - in, last - out data structure.
Stack machine: Computer architecture in which the instructions are centered

on an internal memory store called a stack, and an accumulator.
Stage: See segment.
Starvation: A condition that occurs when a task is not being serviced fre-

quently enough.
State diagram: A diagram showing the conditions (states) that can exist in a

logic system and what signals are required to go from one state to another
state.

State - driven code: Program code based on a fi nite state machine.
 Static Random - Access Memory (SRAM): Random access memory that does

not need to be recharged (or refreshed) periodically.
Statistically based testing: Technique that uses an underlying probability

distribution function for each system input to generate random test
cases.

Stress testing: A type of testing wherein the system is subjected to a large
disturbance in the inputs (e.g., a large burst of interrupts), followed by
smaller disturbances spread out over a longer period of time.

Structure chart: Graphical design tool used to partition system
functionality.

 Structured Analysis (SA): A graphical methodology for systems analysis.
 Structured Design (SD): A graphical methodology for systems design, which

is related to structured analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

530 GLOSSARY

Subclass: A class that adds specifi c attributes, behavior, and relationships for
a generalization.

Subroutine: A group of instructions written to perform a specifi c task, inde-
pendent of a main program and can be accessed by a program or another
subroutine to perform the task.

Superclass: A class that holds common attributes, behavior, and relationships
for generalization.

Suspended state: In the task control block model, those tasks that are
waiting on a particular resource, and thus are not ready. Also called blocked
state.

Swapping: The simplest scheme that allows the operating system to allocate
main memory to two tasks simultaneously.

Switch bounce: The physical phenomenon that an electromechanical switch
cannot change logic states instantaneously without short - term oscillation
between these states.

Synchronous: An operation or multiple operations that are controlled or
synchronized by a clocking signal.

Synchronous data: See time - relative data.
Synchronous event: An event that occurs at predictable times in the

fl ow - of - control.
Syndrome bits: The extra bits needed to implement a Hamming code.
Syntax: The part of a formal defi nition of a programming language that speci-

fi es legal combinations of symbols that make up statements in the
language.

System: An entity that when presented with a set of inputs produces corre-
sponding outputs.

System integration: A phase of the software development lifecycle
during which a software product is integrated into its operational
environment.

System program: Software used to manage the resources of a computer.
System unifi cation: A process consisting of linking together the testing soft-

ware modules in an orderly fashion.
Systems engineering: An approach to the overall lifecycle evolution of a

product or system. Generally, the systems engineering process comprises a
number of phases. There are three essential phases in any systems engineer-
ing lifecycle: formulation of requirements and specifi cations, design and
development of the system or product, and deployment of the system. Each
of these basic phases can be further expanded.

Task Control Block (TCB): A collection of data associated with a task
including context, process code (or a pointer to it), and other necessary
information.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 531

TCB: See task control block.

Temporal determinism: A condition that occurs when the response time for
each set of outputs is known in a deterministic system.

Temporal fault tolerance: Techniques that allow for tolerating missed
deadlines.

Test - and - set instruction: A macroinstruction that can atomically test and then
set a particular memory address to some value.

Test fi rst coding: A software engineering technique in which the code ’ s
unit test cases are written by the programmer before the actual code is
written.

Test pattern: An input vector designed in such a way that the faulty output is
different from the fault - free output.

Test probe: A checkpoint used only during testing.

Test suite: A collection of test cases.

Testability: The measure of the ease with which a system can be tested.

Testing: A phase of software development life cycle during which the applica-
tion is exercised for the purpose of fi nding errors.

Thrashing: Very high paging activity.

Throughput: A measure of the number of macroinstructions per second that
can be processed based on some predetermined instruction mix.

Time loading: The percentage of “ useful ” processing the computer is doing.
Also known as the utilization factor.

Time overloaded: A system that is 100% or more time loaded.

Time - relative data: A collection of data that must be time correlated.

Timeslice: A fi xed time quantum used to limit execution time in round - robin
systems.

Timing error: An error in a system due to faulty time relationships between
some of its constituents.

Traceability: A software property that is concerned with the relationships
between requirements, their sources, and the system design.

Tracing: In software engineering, the process of capturing a stream of instruc-
tions, referred to as the trace, for later analysis.

Transceiver: A transmitter/receiver hybrid device.

Trap: Internal interrupt caused by the execution of a certain operation, such
as a divide by zero.

UML: See Unifi ed modeling language.

Unconditional branch: A “ jump ” instruction that causes a transfer of control
to another address without regard to the state of any condition fl ags.

www.it-ebooks.info

http://www.it-ebooks.info/

532 GLOSSARY

 Unifi ed Modeling Language (UML): A collection of modeling tools for
object - oriented representation of software and other enterprises.

 Unifi ed Process Model (UPM): A process model that uses an object - oriented
approach by modeling a family of related software processes using the
UML as a notation.

Unit: A software module.

Unreachable code: Code that can never be reached in the normal fl ow of
control.

UPM: See unifi ed process model.

Usability: A property of software detailing the ease in which it can be
used.

User space: Memory not required by the operating system.

Utilization factor: See time loading.

Validation: A review to establish the quality of a software product for its
operational purpose.

Verifi ability: A software property in which its other properties (e.g., portabil-
ity and usability) can be verifi ed easily.

Version control software: A system that manages the access to the various
software components from the software library.

 Very Long Instruction Word (VLIW) computer: A computer that implements
a form of parallelism by combining microinstructions to exploit redundant
CPU components.

Virtual machine: A task on a multitasking computer that behaves as if it were
a standalone computer and not part of a larger system.

VLIW: See very long instruction word computer.

Void: Empty data type in C language. For example, when used as a function
return type, void means that the function does not return any value.

Volatile memory: Memory in which the contents will be lost if power is
removed.

von Neumann architecture: A CPU employing a serial fetch – execute process.

von Neumann bottleneck: A situation in which the serial fetch and execution
of instructions limits the overall execution speed.

WBS: See work breakdown structure.

Wait - and - hold condition: The situation in which a task acquires a resource
and then does not relinquish it until it can acquire another resource.

Wait operation: Operation on a semaphore that essentially locks the resource
protected by the semaphore, or prevents the requesting task from proceed-
ing if the resource is already locked.

Wait state: Additional clock cycles used to synchronize macroinstruction exe-
cution with the access time of memory.

www.it-ebooks.info

http://www.it-ebooks.info/

GLOSSARY 533

Watchdog timer: A device that must be reset periodically or a discrete “ alarm ”
signal is issued.

White - box testing: Logic - driven testing designed to exercise all paths in the
software module. Same as clear - box testing.

 Work Breakdown Structure (WBS): A hierarchically decomposed listing of
tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

 ABOUT THE AUTHORS

535

Dr. Phillip A. Laplante is a Professor of Software Engineering and a member
of the Graduate Faculty at The Pennsylvania State University. Before joining
Penn State, he was a Professor and senior academic administrator at several
other colleges and universities.

 Prior to his academic career, Dr. Laplante was a software engineer and
project manager working on avionics, computer - aided design, and software
test systems. He has nearly 30 years of experience in building, studying, and
teaching real - time systems. His travels have taken him to NASA, UPS,
Lockheed Martin, the Canadian and Australian Defense Forces, MIT ’ s Charles
Stark Draper Lab, and many other places. His practical and theoretical knowl-
edge of real - time systems has been enhanced during these visits and in interac-
tions with hundreds of students from Boeing, Motorola, Siemens, and other
major companies.

 Dr. Laplante has authored or edited 25 books (including three technical
dictionaries and the Encyclopedia of Software Engineering) and has published
more than 150 scholarly papers. He also co - founded the journal Real- Time
Imaging , which he edited for fi ve years, and serves as editor - in - chief for three
book series.

 Dr. Laplante received his B.S., M.Eng., and Ph.D. degrees in computer
science, electrical engineering, and computer science, respectively, from Stevens

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

536 ABOUT THE AUTHORS

Institute of Technology, and an MBA from the University of Colorado. He is
a licensed professional engineer in the Commonwealth of Pennsylvania and a
Certifi ed Software Development Professional. He is a Fellow of both the
IEEE and SPIE for his achievements in real - time systems and real - time
imaging research and education.

Dr. Seppo J. Ovaska is a Professor in the School of Electrical Engineering at
Aalto University, Finland. His current research focuses on computationally
intelligent systems and their applications. Dr. Ovaska is a prolifi c author,
having published more than 100 peer - reviewed journal articles, 155 conference
publications, and 10 book chapters. In addition, he has edited the pioneering
book Computationally Intelligent Hybrid Systems: The Fusion of Soft
Computing and Hard Computing (Wiley - Interscience, 2004), and holds nine
patents in the area of high - rise elevator systems.

 Dr. Ovaska received a D.Sc. degree in electrical engineering from the
Tampere University of Technology, Finland. He earned an Lic.Sc. degree in
computer science and engineering from the Helsinki University of Technology,
Finland, and an M.Sc. in electrical engineering from the Tampere University
of Technology. During the academic year 2006 – 2007, he served as a Visiting
Professor of Electrical and Computer Engineering at Utah State University.
Dr. Ovaska has taught university courses in computer architectures, embedded
microprocessor systems, microcomputer hardware and software, microcom-
puter systems programming, and real - time systems design. Prior to his aca-
demic career, he held software engineering, research, and R & D management
positions, both in Finland and Kentucky.

 Dr. Ovaska has served as a guest editor for the prestigious Proceedings of
the IEEE . Besides, he was an elected member of the board of governors, IEEE
Systems, Man, and Cybernetics (SMC) Society. He is a recipient of two
Outstanding Contribution Awards, as well as the Most Active SMC Technical
Committee Award of the IEEE SMC Society.

www.it-ebooks.info

http://www.it-ebooks.info/

537

INDEX

Note: Page numbers in italics refer to fi gures, those in bold to tables.

absolute deadlines, 98, 99
abstract data types, 157
abstraction, 161, 178, 193, 225, 285, 286,

293, 294, 482, 489
accelerometers, 6, 17, 18, 90, 108, 294–295
activity diagrams, 299
A/D circuitry (analog-to-digital

conversion), 58–60, 59
Ada, 21, 22, 149, 151, 151, 167–169

exception handling in, 161
and information hiding, 156
package, 156

Ada 95, 21, 22, 151, 168
Ada 2005, 168–169
adaptation adjustment factor, in

intermediate COCOMO 81,
431–432

address bus, 29, 30
addressing modes, 31, 32, 46, 158, 185, 191

after-sale support, and operating system
selection, 136, 138, 139, 140

agile life cycle methodologies, 307–311,
308, 312

AIE (Asynchronously-
InterruptedException), in
real-time Java, 176

aircraft guidance systems, 1, 2, 6, 11,
17–18, 90, 138–140, 140, 140

airline reservation systems, 2, 6, 18–19
ALU. See arithmetic-logic unit
Amdahl’s law, 382–384
analog-to-digital conversion (A/D

circuitry), 58–60, 59
analysis class diagrams, 223
ANSI-C, 160, 187, 191–192
anticipation of change, as engineering

principle, 278–279, 282
aperiodic events, 10, 10, 11

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

538 INDEX

APIs (application program interfaces),
167, 175, 274

application availability, and operating
system selection, 136, 138, 139, 140,
141

application program interfaces, 167, 175,
274

application programs, 2, 3
application-optimized hardware, 73
applications, in future real-time systems,

493–497
application-specifi c integrated circuits,

481
architecture

basic processor, 28–36, 29, 30, 31, 34
design, 283
distributed real-time, 68–73, 70, 71
event-triggered, 73
Harvard, 44–45, 44
heterogeneous soft multi-core,

481–484, 482, 486–487, 487, 498
patterns, in Douglass’ real-time

pattern set, 297
Princeton. See von Neumann

architecture
processor, 28–36, 29, 30, 31, 34
superpipeline, 46
superscalar, 46–47, 47, 48
time-triggered, 71–73, 71
very long instruction word, 47–48
von Neumann, 29–30, 29, 30, 35, 43, 44,

45
argc value, in C/C++, 174
args value, in Java, 174
argv value, in C/C++, 174
arithmetic identities, 182
arithmetic-logic unit, 29, 30, 30, 31, 31, 33
ARM (Automated Requirements

Measurement) tool, NASA, 229
arrival rates, and queuing, 400, 401
ASICs (application-specifi c integrated

circuits), 481
assemblers, 3
assembly language, 151, 151, 154–156,

178, 179, 193
code, 3, 93, 154–155, 156, 191–192
instructions, 31–33

AsyncEvent/AsyncEventHandler,

in real-time Java, 176

asynchronous events, 10, 10, 11, 176
asynchronous interrupts, 20, 22
AsynchronouslyInterrupted-

Exception, in real-time Java, 176
atomic operations, 88
automated checking, in requirements

validation, 229–232, 230, 231
Automated Requirements Measurement

tool, NASA, 229
automated teller machines, 7
automatic code generation, 150, 178–181,

179, 192–193
automatic coercion, 169, 174
automatic verifi cation, 491–492
avionics applications, 72, 90, 465

B_ACK (bus-acknowledgment) signal,
56, 57

background/foreground systems, 91–94,
91, 94, 125

BAM (binary angular measure),
466–467, 466

baseline method, 453
basic COCOMO 81, 429–431, 430
Basic Executive/Basic Executive II, 21,

22
bathtub curve, 271–272, 271
BCET (best-case execution time),

387–388, 389
behavioral diagrams, 298, 299, 300
behavioral exploratory tests, 464
behavioral models, in structured analysis/

structured design, 218, 219
behavioral patterns, 296, 296
behavioral uncertainty, 434, 434, 435, 436,

439
benchmarking, 419
best practices

metrics, 429
software engineering, 275
software specifi cation, 224–225

best-case execution time, 387–388, 389
BIDRA (biometric identifi cation device

with remote access), 495–497, 498
binary angular measure, 466–467, 466
binary semaphores, 112–114
biometric identifi cation device with

remote access, 495–497, 498
BITS (built-in-test software), 444–447

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 539

black-box recorders, and uncertainty,
438

black-box testing, 443, 449–450, 451
blocked state, in task control block

model, 96
block-oriented instructions, 35
Boolean code, short-circuiting, 186–187
Boolean satisfi ability problem, 204, 381
Bormuth Grade Level Index, 232
bottom-up design approach, 286
boundary-value testing, 449–450
bounded buffers, 107, 107
branch instructions, 10, 11, 30, 46, 185
branch prediction, 46, 47
branching, 9, 10, 30, 46, 390, 454
B_REQ (bus-request) signal, 56, 57
broadcast communication, and

statecharts, 210–211, 212, 213
brute-force testing, 449
buffers, 405

bounded, 107, 107
double, 107–108, 108
linear, 107–108
message, 291
and overfl ow, 110
ring, 109, 109–110, 112, 114, 128
size, 401–402, 405–408
time-correlated, 108
and underfl ow, 110

bug, 447
built-in-test software, 444–447
burn-in testing, 456
burst periods, buffer size calculation,

405–408
bursts, and polled-loop systems, 83–84
bus arbitration, 56–57
bus-acknowledgment (B_ACK) signal,

56, 57
bus-cycle length, 38, 39
bus-request (B_REQ) signal, 56, 57

C, 21, 149, 151, 151, 157, 165, 166,
169–170

argc value, 174
argv value, 174
automatic coercion in, 169
vs. C++, 171
call-by-reference in, 169
call-by-value in, 169

exception handling in, 169
and garbage, 164
and information hiding, 156
longjmp call in, 169
Neuron® C, 177
real-time C, 177
register variable type in, 169
setjmp call in, 169
signal function in, 160
volatile variable type in, 169

C code, 82–84, 85–86, 108, 109–110, 160
C++, 21, 149, 151, 151, 165, 166, 167,

170–171
argc value, 174
argv value, 174
vs. C, 171
and garbage, 164, 171, 172
multiple inheritance in, 170
and pointers, 170
preprocessors, use of, 170
real-time C++, 177
and string manipulation, 170
thread synchronization mechanisms,

172
C#, 151, 151, 171–172
caches, 41–43, 42

and compiler optimization, 184
hit ratio, 43, 411
in multi-core processors, 48, 49
and nondeterministic access time, 42
on-chip, 48, 49
performance, 42–43
size, 411

call-by-reference (call-by-address), 158,
169, 173

call-by-value, 158, 169, 173
CAN (controller area network), 69
Cardelli’s criteria, 151–152, 152, 155

and object-oriented languages,
164–165

and procedural languages, 161–162
CASE (computer-aided software

engineering) tools, 220, 232, 233,
267

case statements, 190–191
CC (cyclic code) scheduling, 100–102,

101
CDs (context diagrams), 220–221, 221,

286, 287, 288

www.it-ebooks.info

http://www.it-ebooks.info/

540 INDEX

central processing units, 29, 29–30, 30
clock rates, 39, 41
complex instruction set computers vs.

reduced instruction set computers,
50–51

control unit in, 29–30, 30, 32, 33
CPU–memory gap, 38, 40, 41
and direct memory access transfer,

57–58
fetch and execute cycle, 29–30, 30
internal bus in, 29, 30
and power consumption, 48
reduced instruction set computers vs.

complex instruction set computers,
50–51

supported, and operating system
selection, 136–137, 138, 139, 140

testing, 444
throughput, 13
utilization, 12–14, 12, 36, 385, 395, 410

certifi cation, of systems, 72
CFDs (control fl ow diagrams), 291, 291
chain reactions, and statecharts, 212, 213
chaotic systems under control, 435
checkpointing, 438, 442, 442–443
checksums, 445
circular addressing mode, 191
circular-wait condition, 116–117, 116
CISC (complex instruction set

computers), 50–51
class diagrams, 223, 247, 299, 329
cleanroom software development,

457
clock rates, 39, 41, 48
clock(s), 10, 71, 72

cycles, 30–31, 31, 32, 38, 39, 45, 45–47,
47, 50, 51

global, 8
and performance analysis, 390–391
services, 122–123
and time-stamping, 8
and timing accuracy, 390–391

COCOMO, 429–433, 430
code, dead/subject to removal, 184–185,

186, 189
code generation, 178–181, 179
code inspections, 451
code optimization. See compiler

optimization

code smells, and uncertainty, 437
coding, 150

standards, 152–154
test-fi rst, 453

coercion, 169, 174
cohesion, 277–278, 277, 279, 284, 285
coincidental cohesion, 277
Coleman-Liau Grade Level Index, 232
collaborating real-time systems, 494–495
comfort applications, 494
command-line arguments, 174
commercial off-the-shelf exploratory

tests, 465
commercial real-time operating systems,

134–140, 138, 140, 140, 143
commercial real-time systems, 14–15, 21
common coupling, 238
communication diagrams, 299
communication mechanisms, and

operating system selection, 136, 138,
139, 140

communicational cohesion, 277
compaction, in memory management,

131, 132
compilation, economy of, as Cardelli

criterion, 151, 152, 155, 161, 164
compiler optimization, 181–182, 190–192

arithmetic identities, 182
Boolean code, short-circuiting,

186–187
caches, use of, 184
constant assignments, 185–186
constant folding, 183, 190
cross-branch elimination, 188
dead code, 184–185, 189
dead variables, 186
fl ow-of-control optimization, 185
intrinsic functions, 183
locality of reference, maximization of,

189
loop fusion, 187
loop induction elimination, 184
loop invariant removal, 183–184, 189
loop jamming, 187, 189
loop unrolling, 187, 189–190
multiple-pass, 189–190
and parameter passing, 191
peephole, 182
procedures, storage of, 189

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 541

redundant data elements, storage of,
189

registers, 184
same-value variables, 186
strategies, 150
strength reduction, 182–183, 190
subexpressions, 183
tables, 188
and threshold tests, 188–189
unreachable code, 184–185
See also compilers; performance

optimization
compilers, 3, 178, 181, 190–191, 464–465

and behavioral uncertainty, 436
in Java, 173
language, 151, 178
and test cases, 191–192
and very long instruction word

architecture, 48
See also compiler optimization

completeness, in requirements validation,
228, 229, 267

complex instruction set computers, 50–51
component diagrams, 299
composite structure diagrams, 300
computational complexity theory, 380–381
computer-aided software engineering

tools, 220, 232, 233, 267
computing cloud, 484–485, 485
concurrency, 79, 97, 141, 218

and multi-core processors, 481
and object-oriented languages, 167
patterns, in Douglass’ real-time

pattern set, 297
conditional branching, 9, 10, 30, 46, 454
conditional compilation, 454
confi rming fl ag, 447
consistency

checking, 203–204, 204
in requirements validation, 228

constant assignments, 185–186
constant folding, 183, 190
consumer transitions, and Petri nets, 214,

215
contact bounce, 83
content coupling, 238
context, 88–89, 90
context diagrams, 220–221, 221, 286, 287,

288

context switching, 88–89, 93, 94
stack model, 89, 90
time, and operating system selection,

136, 138, 138, 139, 140
and turnaround time, 393–394

contiguous memory, 131
continuances, in software requirements

specifi cations, 230
control bus, 29
control coupling, 238
control design, 283
control fl ow analysis, 290–291
control fl ow diagrams, 291, 291
control fl ows, 287–288, 290–291, 291
control specifi cations, 291, 291
control unit, in central processing unit,

29–30, 30, 32, 33
controller area network, 69
cooling needs, of CPU chips, 48
coordinated infrastructure systems, 495
core dump, 455
core processors (custom

microcontrollers), 66–68, 67
corner-case testing, 449–450
coroutines, 85–87, 92, 392, 392
correctness, as software quality, 272, 274,

275, 282
cost

and operating systems selection, 137,
138, 139, 140

models, 417, 429–433, 430, 470
counting semaphores, 114
coupling, 238, 277, 277, 278, 279, 284,

285
CPUs. See central processing units
CPU–memory gap, 38, 40, 41
CRC-16, 445–446
creational patterns, 296, 296
critical instant, of task, 103
critical regions, 112, 113, 117, 119
cross-branch elimination, 188
C-SPECs (control specifi cations), 291,

291
custom microcontrollers, 66–68, 67
customers (consumers), and queuing,

399, 403, 404
cyberpandemics, 495
cyclic code scheduling, 100–102, 101
cyclic code structure, 84–85

www.it-ebooks.info

http://www.it-ebooks.info/

542 INDEX

cyclic redundancy code, 445–446
cyclomatic complexity, 420–421, 421, 453

D/A circuitry (digital-to-analog
conversion), 60

data abstraction, 161, 293
data bus, 29, 30
data coupling, 238
data design, 283
data dictionaries, 289, 290–291, 291
data fl ow diagrams, 286–289, 288, 289,

291
data integrity, 84
data stores, 287
datapath, in central processing unit,

29–30, 30
DDs (data dictionaries), 289, 290–291,

291
dead code, 184–185, 186, 189
dead variables, 186
deadlines, 7–8, 14, 16, 98, 99
deadlocks, 114–115, 115, 117–118,

119–120, 142, 216–217, 216
debug code, 184–185
debugging, 137, 150, 155, 161, 453, 454–456,

460, 461. See also testing
DEC (Digital Equipment Corporation),

21
decode instruction (D), 31, 31, 44, 45, 45,

47
defect, defi ned, 447
defi nition of requirements document,

199
delay function, 122–123, 127
delay uncertainty, 122
delivered source instructions, 419
delta KLOC, 419
dependency inversion principle, 294–295
deployment diagrams, 300
design constraint requirements, 200, 201
design document, 267
design of real-time systems, 14, 16
design patterns, 296, 297, 299
destroyed determinism, 397, 398, 412
detailed COCOMO 81, 431, 432
detailed design, 283
determinism, 11–12, 127, 164, 397–398

destroyed, 397, 398, 412
event, 11, 443

nondeterminism, 43, 64
temporal, 11, 12

development platforms, availability of,
and operating system selection, 137,
138, 138, 140

device drivers, 34, 53, 468–470, 469
DFDs (data fl ow diagrams), 286–289,

288, 289, 291
diamond-shaped requirements structure,

227, 227
Digital Equipment Corporation, 21
digital signal processing, 65–66
digital-to-analog conversion (D/A

circuitry), 60
DIP (dependency inversion principle),

294–295
direct addressing mode, 32, 46
direct memory access, 56–58, 57

bus-acknowledgment (B_ACK) signal,
56, 57

bus-request (B_REQ) signal, 56, 57
and central processing unit, 57–58
controller, 56–57, 57
DMA-acknowledgment (D_ACK)

signal, 56, 57, 57
DMA-request (D_REQ) signal, 56, 57,

57
and performance analysis, 397, 398

directives, in software requirements
specifi cations, 230

disable priority interrupt, 35–36
disk resident system/user programs, 21, 22
dispatchers, 81, 81, 85–86, 95, 123–125,

124, 130, 221, 223, 392, 441, 442
dispatching, in heterogeneous soft

multi-core architecture, 486
distance collaboration in software

projects, 492–493, 498
distributed real-time architectures, 68

fi eldbus networks, 68–71, 70, 484–485,
485

time-triggered architecture, 71–73, 71
distribution patterns, in Douglass’

real-time pattern set, 297
DMA. See direct memory access
documentation design, 283
domain model, 199, 199, 301
dormant state, 95, 96, 97, 97
double buffering, 107–108, 108

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 543

Douglass’ real-time pattern set, 297
downcasting, in Java, 174
downward leveling, 287
DPI (disable priority interrupt), 35–36
DPRAM (dual-port RAM), 57–58
drag-and-drop systems, 493
DRAM (dynamic RAM), 38–39, 40–41
DSI (delivered source instructions), 419
DSP (digital signal processing), 65–66
dual-port RAM, 57–58
dubious constraints, and uncertainty, 437
dynamic binding, and object-oriented

languages, 453
dynamic memory allocation, 159
dynamic RAM, 38–39, 40–41
dynamic requirements, 201
dynamic-priority systems, 90, 104–106,

105, 105, 106, 142

earliest deadline fi rst approach, 104–106,
105, 105

EDFA bound, 105
and rate-monotonic approach, 106

EDC (error detection and correction)
chip, 446

EDF approach. See earliest deadline fi rst
approach

edge-triggered interrupts, 55
EEPROM (electrically erasable

programmable ROM), 36–37, 38, 39,
40

effort adjustment factor, in intermediate
COCOMO 81, 431, 432

effort estimation, 417. See also cost:
models; metrics

electrically erasable programmable
ROM, 36–37, 38, 39, 40

electrostatic discharge, 444, 447
elevator control systems, 8–9, 13, 40, 68,

123–127, 124, 206–207, 207, 208, 217,
220–221, 221, 287–290, 289, 440–441,
441

ELF (Erlang Loss Formula), 404–405
embedded systems, 5–6, 7
enable priority interrupt, 35–36, 92–93
encapsulation, 162, 163
energy-aware operating systems, 141–142
energy-aware support, and operating

system selection, 141–142

engineering principles. See software
engineering principles

entertainment applications, 494
entity relationship diagrams, 288
environmental exploratory tests, 463–464
environmental models, in structured

analysis/structured design, 218, 219
environmental uncertainty, 435–436, 439
EPI (enable priority interrupt), 35–36,

92–93
ERDs (entity relationship diagrams), 288
Erlang Loss Formula, 404–405
error detection and correction chip, 446
errors, 447, 454–455
error-tolerant computing, 480
ETA (event-triggered architecture), 73
Euclid, 177
European Futurist Conference, 478
event determinism, 11, 443
events, 10–11, 10, 82, 176, 391
event-triggered architecture, 73
evolvability, 273
exception function, 161
exception handling, 159–161, 169
exceptions, 87–88
execute ALU instruction (E), 31, 31, 44,

45, 45, 47
executing state, 95, 96, 97, 97
execution

economy of, as Cardelli criterion, 151,
152, 155, 161, 164

time, 99, 385–391, 389, 395, 483
executives, operating systems as, 82
exhaustive testing, 449
exploratory testing, 462–465
external fragmentation, 131, 132
external interface requirements, 200
external locking, 163
external software qualities, 268
eXtreme Programming, 153, 307, 459

failed systems, 5
failure, 447

function, 270–271, 270, 271
probability, 269–270, 270

fairness scheduling, 86–87
falling edge, 55
“fast” systems, 14
fault-injection, 436

www.it-ebooks.info

http://www.it-ebooks.info/

544 INDEX

faults, 447
fault-tolerance, 16, 418, 438, 439, 470

built-in-test software, 444–447
CPU testing, 444
memory testing, 444–446
missed interrupts, 447
N-version programming, 443–444
RAM, 444–446
recovery-block approach, 442, 442–443
and redundant hardware/software, 440,

441, 443–444
ROM, 444–445, 446
software black boxes, 443
spatial, 440–443, 441, 442
spurious interrupts, 447
temporal, 440
and voting schemes, 440
See also reliability

feasibility report, in requirements
engineering, 198, 199

feature points, 427–428
ferrite core memory, 20, 22
fetch and execute cycle, and central

processing unit, 29–30, 30
fetch instruction (F), 31, 31, 44, 45, 45, 47
fi eldbus networks, 68–71, 70, 484–485,

485
fi eld-programmable gate arrays, 67, 67,

481–482
FIFO (fi rst-in, fi rst-out), 128, 133, 176
fi ltering, 60–61, 61
fi lters, and A/D circuitry, 59
fi nal design review, 283
fi nite state automaton. See fi nite state

machines
fi nite state machines, 85, 203, 205–207,

207, 208, 209–210, 209, 210, 211, 212,
213, 291, 292–293, 292

fi ring, in Petri nets, 214, 214, 214, 215,
215

fi rm real-time systems, 7, 7, 73
fi rst-in, fi rst-out, 128, 133, 176
fi xed-period systems, 394–396
fi xed-priority scheduling, rate-monotonic

approach, 102–104, 103, 104, 104
fi xed-priority systems, 90, 102–104, 103,

104, 104, 106, 142
Flash memory, 36–37, 38
Flesch Reading Easiness Index, 232

Flesch-Kincaid Grade Level Index, 232
fl oating-point data, 30, 31, 32, 386,

465–467
fl oating-point overfl ow errors, 160
fl owcharts, 202
fl ow-of-control, 9–10, 9, 185
foreground/background systems, 91–94,

91, 94, 125
formal program verifi cation, 451–452
formal specifi cation methods, 198, 201,

202–203, 205, 233
and consistency checking, 203–204,

204
fi nite state machines, 203, 205–207,

207, 208, 209–210, 209, 210
limitations of, 205
and model checking, 203
Petri nets, 213–214, 214, 214, 215, 215,

216–217, 216
and reuse of requirements, 203
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
and theorem proving, 203

formality, as engineering principle,
275–276, 282

Fortran, 156, 178
FPGAs (fi eld-programmable gate

arrays), 67, 67, 481–482
fragmented memory, 131–132, 131, 411
frames, in cyclic code scheduling,

100–102, 101
FSA (fi nite state automaton). See fi nite

state machines
FSMs. See fi nite state machines
func function, 160
function points, 423–427, 425, 426,

453–454
functional cohesion, 277
functional design, 283
functional requirements, 199, 200, 201
future of real time systems, 477–479,

497–499
applications, 493–497
hardware, 479–485, 482, 485, 498
operating systems, 485–488, 487, 498
programming languages, 488–491, 490,

498
systems engineering, 491–493
vision confi dence pentacles, 479, 480

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 545

galvanic isolation, 60, 61
“Gang of Four” patterns, 295–296, 296
garbage, 133, 163–164, 171, 172, 175
general semaphores, 114
generality, as engineering principle,

279–280, 282
generator polynomial, 445–446
global clocks, 8. See also clock(s)
global variables, 84–85, 86, 107, 126–127,

157, 158–159, 411
GoF (“Gang of Four”) patterns, 295–296,

296
“green” software, 33
group walkthroughs, 451
Gustafson’s law, 383–384, 384

Halstead’s metrics, 420, 421–423
Hamming code, 446
hard disks, use in real-time systems, 405
hard real-time systems, 6, 7, 7, 73
hardware, 27–28, 73–74

application-optimized, 73
basic processor architecture, 28–36, 29,

30, 31, 34
central processing unit, 29, 29–30, 30
complex instruction set vs. reduced

instruction set, 50–51
distributed real-time architectures,

68–73, 70, 71
event-triggered architecture, 73
in future real-time systems, 479–485,

482, 485, 498
Harvard architecture, 44–45, 44
input/output, 33–34, 34
instruction processing, 30–33, 31, 44,

45–46, 45
interrupts, 34–35, 87, 88, 126, 141, 486
memory, 36–43, 37, 39, 42
microcontrollers, 62, 63, 64–68, 65, 67
microprocessors, 62–64, 63
multi-core processors, 48–50, 49
peripheral interfacing, 52–62, 52, 54,

55, 57, 59, 61
pipelined instruction processing,

45–46, 45
power consumption of, 39
selection of, 16
superscalar architecture, 46–47, 47, 48
time-triggered architecture, 71–73, 71

very long instruction word
architecture, 47–48

von Neumann architecture, 29–30, 29,
30, 35, 43, 44, 45

hard-wired logic, 32, 33
Harvard architecture, 44–45, 44
heat generation of CPU chips, 48
Heisenberg Uncertainty Principle, 434
heterogeneous soft multi-core

architecture, 481–484, 482, 486–487,
487, 498

hierarchical memory organization, 41–43,
42

hierarchy, and statecharts, 211, 212
high impedance, 57
hit ratio, 43, 411
hold-and-wait condition, 117
hourglass-shaped requirements structure,

227, 227
HSMC architecture. See heterogeneous

soft multi-core architecture
Hungarian notation, 153–154
hybrid code generation, 179–180, 179
hybrid scheduling systems, 90–94, 91,

100, 100
hyperperiod, 100, 101

ICE (in-circuit emulator), 461
idioms, 296
IEEE Std 100–2000, Standard Dictionary

of Electrical and Electronics Terms,
268

IEEE Std 830–1998, Recommended
Practice for Software Requirements
Specifi cations, 199–200, 225–227,
225, 233, 315

IEEE Std 1016–2009, 281, 315, 317
IH (interrupt handling), 35, 88–89, 96
immediate addressing mode, 32, 185
immutable objects, 163
imperatives, in software requirements

specifi cations, 230, 230
implementation models, in structured

analysis/structured design, 219, 219
imprecise computations, 468
in-circuit emulator, 461
incrementality, as engineering principle,

280, 282
indirect addressing mode, 158

www.it-ebooks.info

http://www.it-ebooks.info/

546 INDEX

industrial systems, and interference,
60–61, 61

inertial measurement systems, 17–18,
139, 140, 386, 420–421, 421, 424–425,
425, 428, 431

informal specifi cation methods, 201–202
information hiding, 278

and Ada, 156
and C, 156
and object-oriented languages, 162,

293
Parnas partitioning, 284–286, 285
and procedural languages, 156

inheritance, 166, 170, 174, 293, 302,
452–453

initialization, in foreground/background
systems, 92–94, 94

input exploratory tests, 464
input/output, 33–34, 34, 58, 74

A/D circuitry (analog-to-digital
conversion), 58–60, 59

D/A circuitry (digital-to-analog
conversion), 60

interrupt-driven, 53–56, 54, 55
memory-mapped, 33–34
performance analysis of, 405–408, 412
polled, 52
programmed, 34, 34
signals, 60–62, 61

inputs, 3–4, 3, 4. See also input/output
instruction codes, mnemonic, 31–32
instruction completion time, 397
instruction counting, 385–390, 389
instruction cycles, 30–31, 31
instruction processing, 30–33, 31, 44

pipelined instruction processing,
45–46, 45

superscalar architecture, 46–47, 47, 48
very long instruction word

architecture, 47–48
instruction registers, 29, 30
instruction sets, 50–51
integer data, 30, 31, 58, 157, 183–184, 386,

465–467
integer overfl ow, 157
integrated circuits, 479–480
integration testing, 457, 458–462, 459,

460, 462
Intel, 481

intelligent transportation systems, 495
intelligent systems, 63
interaction diagrams, 223, 300
interaction overview diagrams, 300
inter-core multitasking, 141
interfacing, peripheral, 52–62, 52, 54, 55,

57, 59, 61
interference, and parallel I/O signals,

60–61, 61
interlock, in C#, 172
intermediate COCOMO 81, 431–432
intermediate design reviews, 283
internal bus, in central processing unit,

29, 30
internal fragmentation, 131–132
internal interrupts, 36
internal locking, 163
internal software qualities, 268
International Function Point Users

Group, 427, 454
interoperability, 16, 273, 275, 282
interrupt disabling, 397
interrupt handling, 35, 88–89, 96
interrupt latency, 35, 135–136

minimum, and operating system
selection, 135–136, 138, 138, 139, 140

and response times, 396–397
interrupt-driven input/output, 53–56, 54,

55
interrupt-driven systems, 396–397
interrupt-only systems, 87–90, 91, 92
interrupt-request latching, 35
interrupts, 34–36

asynchronous, 20, 22
edge-triggered, 55
exceptions, 87–88
hardware, 34–35, 87, 88, 126, 141, 486
hybrid scheduling systems, 90–94
internal, 36
level-triggered, 55
maskable, 35
missed, 447
nonmaskable, 35
phantom, 54, 447
preemptive priority systems, 90
prioritized, 90
prioritizing, 53–56, 55
priority interrupt controllers, 55–56, 55
software, 36, 87

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 547

spurious, 54, 447
vectored, 53–55, 54
watchdog, 65

intertask communication, 81, 81, 106
buffers, 107–110, 107, 108, 109
deadlock, 114–115, 115, 117–118
in heterogeneous soft multi-core

architecture, 486–487, 487
mailboxes, 110–112, 111
priority inversion problem, 118–122,

118, 120, 121, 121
semaphores, 112–114
starvation problem, 116–117, 116
timer/clock services, 122–123

intra-core multitasking, 141
intrinsic functions, and compiler

optimization, 183
I/O. See input/output
IRs (instruction registers), 29, 30
iterative life cycle models, 303, 304, 307

Java, 21, 149, 151, 151, 154, 165, 167,
172–177, 172

args value, 174
automatic coercion in, 174
call-by-reference/call-by-value in, 173
and classes, 173
command-line arguments, 174
compilers, 173
conversion from procedural languages,

173
downcasting, 174
and garbage, 164
microprocessors, 173
and multiple inheritance, 174
and pointers, 173
preprocessors, use of, 173
real-time, 174–177
references in, 173
scheduling in, 174
and strings, 174
upcasting, 174
and virtual machines, 172–173, 172

jump-to-self instruction, 87, 89, 91

kernels, 80–82, 81, 114, 134, 172
keys, in mailboxes, 110–111, 113–114, 125
KLOC (thousands of lines of code), 419,

420, 429–431, 430

language compilers, 151, 178
language exploratory tests, 464–465
language features

economy of, as Cardelli criterion, 152,
152, 155, 162, 165

orthogonality of, 162
language standards, 152–153
languages, 157. See also specifi c

languages
large-scale development, economy of, as

Cardelli criterion, 152, 152, 155, 161,
164–165

latency, 35, 61–62, 73. See also interrupt
latency

laxity type, 98
Layland, J. W., 19, 103
least recently used algorithm, and

paging, 133
least signifi cant bit, 465–466, 466
legacy systems, and behavioral

uncertainty, 436
level-triggered interrupts, 55
life cycle models, 302–314

agile methodologies, 307–311, 308, 312
iterative, 303, 304, 307
sequential, 303, 304
spiral, 306–307, 306
V-model, 305–306, 305
waterfall, 303–305, 304

linear buffers, 107–108
line-drawing routines, 285
lines of code (LOC), 419, 420, 429–431,

430
linked lists, and task control blocks, 128,

129, 129–130
linkers, 3
Linux, 16, 454, 455, 470
Liskov substitution principle, 295
Little’s law, 403–404
Liu, C. L., 19, 103
load operand (L), 31, 31, 44, 45, 45, 47
local networks of collaborating real-time

systems, 494–495
locality of reference, 41, 189
locators, 3
lock construct, in C#, 172
locking

external/internal, 163
memory, 133

www.it-ebooks.info

http://www.it-ebooks.info/

548 INDEX

logic
analyzers, 385, 451, 460–461, 460
cells, 67, 67
errors, 454–455
hard-wired, 32, 33
temporal, 219, 219

logical cohesion, 277
logical database requirements, 200, 201
longjmp call, in C, 169
look-up tables, 410, 467–468, 467
loop fusion, 187
loop induction elimination, 184
loop invariant removal, 183–184, 189
loop jamming, 187, 189
loop unrolling, 187, 189–190
looping, 390
low-pass fi lters, 59, 60–61, 61
LRU (least recently used) algorithm,

and paging, 133
LSB (least signifi cant bit), 465–466, 466

MAC (multiple-accumulation)
instructions, 65

machine code, 3, 173, 182, 292
mailbox queues, 111–112
mailboxes, 110–112, 111, 113–114, 125
maintainability, 149, 153, 273–274, 275,

278, 282
Mars Exploration Rover, NASA, 17, 18
Mars Pathfi nder Sojourner, NASA, 120
Martin, J., 19
maskable interrupts, 35
master–servant bus-type connection, 123
master–slave confi guration, 444
McCabe, T. J., 420, 453–454
Mealy machines, 209, 209, 210, 213, 291
mean processing time, 400
mean time between failures, 272
mean time to fi rst failure, 272
memory

access, 38–39, 39, 40–41
classes of, 36–38, 37
contiguous, 131
corruption of, 444–445
errors, 445
ferrite core, 20, 22
Flash, 36–37, 38
fragmentation of, 131–132, 131, 411
and garbage, 133

layout, 39, 39–40
locking, 133
management, 127–133, 129, 131, 143
nonvolatile, 54, 65
organization, hierarchical, 41–43, 42
patterns, in Douglass’ real-time

pattern set, 297
in real-time Java, 176–177
size, 412–413
speed, 412
technologies, 36–43, 37, 39, 42
testing, 444–446
total required, and operating system

selection, 136, 138, 138, 140
utilization, 408–411, 410
in von Neumann architecture, 29, 29,

30
memory-mapped input/output, 33–34
memory-read access time, 38, 39
memory-write access time, 38
message buffers, 291
message transfer delay, 69–70
messaging, and object-oriented

languages, 293
metrics, 417, 418–419, 470

best practices, 429
criticisms of, 428–429
cyclomatic complexity, 420–421, 421,

453
feature points, 427–428
function points, 423–427, 425, 426
Halstead’s metrics, 420, 421–423
lines of code (LOC), 419, 420
for object-oriented software, 428
and testing, 419

M/G/l queues, 403
microcode, 50, 51
microcontrollers, 62, 63, 64–68, 65, 67
microinstructions, 32, 51
microkernels, 81, 81–82
microprocessors, 62–64, 63, 173
microprogramming, 32–33
migrating objects, 163
MIL-STD-1553B, 120
missed interrupts, 447
mission-critical systems, 452, 482
M/M/l queues, 398–403, 399
mnemonic instruction codes, 31–32
model checking

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 549

in requirements validation, 229
in system specifi cation, 203
and uncertainty, 438

modularity, 156–157, 276–278, 276, 277,
279, 281, 282

module-level testing, 455
modulo-2, 445
Moore machines, 209
Moore’s law, 479–480
most signifi cant bit, 466, 466
MROS 68K, 21, 22
MSB (most signifi cant bit), 466, 466
MTBF (mean time between failures), 272
MTFF (mean time to fi rst failure), 272
multi-core processors, 48–50, 49, 488

cache in, 48, 49
heterogeneous soft multi-core,

481–484, 482
operating systems for, 141
and parallelization, 382, 384
and task concurrency, 49

multi-core support, and operating system
selection, 141

multidisciplinary design challenges,
15–16, 15

multiple inheritance, 170, 174
multiple-accumulation instructions, 65
multiple-pass optimization, 189–190
multiple-stack arrangements, 128–129,

129, 143
multiprocessor(s), 97, 381–382, 398
multitasking, 43, 80, 82, 85, 141
mutexes, 120, 172, 486
mutual exclusion, 116

N × N matrixes, 443
National Institute of Standards and

Technology, 175
NCSS (noncommented source-code

statements), 419
.NET framework, and C#, 171, 172
network support, and operating system

selection, 137, 138, 139, 140, 141
network-based control systems, 70
Neuron® C, 177
NFL (“no free lunch”) theorems,

309–310
NIST (National Institute of Standards

and Technology), 175

“no free lunch” theorems, 309–310
noncommented source-code statements,

419
nondeterminism, 43, 64
nondeterministic access time, and cache,

42
“none” level of coupling, 238
nonfunctional requirements, 199, 200,

201
nonidle processing, 12
noninterrupt-driven systems, 84, 91, 92
nonintrusive testing, 454
nonmaskable interrupts, 35
nonobservable requirements, 201
nonperiodic systems, performance

analysis of, 396–398
nonpipelined systems, 45, 388
nonvolatile memory, 54, 65
no-preemption condition, 117
NP problems, 380–382
N-Sat problems, 381
nuclear power plant monitoring systems,

1, 2, 6, 18, 90, 270, 450, 465
N-version programming, 443–444
Nyquist–Shannon sampling theorem, 58,

59

OAOOP (once-and-only-once principle),
294

object code, 3, 172, 173, 181, 193
object diagrams, 300
object-oriented analysis, 221–224, 223
object-oriented analysis and design, 301,

302
object-oriented design, 293, 311

advantages of, 293–295
dependency inversion principle,

294–295
Liskov substitution principle, 295
once-and-only-once principle,

294
open-closed principle, 294
patterns of, 295–297, 296
vs. procedural approaches, 301–302,

301
and reuse support, 294–295
vs. structured design, 301–302, 301
and unifi ed modeling language, 293,

298–301, 298

www.it-ebooks.info

http://www.it-ebooks.info/

550 INDEX

object-oriented languages, 150, 151, 162,
221, 192, 293

and Cardelli’s criteria, 164–165
and concurrency, 167
and data abstraction, 293
and dynamic binding, 453
and fl exibility, 166
and garbage collection, 163–164
and ineffi ciency, 165
and information hiding, 162, 293
and inheritance, 166, 293, 452–453
and messaging, 293
and polymorphism, 293, 295
vs. procedural languages, 165, 167
special real-time languages, 177–178
synchronizing objects, 162–163
and unpredictability, 165
See also Ada; C++; C#; Java

object-oriented software
metrics, 428
testing, 452–453

objects, 162–163
observable requirements, 201
Occam 2, 177
OCP (open-closed principle), 294
off-the-shelf systems, and behavioral

uncertainty, 436
OMG Unifi ed Modeling LanguageTM,

299. See also unifi ed modeling
language

once-and-only-once principle, 294
on-chip caches, 48, 49
one-address form, 32
one-shot timer, 123
OOA (object-oriented analysis),

221–224, 223
OOAD (object-oriented analysis and

design), 301–302, 301
open systems, 16, 273
open systems interconnection model,

68–69
open-closed principle, 294
operating systems, 3, 79–82, 142–143

built in house, 134
commercial systems, 134–140, 138, 140,

140, 143
cost, as criterion in selection, 137, 138,

139, 140
dispatching, 81, 81

energy-aware, 141–142
as executives, 82
foreground/background systems,

91–94, 91, 94
in future real-time systems, 485–488,

487, 498
hybrid scheduling systems, 90–94, 91
interrupt-only systems, 87–90, 91, 92
intertask communication, 81, 81,

106–127, 107, 108, 109, 111, 115, 116,
118, 120, 121, 121, 124

kernels, 81, 81, 82
memory management, 127–133, 129,

131
microkernels, 81, 81–82
for multi-core processors, 141
preemptive priority systems, 90, 95
process, 80–81, 81
pseudokernels, 82–87, 91–92, 142
selection of, 133–142, 138, 140, 140,

143
synchronization, 81–82, 81
task control block model, 95–97, 95
threads, 80–81, 81, 98

operations research, 19
optical isolators, 60
optimization, of code/compilers. See

compiler optimization
options, in software requirements

specifi cations, 230–231
organic software systems and basic

COCOMO 81, 430–431
orthogonality

of language features, 162
and statecharts, 211, 211, 212–213

oscilloscopes, use in systems integration,
459–460

OSI (open systems interconnection)
model, 68–69

output exploratory tests, 464
outputs, 3–4, 3, 4. See also input/output
overfl ow, and ring buffering, 110
overhead, and memory management, 127
overlapping events, 82, 391
overlapping interrupt requests, 55
overlaying, 130–131
overspeed detection, and biometric

identifi cation devices, 496
overvoltage suppressors, 60, 61

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 551

P problems, 380
package diagrams, 300
paging, 132–133
parallel I/O signals, 60–61, 61
parallel programming, 489
parallel systems, 383
parallelism, 49–50
parallelization, 382–384, 384
parameter lists, 158, 159
parameter passing, 157–159, 191
Parnas, David, 491
Parnas partitioning, 156, 277, 284–286,

285
partial real-time system, 89–90
partially implemented systems, testing,

458
partition swapping, 131
passwords, and biometric identifi cation,

496, 498
pasta sauce bottling process, 19
patching, 418
pathological-case testing, 450
pause system call, 83
PCR (program counter register), 29, 30,

35
PDP-11, 21
PEARL (process and experiment

automation real-time language),
177

peephole optimization, 182
performance analysis, 379–382, 411–413

Amdahl’s law, 382–384
of coroutines, 392, 392
and determinism, 397–398
and direct memory access, 397, 398
execution time estimation, 385–391,

389
of fi xed-period systems, 394–396
Gustafson’s law, 383–384, 384
instruction counting, 385–390, 389
interrupt-driven systems, 396–397
input/output, 405–408, 412
memory requirements, 408–411, 410,

412–413
of nonperiodic systems, 396–398
and parallelization, 382–384, 384
of polled loops, 391, 391
queuing theory, 396, 398–405, 399
response-time, 394–396

of round-robin systems, 392–394
in testing phase, 379

performance, as software quality, 272,
275, 282

performance optimization, 380, 413, 418,
465, 471

binary angular measure, 466–467, 466
imprecise computations, 468
look-up tables, 467–468, 467
memory usage, 410–411
real-time device drivers, 468–470,

469
scaled numbers, 465–467, 466
See also compiler optimization

performance requirements, 200–201
period, as temporal parameter of task,

98
periodic events, 10–11, 10
peripheral interface units, 52–53, 52
peripheral interfacing, 52–62, 52, 54, 55,

57, 59, 61
Petri nets, 213–217, 214, 214, 215, 215,

216, 299
phantom interrupts, 54, 447
phase, as temporal parameter of task,

98
physical design, 283
PhysicalMemory, in real-time Java,

176–177
PICs (priority interrupt controllers),

55–56, 55
pipelines, 45, 483

instruction counting, 388–389, 389
instruction processing, 45–46, 45
and memory, 411

PIUs (peripheral interface units), 52–53,
52

Place/Transition nets. See Petri nets
platform-independent code, 488, 489,

491
PL/I derivatives, 149, 151
pointers, 90, 95, 129, 170, 171, 173
Poisson distribution, 398, 403
polled input/output, 52
polled loops, 82–84, 91, 391, 391
polymorphism, and object-oriented

languages, 293, 295
portability, 274, 275, 282
postembedded systems, 479

www.it-ebooks.info

http://www.it-ebooks.info/

552 INDEX

power consumption
of CPU chips, 48
of hardware, 39
of integrated circuits, 480
and performance, 410
and sleep mode, 141
and slowdown mode, 33
ultra-low, 62

power surges, 447
precedence constraints, 98
preemptive priority systems, 90, 95
preliminary study, in requirements

engineering process, 198, 199
preprocessors, 170, 173
pre-runtime scheduling, 98
Princeton architecture. See von

Neumann architecture
prioritized interrupts, 90
priority ceiling protocol, 120–122, 121,

121
priority, in real-time Java, 176
priority inheritance protocol, 119–120,

120
priority interrupt controllers, 55–56, 55
priority inversion problem, 118–122, 118,

120, 121, 121
probabilistic hard real-time systems, 398
probability distribution, 398, 399,

402–403
procedural cohesion, 277
procedural design, 284, 311

and fi nite state machines, 292–293, 292
vs. object-oriented approaches,

301–302, 301
Parnas partitioning, 284–286, 285
structured design, 286–291, 288, 289,

291
procedural languages, 151, 156, 193

call-by-reference/call-by-value, 158
and Cardelli’s criteria, 161–162
conversion to Java, 173
and data abstraction, 161
dynamic memory allocation, 159
exception handling, 159–161
and garbage collection, 164
global variables, 157, 158–159
and information hiding, 156
modularity, 156–157
vs. object-oriented languages, 165, 167

parameter passing, 157–159
recursion, 159
typing issues, 157
See also Ada; C

procedures, storage of, 189
process specifi cations, 287, 288, 291
processes, 80–81, 81
processing rates, and queuing, 400–401
processor architecture, 28–36, 29, 30, 31,

34
processors, 62, 63

custom microcontrollers, 66–68, 67
microprocessors, 62–64, 63, 173
redundant, 443
standard microcontrollers, 64–66

producer transitions, and Petri nets, 214,
215

product development process, 267
productivity, of programmers, 178, 192,

193, 275, 488–489
profi le diagrams, 300
program counter register, 29, 30, 35
programmed input/output, 34, 34
programmer-generated code, 179, 179
programming languages, 16, 149–150,

151, 192–193
automatic code generation, 178–181,

179
assembly language, 151, 151, 154–156,

193
and behavioral uncertainty, 436
code optimization. See compiler

optimization
fi tness for real-time applications,

151–152
in future real-time systems, 488–491,

490, 498
special real-time, 152, 177–178, 193
See also Ada; C; C++; C#; Java;

object-oriented languages;
procedural languages

prototyping, 180, 272
pseudocode, 89–90, 113–114, 185, 292–

293, 292
pseudokernels, 82, 142

coroutines, 85–87, 92
cyclic code structure, 84–85
polled loops, 82–84, 91
state-driven code, 85, 92

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 553

P-SPECS (process specifi cations), 287,
288, 291

pulse I/O signals, 61–62

QoS (quality of service), for
communications performance, 141

quality of service, for communications
performance, 141

quantization, and A/D circuitry, 59–60, 59
queuing, 19, 396, 398

arrival rates, 400, 401
buffer size calculation, 401–402
customers (consumers), 399, 403, 404
Erlang Loss Formula, 404–405
Little’s law, 403–404
mailbox queues, 111–112
M/G/l queues, 403
M/M/l queues, 398–403, 399
processing rates, 400–401
response-time modeling, 402–403
servers (producers), 398, 403
single-server queue model, 398–400,

399
time loading, 404, 405

race conditions, 216, 216
raise function, 160
RAM, 409

checking, 446
and fault-tolerance, 444–446
scrubbing, 446

random access memory. See RAM
random burst periods, buffer size

calculation, 407–408
random test-case generation, 450
rate-monotonic scheduling, 14, 19, 22, 90,

102–104, 103, 104
and earliest deadline fi rst approach, 106
rate-monotonic theorem, 102–103
response time calculation, 395–396
RMA bound, 103–104, 104
and uncertainty, 434

ratios, derived from software
requirements specifi cations, 231, 231

RawMemoryAccess, in real-time Java,
176, 177

reactive real-time systems, 5
readability

and coding standards, 153

statistics, in software requirements
specifi cations, 232

readers-and-writers problem, 107, 107
read-only memory. See ROM
ready state, 95, 96–97, 97
realism, in requirements validation, 228
real-time C/C++, 177
real-time computing, 20
real-time device drivers, 468–470, 469
real-time Euclid, 177
Real-Time Executive, 21, 22
real-time Java, 174–177
AsyncEvent/

AsyncEventHandler, 176
AsynchronouslyInterrupted-

Exception, 176
and garbage collection, 175
and memory, 176–177
PhysicalMemory, 176–177
priority in, 176
RawMemoryAccess, 176, 177
and threads, 174–176

real-time operating systems. See
operating systems

real-time punctuality, 8, 28, 72
real-time SA/SD, 290–291, 291
real-time systems, 1–2, 4, 4, 5, 6

commercial, 14–15, 21
embedded, 5–6, 7
evolution of, 16–23, 17, 18, 22
examples of, 17–19
fi rm, 7, 7, 73
hard, 6, 7, 7, 73
misconceptions about, 14–15
multidisciplinary design challenges,

15–16, 15
reactive, 5
soft, 6, 7, 7, 73
software control, 11
terminology, 2–14
timing constraints, 4–5, 8–9

Recommended Practice for Software
Requirements Specifi cations (IEEE
Std 830–1998), 199–200, 225–227,
225, 233, 315

recovery-block approach to
fault-tolerance, 442, 442–443

recursion, 159
reduced instruction set computers, 50–51

www.it-ebooks.info

http://www.it-ebooks.info/

554 INDEX

redundant data elements, storage of, 189
redundant hardware/software, and fault-

tolerance, 440, 441, 443–444
redundant processors, 443
reentrant code, 88
refactoring, 437, 438
references, in Java, 173
register variable type, in C, 169
register-direct/register-indirect

addressing modes, 32
registers, 29, 30

in compiler optimization, 184
instruction, 29, 30
program counter, 29, 30, 35
register variable type, in C, 169
register-direct/register-indirect

addressing modes, 32
status, 35, 53

register-to-memory operations, 184
register-to-register operations, 31, 184
regression testing, 456–457
rejuvenation, and uncertainty, 438
relative deadline, as temporal parameter

of task, 98, 99
release time, 10, 98
reliability, 185, 269–272, 270, 270, 271,

274, 275, 275, 282, 297, 418, 470–471
bathtub curve, 271–272, 271
and coding standards, 153
failure function/model, 270–272, 270, 271
failure probability, 269–270, 270
and Halstead’s metrics, 420
mean time between failures, 272
mean time to fi rst failure, 272
and testing, 418
See also fault-tolerance

repairability, 273
repeating timer, 123
requirements, classes of, 199–201
requirements, composing, 226–228, 226
requirements defi nition, 199, 199
requirements document, 199, 205,

225–228, 225, 226
requirements elicitation, 198–199, 199
requirements engineering, 197–198,

232–233, 492
defi nition of requirements document,

199
domain model, 199, 199

feasibility report, 198, 199
preliminary study, 198, 199
process, 198–199, 199
requirements defi nition, 199, 199
requirements document, 199, 205,

225–228, 225, 226
requirements elicitation, 198–199, 199
requirements specifi cation, 199, 199
requirements validation, 199, 228–232,

230, 231, 267
See also software requirements

specifi cation; specifi cation of
real-time software

requirements, reuse of, 203
requirements specifi cation, 199, 199. See

also software requirements
specifi cation; specifi cation of real-
time software

requirements, structuring, 226–228, 226
requirements validation, 199, 228–232,

230, 231, 267
resource diagrams, 115, 115, 116
resource patterns, in Douglass’ real-time

pattern set, 297
resource sharing, 112, 115, 115
response times, 4–5, 8–9, 28, 73

analysis of, 394–396
and commercial real-time operating

systems, 134
and interrupt latency, 396–397
measurement of, 16
modeling of, and queuing, 402–403
in rate-monotonic case, 395–396
as temporal parameter of task, 98

restore routine, in stack management,
127, 128

reusability, 153, 163
reuse support, and object-oriented

design, 294–295
rigor, as engineering principle, 275, 282
ring buffers, 109, 109–110, 112, 114, 128
RISC (reduced instruction set

computers), 50–51
rising edge, 55
risks

in allocation of memory, 127
in software development projects, 307

RM scheduling. See rate-monotonic
scheduling

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 555

RMA bound, 103–104, 104
RMX-80, 21, 22
robots, 494–495
ROM, 36–37

checking, 445–446
and fault-tolerance, 444–445, 446

round-robin scheduling, 84, 90, 91, 95,
99–100, 100, 392–394

RSX, 21, 22
RTE (Real-Time Executive), 21, 22
RTLinux, 136
RTOSs (real-time operating systems).

See operating systems
RTSJ. See real-time Java
rules wizards, 154
runtime scheduling, 98
runtime stacks, 127–128

SA (structured analysis), 218, 219–220,
286–287. See also structured
analysis/structured design;
structured design

SABRE airline reservations system, 20, 22
safety applications, 494
safety/reliability patterns, in Douglass’

real-time pattern set, 297
SAGE (Semiautomatic Ground

Environment) system, 20, 22
same-value variables, 186
sample-and-hold circuits, 60
sampling, and A/D circuitry, 58–60
S&H (sample-and-hold) circuits, 60
SA/SD. See structured analysis/

structured design
SA/SD/RT (real-time SA/SD), 290–291,

291
save routine, in stack management,

127–128
scaled numbers, 465–467, 466
schedulability, 16, 103, 152, 177, 385
scheduling, 19, 20

cyclic code, 100–102, 101
dynamic-priority, 104–106, 105, 105
earliest deadline fi rst approach,

104–106, 105, 105
execution time estimation, 385–391,

389
fairness, 86–87
fi rst-in fi rst-out, 128, 176

fi xed-priority, 102–104, 103, 104, 104,
106

framework, 98–99
in heterogeneous soft multi-core

architecture, 486
hybrid systems, 90–94, 91, 100, 100
in Java, 174
mechanism, and operating system

selection, 136, 138–139, 138, 140
pre-runtime, 98
problems, 381–382
rate-monotonic approach, 102–104,

103, 104, 104, 106
round-robin, 84, 90, 91, 95, 99–100, 100,

392–394
runtime scheduling, 98
theory, 14, 15, 97–106, 97, 100, 101,

103, 104, 104, 105, 105, 142
Schmitt-trigger circuits, 61, 61
Scientifi c 1103A, 20, 22
script-based testing, 463
scrubbing, RAM, 446
SD. See structured design; see also

structured analysis; structured
analysis/structured design

sdb debugger, 455
SDD (software design description), 281,

283, 371, 373–374
security applications, 494
self-modifying code, 439
self-testing, 92, 486
semaphores, 112–114, 120, 126, 127
Semiautomatic Ground Environment

(SAGE) system, 20, 22
semidetached software systems, and

basic COCOMO 81, 430–431
semiformal specifi cation methods, 201,

202, 217–224, 219, 221, 223, 233
separation of concerns, as engineering

principle, 276, 282
sequence diagrams, 300, 340, 348, 351,

354, 368–369
sequential cohesion, 277
sequential life cycle models, 303, 304
serial I/O signals, 62
serially reusable resources, 112, 113–114
series expansion, 468
servers (producers), and queuing, 398,

403

www.it-ebooks.info

http://www.it-ebooks.info/

556 INDEX

setjmp call, in C, 169
SEUs (single-event upsets), 54–55, 445
SICE (Society of Instrument and

Control Engineers, Japan)
Trans-Division Technology Committee
on Embedded Systems, 478–479

signal(s)
bus-acknowledgment (B_ACK), 56, 57
bus-request (B_REQ), 56, 57
DMA-acknowledgment (D_ACK), 56,

57, 57
DMA-request (D_REQ), 56, 57, 57
input/output, 60–62, 61
signal function, in C, 160

Simonyi, Charles, 153
single-event upsets, 54–55, 445
single-server queue model, 398–400, 399
SiP (system in package), 68
sleep mode, 141
SLOC (source lines of code), 419
slowdown mode, 33
small-scale development, economy of, as

Cardelli criterion, 152, 152, 155, 161,
164

smart grids, 495
smart homes/buildings, 494
SoC (system on chip), 68
Society of Instrument and Control

Engineers (Japan) Trans-Division
Technology Committee on
Embedded Systems, 478–479

soft real-time systems, 6, 7, 7, 73
software, automatic verifi cation of,

491–492
software control, 11
software design, 267–268, 281, 283–284,

311–312
bottom-up approach, 286
case study (traffi c light control

system), 314–316, 316–317, 317,
318–319, 318, 320–322, 323–329, 329,
330, 331, 332, 333–335, 335, 336–339,
339, 339, 340–343, 343, 344–345, 345,
346, 347, 347, 348–350, 350, 350,
351–352, 352–353, 353, 353, 354–355,
355–360, 356, 357, 357, 358, 359, 359,
360, 361, 361–362, 362, 363, 364–365,
366, 367, 368–370, 370–371, 371–372,
373–374

design document, 267

top-down approach, 286
See also life cycle models; object-

oriented design; procedural design
software design description, 281, 283,

371, 373–374
software engineering principles, 275, 282

anticipation of change, 278–279, 282
formality, 275–276, 282
generality, 279–280, 282
incrementality, 280, 282
modularity, 276–278, 276, 277, 279,

281, 282
rigor, 275, 282
separation of concerns, 276, 282
traceability, 280–281, 281, 282, 371,

373–374
software interrupts, 36, 87
software, qualities of, 268–269, 274–275,

275, 282
correctness, 272, 274, 275, 282
evolvability, 273
external/internal, 268
interoperability, 273, 275, 282
maintainability, 273–274, 275, 282
measurement of, 268–269, 274, 275
performance, 272, 275, 282
portability, 274, 275, 282
reliability, 269–272, 270, 270, 271, 274,

275, 275, 282
repairability, 273
usability, 272–273, 275, 282
verifi ability, 274, 275, 282

software requirements specifi cation, 200,
225–228

case study (traffi c light control
system), 235–238, 239, 240, 241, 242,
242–246, 246–247, 248, 249, 250–251,
252–253, 253–258, 254–262, 263–264,
264, 371, 373–374

continuances, 230
and design activity, 281
directives, 230
imperatives, 230, 230
options, 230–231
readability statistics in, 232
and requirements validation, 228–232,

230, 231
and traceability, 280–281, 281
and verifi ability, 228
weak phrases, 231

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 557

See also specifi cation of real-time
software

software reuse, 180, 181, 192
software, selection of, 16
software system attributes, 200, 201
software, system programs, 2–3
source code, availability of, and

operating system selection, 136, 138,
139, 140

source lines of code, 419
source-level debuggers, 455
space, and uncertainty, 434, 434, 435
spatial fault-tolerance, 440–443, 441, 442
special real-time languages, 152, 177–178,

193
specifi cation of real-time software, 14, 16,

201, 224–225
best practices, 224–225
fi nite state machines, 203, 205–207,

207, 208, 209–210, 209, 210
formal methods, 201, 202–207, 204,

207, 208, 209–214, 209, 210, 211, 212,
214, 214, 215, 215, 216–217, 216

informal methods, 201–202
object-oriented analysis, 221–224, 223
Petri nets, 213–217, 214, 214, 215, 215,

216, 299
semiformal methods, 201, 202, 217–224,

219, 221, 223, 233
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
structured analysis/structured design,

218–221, 219, 221
See also software requirements

specifi cation
speculative execution, 46
speculative generality, and uncertainty, 437
speedup, 382–383, 384, 384
spiral life cycle models, 306–307, 306
sporadic events, 10, 10, 11
spurious interrupts, 54, 447
SRAM (static RAM), 40, 57–58
SRs (status registers), 35, 53
SRS. See software requirements

specifi cation
stack management, 127–128
stack model, for context switching, 89, 90
stack overfl ows, 143, 447
stack pointer, 90, 95, 129
stamp coupling, 238

Standard Dictionary of Electrical and
Electronics Terms (IEEE Std
100–2000), 268

standard microcontrollers, 64–66
standard template language, 170
starvation, 90, 116–117, 116
state exploratory tests, 464
state machine diagrams, 300
state transition diagram. See fi nite state

machines
statecharts, 210–213, 211, 212, 250, 341,

342, 349, 352
state-driven code, 85, 92
static RAM, 40, 57–58
statistically based testing, 450
status registers, 35, 53
status requests, 52
STD (state transition diagram). See fi nite

state machines
STL (standard template language), 170
store result (S), 31, 31, 44, 45, 45, 47
strength reduction, 182–183, 190
stress testing, 457–458
strings, 170, 174
strongly typed languages, 157
structural diagrams, 298, 299, 300
structural patterns, 296, 296
structured analysis, 218, 219–220, 286–287.

See also structured analysis/
structured design; structured design

structured analysis/structured design,
217, 218–221, 219, 290–291

behavioral models, 218, 219
context diagrams, 220–221, 221
environmental models, 218, 219
implementation models, 219, 219
structured specifi cations, 220
See also structured analysis; structured

design
structured design, 286–287

context diagrams, 286, 287, 288
data dictionaries, 289, 290–291, 291
data fl ow diagrams, 286–289, 288, 289,

291
vs. object-oriented approaches,

301–302, 301
transition from structured analysis,

286–287
See also structured analysis; structured

analysis/structured design

www.it-ebooks.info

http://www.it-ebooks.info/

558 INDEX

structured English, 287
structured specifi cations, 220
subexpressions, 183
substitutability, 166–167
SUCs (systems under control), chaotic,

435
superpipeline architecture, 46
superscalar architecture, 46–47, 47, 48
supervisor task, in mailboxes, 111
suspended state, 95, 96–97, 97
swapping, 130, 131
symbolic debuggers, 455
synchronization, 81–82, 81

in heterogeneous soft multi-core
architecture, 486

mechanisms, and operating system
selection, 136, 138, 139, 140

synchronized objects, 162–163
synchronous events, 10–11, 10
syntactic errors, 454
syntax errors, 454
system buses, 29, 29, 30, 34, 34, 38–39
system clock, and timing accuracy,

390–391
system in package, 68
system on chip, 68
system programs, 2–3
system-level testing, 455, 456–458, 457
systems, defi ned, 3–4, 3
systems engineering, in future real-time

systems, 491–493
systems integration, 457, 458–462, 459,

460, 462
systems under control, chaotic, 435

task concurrency, and multi-core
processors, 49

task state diagram, 97, 97
task states, 95–97
task-control block model, 95–97, 95

blocked state, 96
and linked lists, 128, 129, 129–130
and memory management, 127, 128,

129, 129–130
task states, 95–97

tasks, 97, 98–99
maximum number, and operating

system selection, 136, 138, 138, 140
temporal parameters of, 98–99

Taylor series expansion, 468
TCB model. See task-control block

model
TDMA (time division multiple access),

72
time overload, 12, 400, 401, 405
tell-tale comments, and uncertainty, 437
temporal cohesion, 277
temporal determinism, 11, 12
temporal fault-tolerance, 440
temporal logic, 219, 219
terminated state, 97, 97
test case generators, 449
test cases, 158, 181, 191–192, 449–450,

453–454, 458
test design, 283
test logs, 459, 459
test plans, 458
test-fi rst coding, 453
testing, 16, 447–448, 457, 471

baseline method, 453
black-box, 443, 449–450, 451
boundary-value, 449–450
brute-force, 449
burn-in, 456
and central processing unit, 444
and cleanroom software development,

457
corner-case, 449–450
debugging approaches, 454–456
exhaustive, 449
exploratory, 462–465
and formal methods for software

specifi cation, 205
integration, 457, 458–462, 459, 460, 462
memory, 444–446
metrics, use in, 419
module-level, 455
nonintrusive, 454
of object-oriented software, 452–453
of partially implemented systems, 458
pathological-case, 450
patterns, 462–465
performance analysis, 379
purpose of, 448
regression, 456–457
for reliability, 418
script-based, 463
self-testing, 92, 486

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 559

source-level debuggers, 455
statistically based, 450
stress, 457–458
symbolic debuggers, 455
system-level, 455, 456–458, 457
techniques, 448–454
test cases, 158, 181, 191–192, 449–450,

453–454, 458
test-fi rst coding, 453
threshold tests, 188–189
tools, 460–461
and uncertainty, 435–436
unit-level, 449
white-box, 450–451, 451
worst-case, 450
See also debugging

theorem proving, 203
thread synchronization mechanisms, in

C++, 172
thread-local objects, 163
threads, 80–81, 81, 98, 163, 171–172

objects migrating between, 163
and real-time Java, 174–176
thread-local objects, 163

three-address form, 32
3-Sat problems, 381
threshold tests, 188–189
throughput, and central processing unit,

13
time

loading, and queuing, 404, 405
overload, 12, 400, 401, 405
slicing, 99–100
time division multiple access, 72
and uncertainty, 434, 434, 435, 436

time-correlated buffering, 108
timeliness, 5
time-invariant bursts, calculation of

buffer size, 405–406
time-loading factor, 12–14, 12
time-variant bursts, calculation of buffer

size, 406–407
timers, 65, 65, 92, 122–123, 172, 446–447
time-stamping, 8
time-triggered architecture, 71–73, 71
time-triggered protocol, 72
timing constraints, 4–5, 8–9
timing diagrams, 300
top-down design approach, 286

traceability, 227, 280–281, 281, 282, 371,
373–374

traceability matrix, 280–281, 281
traffi c light control system, 19

software design case study, 314–316,
316–317, 317, 318–319, 318, 320–322,
323–329, 329, 330, 331, 332,
333–335, 335, 336–339, 339, 339,
340–343, 343, 344–345, 345, 346, 347,
347, 348–350, 350, 350, 351–352,
352–353, 353, 353, 354–355, 355–360,
356, 357, 357, 358, 359, 359, 360,
361, 361–362, 362, 363, 364–365, 366,
367, 368–370, 370–371, 371–372,
373–374

software requirements specifi cation
case study, 235–238, 239, 240, 241,
242, 242–246, 246–247, 248, 249,
250–251, 252–253, 253–258, 254–262,
263–264, 264, 371, 373–374

transition matrixes, 443
transputers, 66, 177
triangle-shaped requirements structure,

227, 227
truth tables, 204, 204
TTA (time-triggered architecture),

71–73, 71
TTP (time-triggered protocol), 72
turnaround time, 393–394
two-address form, 32
2-Sat problems, 381
typed languages, 157

ultra-low power consumption, 62
UML. See unifi ed modeling language
UML++, 489–491, 490, 492, 498
uncertainty, 418, 433–434, 438, 439, 463,

464, 470
delay, 122
dimensions of, 434, 434–435
identifying, 437
and model checking, 438
sources of, 435–436, 439
and testing, 435–436

underfl ow, and ring buffering, 110
understandability, and coding standards,

153
unifi ed modeling language, 202, 217,

221–224, 223, 298, 298

www.it-ebooks.info

http://www.it-ebooks.info/

560 INDEX

unifi ed modeling language (cont'd)
as future “programming language,”

489–491, 490
and object-oriented design, 293,

298–301, 298
OMG Unifi ed Modeling LanguageTM,

299
unit-level testing, 449
Unix, 131, 455
unpredictability, and object-oriented

languages, 165
unreachable code, removal of, 184–185
unsynchronized objects, 163
upcasting, in Java, 174
upward leveling, 287
U.S. Department of Defense, 21
usability, 224, 233, 272–273, 275, 282
use case diagrams, 222–223, 223, 246, 300
utilization

CPU, 12–14, 12, 36, 385, 395, 410
rate, 33, 47

validation, 228, 448
variable-length latency, and interrupts, 35
vectored interrupts, 53–55, 54
verifi ability, 228, 274, 275, 282
verifi cation, 447–448, 491–492
very long instruction word architecture,

47–48
vibration, 444
virtual machines, 172–173, 172, 487–488
vision confi dence pentacles, 479, 480
VLIW (very long instruction word)

architecture, 47–48

V-model, 305–306, 305
volatile variable type, in C, 169
von Neumann architecture, 29–30, 29, 30,

35, 43, 44, 45
voting schemes, 440
VRTX, 21, 22

wait operation, 112, 113, 114
wait states, 38–39
watchdog interrupts, 65
watchdog timers, 65, 65, 92, 446–447
waterfall life cycle models, 303–305, 304
waveform I/O signals, 61–62
WCET (worst-case execution time),

387–388, 389
weak phrases, in software requirements

specifi cations, 231
Whirlwind fl ight simulation project, 20,

21, 22
white-box testing, 450–451, 451
wide networks of collaborating real-time

systems, 495
Windows CE, and C#, 171
wireless communications, concerns with,

497
wireless network connections, 62
Workshop of Computer Architecture

Research Directions, 489
worst-case execution time, 387–388,

389
worst-case testing, 450

Yourdon’s Modern Structured Analysis,
218

www.it-ebooks.info

http://www.it-ebooks.info/

